
Update on Tiger ?

Florian Mendel1, Bart Preneel2, Vincent Rijmen1,
Hirotaka Yoshida3, and Dai Watanabe3

1 Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria
{Florian.Mendel,Vincent.Rijmen}@iaik.tugraz.at

2 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium

Bart.Preneel@esat.kuleuven.be
3 Systems Development Laboratory, Hitachi, Ltd.,

1099 Ohzenji, Asao-ku, Kawasaki-shi, Kanagawa-ken, 215-0013 Japan
{hirotaka.yoshida.qv,dai.watanabe.td}@hitachi.com

Abstract. Tiger is a cryptographic hash function with a 192-bit hash
value which was proposed by Anderson and Biham in 1996. At FSE 2006,
Kelsey and Lucks presented a collision attack on Tiger reduced to 16 (out
of 24) rounds with complexity of about 244. Furthermore, they showed
that a pseudo-near-collision can be found for a variant of Tiger with 20
rounds with complexity of about 248.
In this article, we show how their attack method can be extended to
construct a collision in the Tiger hash function reduced to 19 rounds.
We present two different attack strategies for constructing collisions in
Tiger-19 with complexity of about 262 and 269. Furthermore, we present
a pseudo-near-collision for a variant of Tiger with 22 rounds with com-
plexity of about 244.

Keywords: cryptanalysis, hash functions, differential attack, collision,
near-collision, pseudo-collision, pseudo-near-collision

1 Introduction

Recent results in cryptanalysis of hash function show weaknesses in many com-
monly used hash functions, such as SHA-1 and MD5 [4,5]. Therefore, the crypt-
analysis of alternative hash functions, such as Tiger, is of great interest.

In [2], Kelsey and Lucks presented a collision attack on Tiger-16, a round
reduced variant of Tiger (only 16 out of 24 rounds), with complexity of about
244. In the attack they used a kind of message modification technique developed
? This work was supported in part by the Austrian Science Fund (FWF), project

P18138. This work was supported in part by a consignment research from the Na-
tional Institute on Information and Communications Technology (NiCT), Japan.
This work was supported in part by the Concerted Research Action (GOA) Ambior-
ics 2005/11 of the Flemish Government.

R. Barua and T. Lange (Eds.): INDOCRYPT 2006, LNCS 4329, pp. 63–79, 2006.
http://dx.doi.org/10.1007/11941378 6
c© Springer-Verlag Berlin Heidelberg 2006

http://dx.doi.org/10.1007/11941378_6


64 F. Mendel et al.

for Tiger to force a differential pattern in the chaining variables after round 7,
which can then be canceled by the differences in the expanded message words in
the following rounds. This led to a collision in the Tiger hash function after 16
rounds. Furthermore, they showed that a pseudo-near-collision can be found in
a variant of Tiger with 20 rounds in about 248 applications of the compression
function.

In this article, we extend the attack to construct a collision in Tiger-19.
We present two different collision attacks on Tiger-19 with complexity of 262

and 269. Furthermore, we present a pseudo-near-collision attack for a variant of
Tiger with 22 rounds with complexity of about 244 and a pseudo-collision attack
for Tiger-23/128, a version of Tiger reduced to 23 rounds with truncated output,
with complexity 244. A summary of our results is given in Table 1.

Table 1. Overview of attacks on the Tiger hash function.

number of rounds type complexity

Tiger-16 collision 244 in [2]
Tiger-19 collision 262 and 269 in this article

Tiger-19 pseudo-collision 244 in this article
Tiger-21 pseudo-collision 266 in this article
Tiger-23/128 pseudo-collision 244 in this article

Tiger-20 4 pseudo-near-collision 248 in [2]
Tiger-21 pseudo-near-collision 244 in this article
Tiger-22 pseudo-near-collision 244 in this article

The remainder of this article is structured as follows. A description of the
Tiger hash function is given in Section 2. The attack of Kelsey and Lucks on
Tiger-16 is described in Section 3. In Section 4, we describe a method to construct
collisions in Tiger-19. Another method for construction collisions in Tiger-19
is described in Section 5. Furthermore, we present a pseudo-near-collision for
Tiger-22 in Section 6 and a pseudo-collision for Tiger-23/128 in Section 7. Finally,
we present conclusions in Section 8.

2 Description of the Hash Function Tiger

Tiger is a cryptographic hash function that was designed by Ross Anderson and
Eli Biham in 1996 [1]. It is an iterative hash function that processes 512-bit input
message blocks and produces a 192-bit hash value. In the following, we briefly
describe the hash function. It basically consists of two parts: the key-schedule
and the state update transformation. A detailed description of the hash function
is given in [1]. For the remainder of this article we use the same notation as is
used in [2]. The notation is given in Table 2.

4 Kelsey and Lucks show a pseudo-near-collision for the last 20 rounds of Tiger.



Update on Tiger 65

Table 2. Notation

Notation Meaning

A + B addition of A and B modulo 264

A−B subtraction of A and B modulo 264

A ∗B multiplication of A and B modulo 264

A⊕B bit-wise XOR-operation of A and B
¬A bit-wise NOT-operation of A

A � n bit-shift of A by n positions to the left
A � n bit-shift of A by n positions to the right

Xi message word i (64-bits)
Xi[even] the even bytes of message word Xi (32-bits)
Xi[odd] the odd bytes of message word Xi (32-bits)

2.1 State Update Transformation

The state update transformation starts from a (fixed) initial value IV of three
64-bit registers and updates them in three passes of eight rounds each. In each
round one 64-bit word X is used to update the three chaining variables A, B
and C as follows.

C = C ⊕X

A = A− even(C)
B = B + odd(C)
B = B × mult

The results are then shifted such that A,B, C become B,C,A. Fig. 1 shows one
round of the state update transformation of Tiger.

Table 2. Notation

Notation Meaning

A + B addition of A and B modulo 264

A−B subtraction of A and B modulo 264

A ∗B multiplication of A and B modulo 264

A⊕B bit-wise XOR-operation of A and B

¬A bit-wise NOT-operation of A

A � n bit-shift of A by n positions to the left
A � n bit-shift of A by n positions to the right

Xi message word i (64-bits)
Xi[even] the even bytes of message word Xi (32-bits)
Xi[odd] the odd bytes of message word Xi (32-bits)

2.1 State Update Transformation

The state update transformation starts from a (fixed) initial value IV of three
64-bit registers and updates them in three passes of eight rounds each. In each
round one 64-bit word X is used to update the three chaining variables A, B
and C as follows.

C = C ⊕X

A = A− even(C)

B = B + odd(C)

B = B × mult

The results are then shifted such that A, B, C become B, C, A. Fig. 1 shows one
round of the state update transformation of Tiger.

PSfrag replacements even

odd

Xi

Ai−1 Bi−1 Ci−1

Ai Bi Ci

Fig. 1. The round function of Tiger.Fig. 1. The round function of Tiger.



66 F. Mendel et al.

The non-linear functions even and odd used in each round are defined as follows.

even(C) = T1[c0]⊕ T2[c2]⊕ T3[c4]⊕ T4[c6]
odd(C) = T4[c1]⊕ T3[c3]⊕ T2[c5]⊕ T1[c7]

where C is split into eight bytes c0, . . . , c7 where c0 is the most significant byte.
The four S-boxes T1, . . . , T4 : {0, 1}8 → {0, 1}64 are used to compute the output
of the non-linear functions even and odd. For the definition of the four S-boxes
we refer to [1]. Note that chaining variable B is multiplied with the constant
mult ∈ {5, 7, 9} at the end of each round. The value of the constant is different
in each pass of the Tiger hash function.

After the last round of the state update transformation, the chaining variables
A−1, B−1, C−1 and the output values of the last pass A23, B23, C23 are combined,
resulting in the final value of one iteration (feed forward). The result is the final
hash value or the initial value for the next message block.

A′23 = A−1 ⊕A23

B′
23 = B−1 −B23

C ′
23 = C−1 + C23

2.2 Key Schedule

Between two passes of Tiger, there is one key schedule. The key schedule is
an invertible function which ensures that changing a small number of bits in
the message will affect a lot of bits in the next pass. While the message words
X0, . . . , X7 are used in the first pass to update the chaining variables, the re-
maining 16 message words, 8 for the second pass and 8 for the third pass, are
generated by applying the key schedule as shown below.

(X8, . . . , X15) = KeySchedule(X0, . . . , X7)
(X16, . . . , X23) = KeySchedule(X8, . . . , X15)

The key schedule modifies the inputs (Y0, . . . , Y7) in two steps, as shown below.

first step second step

Y0 = Y0 − (Y7 ⊕ A5A5A5A5A5A5A5A5) Y0 = Y0 + Y7

Y1 = Y1 ⊕ Y0 Y1 = Y1 − (Y0 ⊕ ((¬Y7) � 19))
Y2 = Y2 + Y1 Y2 = Y2 ⊕ Y1

Y3 = Y3 − (Y2 ⊕ ((¬Y1) � 19)) Y3 = Y3 + Y2

Y4 = Y4 ⊕ Y3 Y4 = Y4 − (Y3 ⊕ ((¬Y2) � 23))
Y5 = Y5 + Y4 Y5 = Y5 ⊕ Y4

Y6 = Y6 − (Y5 ⊕ ((¬Y4) � 23)) Y6 = Y6 + Y5

Y7 = Y7 ⊕ Y6 Y7 = Y7 − (Y6 ⊕ 0123456789ABCDEF)

The final values (Y0, . . . , Y7) are the output of the key schedule and the message
words for the next pass.



Update on Tiger 67

3 Previous Attack on Tiger

In this section, we will briefly describe the attack of Kelsey and Lucks on
Tiger-16. A detailed description of the attack is given in [2]. For a good un-
derstanding of our results, it is recommended to study it very carefully. Space
restrictions do not permit us to copy all the important details of the original
attack. The attack on Tiger-16 can be summarized as follows.

1. Choose a characteristic for the key schedule of Tiger that holds with high
probability (ideally with probability 1).

2. Use a kind of message modification technique [5] developed for Tiger to
construct certain differences in the chaining variables for round 7, which can
then be canceled by the differences in the message words in the following
rounds. This leads to a collision in the Tiger hash function after 16 rounds.

In the following we will describe both parts of the attack in detail.

3.1 High Probability Characteristic for the Key Schedule of Tiger

For the attack Kelsey and Lucks used the key schedule difference given in (1). It
has probability 1 to hold in the key schedule of Tiger. This facilitates the attack.

(I, I, I, I, 0, 0, 0, 0) → (I, I, 0, 0, 0, 0, 0, 0) (1)

Note that I denotes a difference in the MSB of the message word. Hence, the
XOR difference (denoted by ∆⊕) and the additive difference (denoted by ∆+)
is the same in this particular case.

To have a collision after 16 rounds, there has to be a collision after round 9
as well. Hence, the following differences are needed in the chaining variables for
round 7 of Tiger.

∆⊕(A6) = I, ∆⊕(B6) = I, ∆⊕(C6) = 0 (2)

Constructing these differences in the chaining variables after round 6 is the most
difficult part of the attack. Therefore, Kelsey and Lucks adapted the idea of
message modification from the MD-family to Tiger. The main idea of message
modification is to use the degrees of freedom we have in the choice of the message
words to control the differences in the chaining variables. In the case of Tiger,
the differential pattern given in (2) has to be met in order to have a collision
after 16 rounds of Tiger.

3.2 Message modification by Meeting in the Middle

In this section, we explain the idea of message modification in Tiger according to
Fig. 2. Assume that the values of (Ai−1, Bi−1, Ci−1) and the additive differences
∆+(Ai−1), ∆+(Bi−1), ∆+(Ci−1) are known as well as the additive differences
in the message words Xi and Xi+1. Then the additive difference ∆+(Ci+1) can



68 F. Mendel et al.

PSfrag replacements

even

even

odd

odd

Xi

∆+(Ci+1) = δ∗

Xi+1

Ai−1 Bi−1 Ci−1

Ai Bi Ci

Ai+1 Bi+1 Ci+1

Fig. 2. Outline of the message modification step in Tiger.

be forced to be any difference δ∗ with probability 1/2 by applying the birthday
attack. As depicted in Fig. 2, the additive difference ∆+(Ci+1) depends on the
additive differences ∆+(Bi−1), ∆+(odd(Bi)), and ∆+(even(Bi+1)).

For any nonzero XOR difference ∆⊕(Bi+1[even]), one expect about 232 dif-
ferent corresponding additive output differences ∆+(even(Bi+1)). Similarly, for
any nonzero XOR difference ∆⊕(odd(Bi)), one expect close to 232 corresponding
different additive output differences ∆+(odd(Bi)).

Thus, if the XOR differences ∆⊕(Bi+1[even]) and ∆⊕(Bi[odd]) both are
nonzero, a meet-in-the-middle (MITM) approach can be applied to solve the
following equation:

mult× (∆+(Bi−1) + ∆+(odd(Bi)))−∆+(even(Bi+1)) = δ∗ .

This is done by performing the following two steps:

1. Store the 232 candidates for ∆+(odd(Bi)) in a table.
2. For all 232 candidates for ∆+(even(Bi+1)), test if some ∆+(odd(Bi)) exists

with ∆+(odd(Bi)) = (∆+(even(Bi+1)) + δ∗)/(mult)−∆+(Bi−1) .

This technique takes 233 evaluations of each of the functions odd and even,
which is equivalent to about 229 evaluations of the compression function of Tiger
reduced to 16 rounds and some 233 64-bit word units of storage space.

Note that if the choice of the values of the message words Xi and Xi+1 is
constrained by k-bits then the success probability of the message modification
step is reduced by a factor of 2k. This is referred to as a constrained message
modification step.

Fig. 2. Outline of the message modification step in Tiger.

be forced to be any difference δ∗ with probability 1/2 by applying the birthday
attack. As depicted in Fig. 2, the additive difference ∆+(Ci+1) depends on the
additive differences ∆+(Bi−1), ∆+(odd(Bi)), and ∆+(even(Bi+1)).

For any nonzero XOR difference ∆⊕(Bi+1[even]), one expect about 232 dif-
ferent corresponding additive output differences ∆+(even(Bi+1)). Similarly, for
any nonzero XOR difference ∆⊕(odd(Bi)), one expect close to 232 corresponding
different additive output differences ∆+(odd(Bi)).

Thus, if the XOR differences ∆⊕(Bi+1[even]) and ∆⊕(Bi[odd]) both are
nonzero, a meet-in-the-middle (MITM) approach can be applied to solve the
following equation:

mult× (∆+(Bi−1) + ∆+(odd(Bi)))−∆+(even(Bi+1)) = δ∗ .

This is done by performing the following two steps:

1. Store the 232 candidates for ∆+(odd(Bi)) in a table.
2. For all 232 candidates for ∆+(even(Bi+1)), test if some ∆+(odd(Bi)) exists

with ∆+(odd(Bi)) = (∆+(even(Bi+1)) + δ∗)/(mult)−∆+(Bi−1) .

This technique takes 233 evaluations of each of the functions odd and even,
which is equivalent to about 229 evaluations of the compression function of Tiger
reduced to 16 rounds and some 233 64-bit word units of storage space.

Note that if the choice of the values of the message words Xi and Xi+1 is
constrained by k-bits then the success probability of the message modification
step is reduced by a factor of 2k. This is referred to as a constrained message
modification step.



Update on Tiger 69

3.3 The collision attack on Tiger-16

With the key schedule difference given in Section 3.1 and the new developed
message modification technique for Tiger described in Section 3.2, Kelsey and
Lucks show a collision attack on Tiger reduced to 16 rounds. The method can
be summarized as follows (see [2]).

0. Precomputation: Find an additive difference L+ with a low Hamming weight
XOR difference L⊕ which can be canceled out by a suitable choice for
X6[even]. In the analysis Kelsey and Lucks assume, that an additive dif-
ference L can be found which is consistent to an 8-bit XOR difference Lxor.
This step of the attack has a complexity of about 227.

1. Choose suitable values for X0, X1, X2[even] such that ∆⊕(A2), ∆⊕(B2),
∆⊕(C2) are useful. A difference is called useful if there are differences in the
even and odd bytes of the word. This step adds negligible cost to the attack
complexity.

2. Do a message modification step to get a suitable XOR-difference Lxor in
C3 which is consistent with the additive difference L of the precomputation
step. This step has complexity of about 236 and determines the message
words X2[odd] and X3[even].

3. Do a constrained message modification step to get ∆⊕(C4) = I. This deter-
mines X3[odd] and X4[even]. Completing this step has complexity of about
240. This is due to the fact that 8 bits of X4 (4 bits in X4[even] and 4 bits
in X4[odd]) are constrained by the transition of the XOR difference Lxor in
C3 to the additive difference L in B4.

4. Do a constrained message modification step to get ∆⊕(C5) = I. This deter-
mines X4[odd] and X5[even]. Completing this step has complexity of about
244.

5. Determine X6[even] by using C5 and the results of the precomputation step.
This adds no additional cost to the attack complexity.

Hence, a collision in Tiger-16 can be found with a complexity of about 244

applications of the compression function. In the attack a characteristic for the
key schedule differences is used which has probability 1 as well as a message
modification technique developed for Tiger to force certain differences in the
chaining variables after round 6 which can then be canceled by the differences
in the expanded message words X8 and X9. For a detailed description of the
attack we refer to [2].

4 A Collision Attack on Tiger-19 – Method 1

In this section we present a collision attack on Tiger-19 with complexity of about
262 hash computations. First, we show how the attack of Kelsey and Lucks can
be extended to construct a pseudo-collision in Tiger-19 with complexity of about
244 hash computations. Second, we show how this pseudo-collision can be turned
into a collision for Tiger-19 by using a kind of neutral bit technique. The collision
attack on Tiger-19 has a complexity of 262 hash computations.



70 F. Mendel et al.

4.1 A Pseudo-Collision for Tiger-19

In this section we will show how to construct a pseudo-collision for Tiger-19 with
a complexity of about 244. The attack is an extension of the attack of Kelsey
and Lucks on Tiger-16.

To construct a pseudo-collision in Tiger-19 we use the key schedule difference
given in (3). It has probability 1 to hold in the key schedule of Tiger which
facilitates the attack.

(0, 0, 0, I, I, I, I, 0) → (0, 0, 0, I, I, 0, 0, 0) → (0, 0, 0, I, I, I, I, I) (3)

Note that the key schedule difference from round 3 to 18 is the 16-round differ-
ence used by Kelsey and Lucks in the attack on Tiger-16. Hence, we can use the
same attack strategy which was used to break Tiger-16 in the attack on Tiger-19
as well. The attack work as follows:

1. Choose arbitrary values for the chaining variables A2, B2, C2 for round 3.
2. Employ the attack on 16 rounds, to find message words X3, . . . , X7 and

X8[even], X9[even] such that the output after round 18 collides.
3. To compute the real message words X0, . . . , X7, we have to choose suitable

values for X8[odd], X9[odd] and X10, . . . , X15 such that X4, X5, X6 and X7

are correct after computing the key schedule backward. Note that X3 can be
chosen freely, because we can modify C2 such that C2 ⊕ X3 stay constant.
In detail, we choose arbitrary values for X8[odd], X9[odd], X10, X11 and
calculate X12, . . . , X15 as follows.

X12 = (X4 ⊕ (X11 −X10))− (X11 ⊕ (¬X10 � 23))
X13 = (X5 + (X12 + (X11 ⊕ (¬X10 � 23))))⊕X12

X14 = (X6 − (X13 ⊕X12 ⊕ (¬(X12 + (X11 ⊕ (¬X10 � 23))) � 23))) + X13

X15 = (X7 ⊕ (X14 −X13))− (X14 ⊕ 0123456789ABCDEF)

This adds negligible cost to the attack complexity and guarantees that
X4, X5, X6 and X7 are always correct after computing the key schedule back-
ward.

4. To compute the initial chaining values A−1, B−1 and C−1 run the rounds 2,
1 and 0 backwards.

Hence, we can construct a pseudo-collision for Tiger-19 with a complexity of
about 244 applications of the compression function. We can turn this pseudo-
collision into a collision for Tiger-19. This is described in detail in the next
section.

4.2 From a Pseudo-Collision to a Collision in Tiger-19

Constructing a collision in Tiger-19 works quite similar as constructing the
pseudo-collision. Again we use the key schedule difference given in (3) and em-
ploy the attack on 16 rounds of Tiger. The attack can be summarized as follows.



Update on Tiger 71

1. Choose arbitrary values for X0,X1 and X2 and compute the chaining vari-
ables A2, B2, C2 for round 3.

2. Employ the attack on 16 rounds, to find the message words X3, . . . , X7 and
X8[even], X9[even] such that the output after round 18 collides.

3. To guarantee the X8[even], X9[even] are correct after applying the key
schedule, we use the degrees of freedom we have in the choice of X0, X1, X2,
X3. Note that for any difference we introduce into X0, you can introduce
canceling differences into X1, X2, X3 such that A2, B2 and B3 = C2 ⊕ X3

stay constant. This is a kind of local collision for the first 4 rounds of Tiger.

Xnew
0 = arbitrary

Xnew
1 = Cnew

0 ⊕ C0 ⊕X1

Xnew
2 = Cnew

1 ⊕ C1 ⊕X2

Xnew
3 = Cnew

2 ⊕ C2 ⊕X3

After testing all 264 possible choices for X0 and changing X1, X2, and X3

accordingly such that A2, B2 and B3 stay constant, we expect to get the
correct values for X8[even], X9[even] after applying the key schedule of
Tiger.
Hence, this step of the attack has a complexity of at about 264 key schedule
computations and 3 × 264 round computations. This is equivalent to about
262 applications of the compression function of Tiger-19.

Thus, we can construct a collision in Tiger-19 with complexity of about 262 +
244 ≈ 262 applications of the compression function. We are not aware of any
other collision attack on Tiger which works for so many rounds. The best collision
attack on Tiger so far was for 16 rounds by Kelsey and Lucks described in [2].

5 Collision Attack on Tiger-19 – Method 2

We now present another method to find collisions for the 19-round Tiger. The
attack complexity of this attack method is slightly higher than the one in the
previous attack method. One difference from the previous method is that the
first method uses larger space of message than the second one. This can been
seen where X0 is used in each attack. The first method uses whole 64 bits of X0

and the second one uses less bits of X0.
The attack described here is also an extension of the attack by Kelsey and

Lucks. However, our attack is in a different situation from their attack. Their
attack precomputes the additive difference L and then use X6 to cancel it out
in the main phase. Similarly, our attack precomputes the additive difference α
and then use X9 to cancel it out in the main phase. The key difference is that
their attack controls X6 in a deterministic way but our attack has to do in a
probabilistic way due to the key schedule. This causes the main difficulty we
have to solve here.

The outline of the attack is as follows:



72 F. Mendel et al.

1. Search for a good differential characteristic of the message words for 19
rounds.

2. Construct a good differential characteristic for 19 rounds by considering the
message word differences expected from the characteristic in Step 1.

3. Divide this characteristic for round 3-9 into two consecutive characteristics
(characteristic for round 3-7 and characteristic for round 8-9) so that we
work on them independently.

4. Do the MITM step for the characteristic for round 3-7. Determine the chain-
ing values A3, B3, B3 and the message words X4, X5, X6, X7[even].

5. Do the MITM step for the characteristic for round 8-9 by varying the mes-
sage words X0, X1, X2, X3, X7[odd] while keeping the previously determined
values unchanged. Determine all of the values.

In the attack, we use the same characteristic for the key schedule as in Sec-
tion 4 and then construct a differential characteristic as shown in Table 3, where
α and γ are some useful values in our attack. We will explain how these value
are chosen in the next section.

Table 3. A collision-producing differential characteristic

i ∆(Ai) ∆(Bi) ∆(Ci) ∆(Xi)

3 0 I * I

4 * * * I

5 * * * I

6 * * γ I

7 * γ I 0

8 α * I 0

9 I I 0 0

10 I 0 I 0

11 0 0 I I

12 0 0 0 I

5.1 The Precomputation Phase of the Attack

Before performing our attack, we need an algorithm to find a good differential
characteristic starting with ∆+(C6) and ending with ∆+(C9) as shown in Ta-
ble 3. We need the additive difference ∆+(even(B9)) to be equal to ∆+(A8).
The question we have here is what difference we want in C6 for obtaining a
high probability. A solution to this is to compute the differences backward start-
ing from the additive difference ∆+(B9) = I. By performing experiments, we
searched for α and γ such that the corresponding differential probabilities p1,
p2 are high5. As a result, we found a high probability differential characteristic
5 We have searched some sub space for the values α and γ so far. Searching the whole

space could give us the better values for both of two.



Update on Tiger 73

which is shown in the following:

∆+(B9) = I
even→ ∆+(even(B9)) = ∆+(A8) = α with probability p2 ,

∆+(A8) = α
÷,+→ ∆(B7)+ = γ with probability 1 ,

∆+(B7) = γ
⊕→ ∆(C6)+ = ∆+(B7 ⊕X7) = γ with probability p1 .

Here the additive differences are

α = 0x80c02103d43214d6 ,

γ = α/7 mod 264 = 0xedd24ddbf9be02fa ,

and probabilities are p1 = 2−26 and p2 = 2−28. We here study the above char-
acteristic with probability p1 in detail.

In general, for a pair of data (J , J ′) and some constant value Q, if we assume
the Hamming weight of ∆⊕(J, J ′) to be k, then the probability that ∆+(J, J ′) =
∆+(J ⊕Q, J ′ ⊕Q) is 2−k. This means that k bits of Q are constrained6 to hold
the above equation. Therefore, in the case of the characteristic with probability
p1 = 2−26, we expect α to have 26 active bits as a XOR difference, which imposes
a 26-bit condition on X7.

Because of the large number of active bits, it seems plausible to assume that
there is a 13-bit condition on X7[even] and a 13-bit condition on X7[odd]. We
denote the probabilities that these two conditions hold by p1,even = p1,odd = 2−13

respectively.

5.2 The Main Phase of the Attack

We here describe how the main attack phase is performed. For a preparation we
present the following lemma explaining the generic birthday attack which will
be used for the MITM technique to work.

Lemma 1. Consider two functions f and g having the same output space of n
bit length. If we assume that f and g are random and we have r1 inputs for f
and r2 inputs for g, the probability of having a pair of inputs (x, y) producing a
collision f(x) = g(y) is given by p = 1 − exp(−r1r2/2n) [3].

This tells us that the MITM step works with some probability even if the
number of output differences of the odd or even is less than 232. The main
attack phase is performed as follows.

1. Arbitrarily choose the chaining values A3, B3, C3 for round 4.
2. Choose X4[even] and ensure that the difference ∆⊕C4 is useful. By useful we

mean that the corresponding XOR difference has at least 1 active bit in each
odd byte for having the 232 values for the additive difference ∆+odd(B5).
The work here is negligible.

6 For example, an XOR difference of 1 is consistent with an additive difference of
either −1 or +1. If the low bit in J is 0, the low bit in J ′ will be 1, and reaching an
additive difference of −1 will require fixing the low bit of Q to 1



74 F. Mendel et al.

PSfrag replacements

even

even

eveneven

even

even

odd

odd

oddodd

odd

odd

∆+ = γ

∆+ = γ

∆+ = β

∆+ = α

∆+ = I∆+ = I

∆+ = I

∆+ = I

∆+ = 0

∆+ = I

∆+ = I

∆+ = I

X4

X5

X6

X7

X8

X9

A3 B3 C3

A4 B4 C4

A5 B5 C5

A6 B6 C6

A7 B7 C7

A8 B8 C8

A9 B9 C9

Fig. 3. The information flow from C6 to C9Fig. 3. The information flow from C6 to C9



Update on Tiger 75

3. Choose X4[odd] and X5[even] to ensure that the difference is ∆⊕C5 useful.
4. Perform a MITM step by choosing X5[odd] and X6[even] to get an addi-

tive difference γ in C6. The expected work here is approximately 233 evalua-
tions of both of the odd function and the even function, and we determine
X5[odd] and X6[even]. Each failure requires that we go back to Step 3.

5. Set 13 bits of X7[even] to hold the 13-bit condition on X7[even] derived in
the precomputation phase in Sect. 5.1 and then perform a MITM step using
the generic birthday attack of Lemma 1. This is performed by choosing
X6[odd] and the rest bits of X7[even] to get additive difference I in C7.
Each failure requires that we go back to Step 3. The expected work here is
about 213 computations, each of which consists of two kinds of evaluations:
233 evaluations of the odd function and 219 evaluations of the even function.
We determine X6[odd] and X7[even] at the end of this step.

6. Set 13 bits of X7[odd] to hold the 13-bit condition on X7[odd] derived in
the precomputation phase in Sect. 5.1 and then perform a MITM step to get
the additive difference I in C8. This is done by randomly choosing the rest
bits of X7[odd] and randomly generating X8[even].
The message word X8[even] is generated in the following way: Randomly
choose the message word X0 and determine X1, X2, and X3 so that the
resulting A3, B3, C3 are consistent with A3, B3, C3 chosen in Step 1. We
then determine X8[even] from the key schedule.
The above MITM step is performed with 219 values for ∆+(A7) and 228

values for ∆+(even(B8)) 7. According to Lemma 1, the success probability
of this attack is 2−17. Therefore the expected work here is about 218 com-
putations, each of which consists of two kinds of evaluations: 219 evaluations
of the odd function and 228 evaluations of the even function.

7. Compute X9[even] by processing the key schedule and check if ∆+even(B9) =
∆+(A8), which means ∆+(C9) = 0. Each failure requires that we go back to
Step 6.

5.3 Complexity Analysis

We discuss the attack complexity in the attack in Sect. 5.2. The important thing
to consider when we estimate the complexity is that the task of Steps 1-5 can be
performed independently of the task of Steps 6-7. We first perform Steps 1-5 and
then perform Steps 6-7 without changing the values which have been determined
in Steps 1-5.

In order to determine X4, X5, X6, X7[even] by performing from Step 1 to
Step 5, the required time complexity is equivalent to p−1

1,even · 233 evaluations of
the odd function. In order to determine X0, X1, X2, X3, X7[odd] by performing
from Step 6 to Step 7, the required time complexity is equivalent to p−1

2 ·218·228 =
228 · 246 = 274 evaluations of the odd function.
7 Because of the XOR difference ∆⊕(B8) = I, there is only one active S-box at the

input of the even(B8). This makes the number of the additive difference smaller
than 232.



76 F. Mendel et al.

The time complexity required by this attack is dominated by the latter part,
which is equivalent to 269 computations of the compression function of Tiger
reduced to 19 rounds.

6 A Pseudo-Near-Collision for Tiger-22

In this section we present a pseudo-near-collision for Tiger-22 with complexity
of about 244. Similar as we construct a pseudo-collision in Tiger-19, we can con-
struct a pseudo-near-collision in Tiger-22. Again we use a key schedule difference
that holds with probability 1 in the key schedule of Tiger and employ the attack
on 16 rounds of Tiger. The key-schedule difference used in the attack is given in
(4).

(0, 0, I, 0, 0, 0, I, I) → (I, 0, 0, 0, 0, 0, I, I) → (0, 0, 0, 0, 0, 0, I, I) (4)

The attack work as follows:

1. Choose arbitrary values for the chaining variables A5, B5, C5 for round 6.
2. Employ the attack on 16 rounds, to find message words X6, . . . , X10 and

X11[even], X12[even] such that the output after round 21 collides.
3. To compute the real message words X0, . . . , X7, we have to choose suit-

able values for X11[odd], X12[odd] and X13, . . . , X15 to guarantee that X7

is correct after computing the key schedule backward. Therefore, we choose
arbitrary values for X11[odd], X12[odd], X13, X14 and calculate X15 as fol-
lows:

X15 = (X7 ⊕ (X14 −X13))− (X14 ⊕ 0123456789ABCDEF)

This adds negligible cost to the attack complexity and guarantees that X7

is correct after computing the key schedule backward. Note that X6 can be
chosen freely, because we can modify C5 such that C5 ⊕X6 stays constant.

4. Run the rounds 5, 4, 3, 2, 1 and 0 backwards to compute the initial values
A−1, B−1 and C−1. Since there is a difference in the message word X2 in the
MSB, we have to introduce the same difference in the initial value to cancel
it out, namely

∆⊕(B−1) = I .

Since the difference is in the MSB this happens with probability 1.
5. Of course, the feed forward destroys the pseudo-collision. After the feed

forward we get the same output differences as in the initial values. Since the
difference is in the MSB this has probability 1.

∆⊕(B′
21) = ∆⊕(B−1 −B21) = I

Hence, we can construct a pseudo-near-collision for Tiger-22 with complexity of
about 244. For an ideal hash function with a hash value of 192-bit we would
expect a complexity of about 290 to construct a pseudo-near-collision with a
one bit difference. Note that a pseudo-near-collision for Tiger-21 with a one bit
difference can be found with the same complexity. A detailed description of the
attack is given in the appendix.



Update on Tiger 77

7 A Pseudo-Collision for Tiger-23/128

Tiger/128 is a variant of Tiger, where the final hash value is truncated to 128
bit. This variant was specified in [1] to make Tiger compatible to MD5. In
this section, we present a pseudo-collision for 23 rounds of Tiger/128. In detail,
we can turn the pseudo-near-collision for Tiger-22 into a pseudo-collision for
Tiger-23/128 by adding one additional round. If we add one round then the
output after 23 rounds has the following differences in the chaining variables:

∆⊕(A22) = 0, ∆⊕(B22) = I, ∆⊕(C22) 6= 0 (arbitrary) .

Due to the feed-forward the difference in B22 cancels out with probability 1.
Hence, we have a pseudo-collision in Tiger-23/128, since only register A and B
are used for the final hash value of Tiger-128. The attack has a complexity of
about 244 applications of the compression function.

8 Conclusion

In [2], Kelsey and Lucks discussed the possibility of extending their attack to
more rounds of Tiger and the applicability of their attack techniques to the full
hash function.

In this article, we presented two strategies for constructing collision in the
Tiger-19 hash function. The first has a complexity of about 262 hash computa-
tions and the second has a slightly higher complexity of about 269 hash compu-
tations.

The best attack on a reduced variant of Tiger so far was proposed by Kelsey
and Lucks in [2]. They showed a collision attack on Tiger-16 with a complexity of
about 244 and a pseudo-near-collision for a variant of Tiger with 20 rounds with
a complexity of about 248. We have extended their approach to show collision
attacks on Tiger-19 and presented a pseudo-near-collision for Tiger-22 and a
pseudo-collision for Tiger-23/128. Based on this we conclude that the security
margin of Tiger is not as large as one could hope for. It remains a topic of further
research to determine whether the attacks can be extended to Tiger variants with
more than 23 rounds.

Acknowledgement

The authors wish to thank Antoine Joux, Elisabeth Oswald, and the anonymous
referees for useful comments and discussions.

References

1. Ross J. Anderson and Eli Biham. TIGER: A Fast New Hash Function. In Dieter
Gollmann, editor, Fast Software Encryption, Third International Workshop, Cam-
bridge, UK, February 21-23, 1996, Proceedings, volume 1039 of Lecture Notes in
Computer Science, pages 89–97. Springer, 1996.



78 F. Mendel et al.

2. John Kelsey and Stefan Lucks. Collisions and Near-Collisions for Reduced-Round
Tiger. In Matt Robshaw, editor, Fast Software Encryption, 13th International Work-
shop, FSE 2006, Graz, Austria, March 15-17, 2006, volume 4047 of LNCS, pages
111–125, 2006.

3. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997. Available online at http://www.cacr.

math.uwaterloo.ca/hac/.
4. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-

1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 14-
18, 2005, Proceedings, volume 3621 of LNCS, pages 17–36. Springer, 2005.

5. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005: 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005. Proceedings, volume 3494 of LNCS,
pages 19–35. Springer, 2005.

A A Pseudo-Near-Collision for Tiger-21

In a similar way as we construct a pseudo-near-collision in Tiger-22, we can
construct a pseudo-near-collision for Tiger-21. For the attack we use the key-
schedule difference given in (5). It has probability 1 to hold in the key-schedule
of Tiger.

(0, I, 0, 0, 0, I, I, I) → (0, 0, 0, 0, 0, I, I, 0) → (0, 0, 0, 0, 0, I, I, I) (5)

Again we use the attack on 16 rounds of Tiger (described in Section 3) to con-
struct a pseudo-near-collision in Tiger-21. The attack work as follows:

1. Choose arbitrary values for the chaining variables A4, B4, C4 for round 5.
2. Employ the attack on 16 rounds, to find message words X5, . . . , X9 and

X10[even], X11[even] such that the output after round 20 collides.
3. To compute the real message words X0, . . . , X7, we have to choose suitable

values for X10[odd], X11[odd] and X12, . . . , X15 such that X6 and X7 is
correct after computing the key schedule backward. Therefore, we choose
arbitrary values for X10[odd], X11[odd] and X12, X13 and calculate X14, X15

as follows:

X14 = (X6 − (X13 ⊕X12 ⊕ (¬(X12 + (X11 ⊕ (¬X10 � 23))) � 23))) + X13

X15 = (X7 ⊕ (X14 −X13))− (X14 ⊕ 0123456789ABCDEF)

This adds negligible cost to the attack complexity and X6, X7 are always
correct after computing the key schedule backward. Note that X5 can be
chosen freely, because we can modify C4 such that C4 ⊕X5 stay constant.

4. Run the rounds 4, 3, 2, 1 and 0 backwards to compute the initial values
A−1, B−1 and C−1. Since there is a difference in the message word X1 in
the MSB, we introduce the same difference in the initial value to cancel it
out. Since the difference is in the MSB, this happens with probability 1.

∆⊕(A−1) = I

http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/


Update on Tiger 79

5. Of course, the feed forward destroys the pseudo-collision. After the feed
forward we get the same output differences as in the initial values:

∆⊕(A′20) = ∆⊕(A−1 ⊕A20) = I .

Hence, we can construct a pseudo-near-collision for Tiger-21 with complexity
of about 244 applications of the compression function. For an ideal hash func-
tion with a hash value of 192-bit we would expect a complexity of about 290

applications of the compression function instead of 244.

B A Pseudo-Collision for Tiger-21

In a similar way as we construct a pseudo-near-collision in Tiger-21, we can
construct a pseudo-collision in Tiger-21. For the attack we use again the key-
schedule difference given in (5). The attack can be summarized as follows:

1. Choose arbitrary values for the chaining variables A0, B0, C0 for round 1.
2. Choose random values for X1, X2, X3, X4 and calculate A4, B4, C4.
3. Employ the attack on 16 rounds of Tiger, to find message words X5, . . . , X9

and X10[even], X11[even] such that the output after round 20 collides.
4. To compute the real message words X0, . . . , X7, we have to choose suitable

values for X0, X1 and X2 such that X8, X9 and X10[even], X11[even] are
correct after computing the key schedule. Note that X0 and X1 can be chosen
freely, because we can modify C0 and C1 such that C−1 ⊕X0 and C0 ⊕X1

stay constant. Since a difference is introduced by X1, we have after round 1
that ∆⊕(C1) 6= 0. Hence, X2 can not be chosen freely.
However, since we can choose the value of C0 ⊕X1 in the beginning of the
attack, we can guarantee that the Hamming weight of ∆⊕(C1) is small.
Computer experiments show that the smallest weight we can get is 22. Con-
sequential there are 264−22 = 242 possible choices for C1 and X2 such that
∆⊕(C1⊕X2) and C1⊕X2 stay constant. Hence, we have 264+64+42 = 2170 de-
grees of freedom in the key schedule of Tiger. Therefore, we have to repeat the
attack at most 222 times to guarantee that X8, X9 and X10[even], X11[even]
are correct after applying the key schedule.

Hence, we can find a pseudo-collision in Tiger-21 with a complexity of about
244+22 = 266 applications of the compression function. Note that we assume in
the analysis that it is computational easy to find suitable values for X0, X1, X2.


	Introduction
	Description of the Hash Function Tiger
	State Update Transformation
	Key Schedule

	Previous Attack on Tiger
	High Probability Characteristic for the Key Schedule of Tiger
	Message modification by Meeting in the Middle
	The collision attack on Tiger-16

	A Collision Attack on Tiger-19 -- Method 1
	A Pseudo-Collision for Tiger-19
	From a Pseudo-Collision to a Collision in Tiger-19

	Collision Attack on Tiger-19 -- Method 2
	The Precomputation Phase of the Attack
	The Main Phase of the Attack
	Complexity Analysis

	A Pseudo-Near-Collision for Tiger-22
	A Pseudo-Collision for Tiger-23/128
	Conclusion
	A Pseudo-Near-Collision for Tiger-21
	A Pseudo-Collision for Tiger-21

