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Gastrointestinal (GI) symptoms represented by constipation were significant non-motor
symptoms of Parkinson’s disease (PD) and were considered early manifestations and
aggravating factors of the disease. This paper reviewed the research progress of the
mechanism of the gut-brain axis (GBA) in PD and discussed the roles of α-synuclein,
gut microbiota, immune inflammation, neuroendocrine, mitochondrial autophagy, and
environmental toxins in the mechanism of the GBA in PD. Treatment of PD based
on the GBA theory has also been discussed, including (1) dietary therapy, such as
probiotics, vitamin therapy, Mediterranean diet, and low-calorie diet, (2) exercise therapy,
(3) drug therapy, including antibiotics; GI peptides; GI motility agents, and (4) fecal flora
transplantation can improve the flora. (5) Vagotomy and appendectomy were associated
but not recommended.
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HIGHLIGHTS

– Neuroendocrinology plays an important role in the gut-brain axis of Parkinson’s disease.
– Familial aggregation of Parkinson’s disease may be associated with family Helicobacter

pylori infection.
– Dietary restriction and a ketogenic diet reduce the risk of Parkinson’s disease.
– Gastrointestinal motility drugs and diabetes drugs may also beneficial for Parkinson’s disease.

INTRODUCTION

Parkinson’s disease (PD) is a slowly progressive neurodegenerative disease. Its pathology is
characterized by the death of dopaminergic neurons in the substantia nigra (SN) and the formation
of Lewy bodies by abnormal aggregation of alpha-synuclein (α-syn) (Kalia and Lang, 2015). The
typical clinical manifestations of PD include tremor, myotonia, loss of movement, and postural

Abbreviations: Ach, acetylcholine; AD, Alzheimer’s disease; ANS, autonomic nervous system; BBB, blood-brain barrier;
BDNF, brain-derived neurotrophic factor; BM, bowel movement; CBM, complete bowel movement; CNS, central nervous
system; DA, dopamine; EECs, enteroendocrine cells; EGF, epidermal growth factor; EGC, enteric glial cells; ENS, enteric
nervous system; GABA, γ-aminobutyric acid; GALT, gut-associated lymphoid tissue; GBA, gut-brain axis; GH, growth
hormone; GHSR, growth hormone secretion-promoting receptor; GI, gastrointestinal; GP, globus pallidus; GPe, globus
pallidus externa; GPi, globus pallidus interna; HD, Huntington’s disease; IECs, intestinal epithelial cells; IL, interleukin; LPS,
lipopolysaccharide; LBs, Lewy bodies; LRRK2, leucine-rich repeat kinase 2; PD, Parkinson’s disease; SBM, spontaneous bowel
movements; SCFA, short chain fatty acid; SIBO, small intestinal bacterial overgrowth; SN, substantia nigra; SNpc, substantia
nigra pars compacta; SNpr, substantia nigra pars reticulate; TFN-α, necrosis factor α; TGF, transforming growth factor; TH,
tyrosine hydroxylase; TLR4, toll-like Receptor 4; α-syn, α-synuclein.
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disorders, as well as non-motor symptoms such as depression,
anxiety, sensory disorders, sleep disorders, constipation, memory
loss, anosmia, and dementia (Poewe et al., 2017). Neuropathology
has shown that the anterior olfactory nucleus and several nuclei
in the brainstem were affected before the SN of the midbrain
is damaged (Braak et al., 2003). Depending on this hypothesis,
the non-motor symptoms occur several years earlier than motor
dysfunction development. Therefore, studying the non-motor
symptoms of prodromal PD is beneficial to improve the early and
correct diagnosis of PD.

Parkinson’s disease patients are under a variety of
gastrointestinal (GI) manifestations, including salivation,
dysphagia, delayed gastric emptying, constipation, and anorectal
dysfunction (including urinary incontinence). While these
symptoms were not fatal, they can seriously impair the quality of
life in PD patients. On the other hand, GI dysfunction can affect
pharmacodynamics, lead to fluctuations in PD symptoms, and
further lead to disability, as reflected in reduced benefits per unit
dose of levodopa. Fortunately, these symptoms can be observed
20 years before the diagnosis of PD (Stirpe et al., 2016). If these
symptoms can be detected, diagnosed, and intervened early, it
may delay or even reverse the onset of PD. Constipation is among
the most prominent and disabling manifestations of lower GI
dysfunction in PD. Nearly 80% of Parkinson’s patients have
constipation symptoms (according to the Rome III criteria) (Yu
et al., 2018), and can precede the development of somatic motor
symptoms of PD for several years, maybe even a decade or more
(Liddle, 2018). Therefore, constipation has been incorporated
into the movement disorder society (MDS) diagnostic criteria of
prodromal PD (Heinzel et al., 2019).

Based on these findings, scientists’ interest in the association
between gut and PD has risen steadily (Figure 1). Exploring
whether and how there is a link between the GI tract and
PD is the subject of ongoing research and discussion in
the industry. We have analyzed and discussed the roles of
α-synuclein, GI flora, immune inflammation, neuroendocrine,
and mitochondrial autophagy in the gut-brain axis (GBA) in
PD. On this basis, a host of promising ideas and methods for
the treatment of PD have been seen. Increased dietary intake of
probiotics, omega-3, short-chain fatty acids (SCFA), vitamins, a
Mediterranean diet, as well as a low-calorie intermittent diet, and
moderate exercise were thought to play a role in the development
of PD. Eradication of Helicobacter pylori (Hp), GLP-1 receptor
agonists, and antibiotics may also have potential therapeutic
effects on PD. Vagotomy is controversial, although this is
evidence to reduce the risk of PD through the GBA mechanism,
we do not recommend it as a preventive treatment for PD. Fecal
microbiota transplantation (FMT) has also been suggested to
regulate the onset of PD by interfering with the gut microbiota.

MATERIALS AND METHODS

The contents of this paper were determined through the retrieval
and selection of the following databases in the past 5 years:
PubMed, Google Scholar, Scopus, and Embase. Searching was
made in two steps. Firstly, using a combination of keywords:

“microbiota,” “gut,” “gut-brain axis,” and “Parkinson’s disease.”
Secondly, terms such as "constipation," "Neuroendocrine,"
"H. pylori,” "brain gut peptides," "immunity," "inflammation,"
"omega 3," "diet," and "fecal transplantation" were added to the
retrieval strategy to evaluate the roles of different factors in
the enteric-brain axis, respectively. In addition, the bibliography
of each selected article has been revised to include other
relevant articles.

Statistical analysis uses Stata 16.0, which is mainly used
to calculate OR (95% CI) and to map forests to assess the
relationship between Hp infection and PD risk. A two-tailed
P < 0.05 was defined as statistically significant.

GUT-BRAIN AXIS PATHOGENESIS

α-Synuclein
The autopsy confirmed that PD patients not only had an
abnormal accumulation of α-syn in the brain, but also exist in
GBA, perhaps even earlier (Fitzgerald et al., 2019). The expression
and misfolding of α-syn can be seen at the gut level can be
observed 20 years before PD diagnosis (Stokholm et al., 2016;
Zhu et al., 2017). It can be speculated that α-syn accumulated in
the intestine in the early stage of PD, even before the first motor
symptoms appeared (Braak et al., 2004).

Animal experiments have confirmed that α-syn can be
transported to the brain through the blood-brain barrier (BBB)
(Holmqvist et al., 2014; Kim et al., 2019). Truncal vagotomy
and α-syn deficiency reduce α-syn associated neurodegeneration,
which is evidence of α-syn spreading from the gut to the brain
(Svensson et al., 2015).

However, the deposition of α-syn in the mucosal enteric
nervous system (ENS) seems to have nothing to do with the
functional impairment of the affected gut segment (Lee et al.,
2018). Therefore, α-syn may only be the pathological origin or
manifestation of PD, leading to overall GI symptoms through the
nervous system, rather than direct GI damage.

Gut Microbiota
The GI tract is the part with the highest content of
microorganisms in the human body (Gilbert et al., 2018), and
everyone has their own unique GI flora structure (Karl et al.,
2018). The gut microbiota is now increasingly recognized as a
potential participant in the pathogenesis of PD (Lubomski et al.,
2019). The imbalance of GI flora can lead to GI dysfunction,
and this imbalance may also be the pathogenesis of PD itself.
As shown in Table 1, the changes in gut microbiota in PD
patients were determined through multiple studies (Keshavarzian
et al., 2015; Scheperjans et al., 2015; Unger et al., 2016; Heintz-
Buschart et al., 2018; Barichella et al., 2019; Lubomski et al., 2020;
Ren et al., 2020).

The PD microbiota was characterized by reduced
carbohydrate fermentation and butyric acid synthesis
and increased proteolytic fermentation and production of
harmful amino acid metabolites, including para-cresol and
phenylacetylglutamine. These taxonomic changes and the
elevation of proteolytic metabolites were also strongly associated
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FIGURE 1 | Publication trends on PubMed (1969–2020). Number of publications in PubMed per year using keywords (gut and PD). The number of publications in
this area of research is increasing rapidly.

with stool consistency and constipation in patients (Cirstea
et al., 2020). According to the functional characteristics of
these bacteria, dysregulation of gut microorganisms can lead
to increased intestinal mucosal permeability, inflammation, the
impaired balance of SCFA, and/or oxidative stress, which may
trigger the accumulation of α-syn (Dalile et al., 2019). This is
consistent with reports of intestinal leakage and reduced levels
of SCFA and lipopolysaccharide (LPS)-binding proteins in PD
patients (Hasegawa et al., 2015; Unger et al., 2016). However, the
levels of serum diamine oxidase, a marker for intestinal mucosal
integrity, remained unchanged in PD (Hasegawa et al., 2015).

Changes in the gut microbiota may have more impact
than we thought and different microbiota affect different
biological functions. Our microbial community depends on
multiple variables, including stress, toxic substances, antibiotics,
environmental pathogens, infections, physical activity, diet,
pollutants, noise, lifestyle, and the environment (Karl et al., 2018).
This suggested that the GBA is bidirectional.

Probiotics
Probiotics were defined as “Living microorganisms that
are beneficial to the host when sufficient quantities are
given,” referring to microbes that have beneficial functions
in our bodies. Interestingly, changes in GI flora in PD
patients showed a decrease in some probiotics, such as
Faecalibacterium and Roseberia, but increased levels of
Akkermansia, Bifidobacteria, and Lactobacillus. Perhaps
supplementing those reduced probiotics can help treat PD.

People with a high abundance of Prevotellaceae were very
unlikely to have PD (Scheperjans et al., 2015).

The benefits of probiotics to animals and humans are
numerous. They can effectively improve the GI ecosystem,
maintain the integrity of intestinal intima, contribute to the
formation of GI flora and balance the pH value of the body
(Liu et al., 2015). Probiotics can reduce intestinal pH by
fermenting dietary fiber and resistant starch to produce SCFAs.
The neuroprotective effect of a probiotic mixture containing
Bifidobacterium animalis lactis, Lactobacillus rhamnosus GG,
and Lactobacillus acidophilus was evaluated in an animal
model of PD, and the probiotic now partially ameliorates
neurodegeneration by increasing butyrate levels (Srivastav et al.,
2019; Sun et al., 2021). Bacteria such as Lactobacillus and
Enterococcus will metabolize levodopa into dopamine through
tyrosine decarboxylase, and these bacteria will also increase in
the intestines of PD patients. If we reduce these bacteria in the
intestine of PD patients, it is possible to reduce the peripheral
metabolic loss of levodopa and improve its utilization in the
CNS, which may provide an idea for the individualized treatment
of PD (Maini Rekdal et al., 2019). Probiotics can promote the
production of brain-derived neurotrophic factor (BDNF), which
can regulate brain function, reduce anxiety and depression,
ameliorate cognitive dysfunction, maintain and promote the
development, differentiation, growth, and regeneration of 5-
hydroxytryptamine (5-HT) and dopaminergic neurons (Ruiz-
Gonzalez et al., 2021). Probiotics can influence the production of
neurochemicals and reduce neurodegeneration, thus effectively
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TABLE 1 | Changes in gut microbiota in Parkinson’s disease (PD) patients compared to normal controls.

Phylum Class Order Family Genus

Increased gut microbiota in PD

Actinobacteria Actinomycetia Bifidobacteriales Bifidobacteriaceae Bifidobacterium

Coriobacteriia Coriobacteriales Coriobacteriaceae

Collinsella

Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Barnesiella

Odoribacteraceae Butyricimonas

Odoribacter

Porphyromonadaceae

Rikenellaceae Alistipes

Firmicutes Bacilli Bacillales Bacillaceae Bacillus

Lactobacillales Enterococcaceae

Lactobacillaceae Lactobacillus

Streptococcaceae Streptococcus

Clostridia Eubacteriales Christensenellaceae

Clostridiaceae Hungatella

Oscillospiraceae Anaerotruncus

Hydrogenoanaerobacterium

Ruminococcaceae

Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Allobaculum

Erysipelatoclostridium

Negativicutes Veillonellales Veillonellaceae Megasphaera

Acidaminococcales Acidaminococcaceae Acidaminococcus

Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Ralstonia

Gammaproteobacteria Enterobacterales Enterobacteriaceae Enterobacter

Escherichia

Moraxellales Moraxellaceae Acinetobacter

Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Akkermansiaceae Akkermansia

Verrucomicrobiaceae

Declined gut microbiota in PD

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella

Firmicutes Clostridia Eubacteriales Clostridiaceae Clostridium

Eubacteriaceae Eubacterium

Lachnospiraceae Blautia

Dorea

Roseburia

Coprococcus

Fusicatenibacter

Lachnospira

Oscillospiraceae Faecalibacterium

Ruminococcus

Peptostreptococcaceae Terrisporobacter

Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus

improving functions related to mental illness and memory skills
(Wang et al., 2016; Leta et al., 2021).

Probiotics also increase glucagon-like peptide-1 (GLP-
1) secretion and decrease insulin resistance to increase
glucose metabolism (Leta et al., 2021). Probiotics produce
antimicrobial substances called bacteriocins that act like
antibiotics, regulate immunity and control inflammation, block
the spread and invasion of pathogen bacteria, and prevent
the presence of inflammatory compounds in the brain. For
example, Lactobacillus plantarum reduces gut permeability

and inflammatory levels (Mallikarjuna et al., 2016). Probiotics
reduce interleukin-6 and tumor necrosis factor-alpha (TNF-α)
and C-reactive protein (CRP) levels to reduce peripheral and
central inflammation (Leta et al., 2021). Probiotics also reduce
the levels of LPS, whose physiological effects were expressed by
toll-like receptor 4 (TLR4). TLR4 exists on the surface of the
cell membrane of host cells, and its mediated gut dysfunction
may be related to enteric and central inflammation of PD
(Perez-Pardo et al., 2019). Oxidative stress is another factor in
the degeneration of dopaminergic neurons in PD. Probiotics
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TABLE 2 | Effect of probiotics on Parkinson’s disease (PD).

Country References Study Probiotic feeding forms Placebo Changes of the
probiotics group

Itlay Barichella et al., 2016 Randomized,
double-blind, controlled
trial

Fermented milk containing
multiple probiotic strains
and prebiotic fiber
(250 billion CFU)

A pasteurized, fermented, fiber-free
milk

Increases the frequency of
CBMs

Iran Borzabadi et al., 2018 Randomized,
Double-blind,
Placebo-Controlled Trial

8 × 109 CFU/day probiotic
supplements capsules

Capsules with similar packaging to
probiotic supplements

Improved gene expression
of IL-1, IL-8, TNF-α,
TGF-β, and PPAR-γ ; no
affect of gene expression
of VEGF and LDLR, and
biomarkers of inflammation
and oxidative stress.

Iran Tamtaji et al., 2019 Randomized,
Double-blind, Placebo-
Controlled Trial

8 × 109 CFU/day probiotic
supplements capsules

Capsules with similar packaging to
probiotic supplements

Useful impact on
MDS-UPDRS, hs-CRP,
GSH, MDA, insulin
metabolism

Malaysia Ibrahim et al., 2020 Randomized controlled
trial

multi-strain probiotic
(Lactobacillus sp. and
Bifidobacterium sp. at
30 × 109 CFU) with
fructooligosaccharide

Fermented milk Improved bowel opening
frequency and whole gut
transit time

Malaysia Tan et al., 2021 Randomized
Placebo-Controlled Trial

multi-strain probiotics
capsules (10 billion CFU
per dose)

Capsules with similar packaging to
probiotic supplements

Improved the number of
SBM per week in PD
patients with constipation.

BM, bowel movement; CBM, complete bowel movement; SBM, spontaneous bowel movements.

have the highest capacity to produce potentially antioxidant
molecules (Leta et al., 2021).

Probiotics can promote the absorption of food and improve
the bioavailability of certain nutrients, such as A, C, and K
vitamins and those of the B group (Liu et al., 2015). Vitamins
may be cofactors in the catecholamine biosynthetic pathways.
Lactobacillus lesei has been shown to increase the excitability of
intermuscular neurons in rats, affecting enteric afferent nerve and
GBA interactions. Probiotic-mediated modulation of microbial-
gut-brain interactions is considered a potential new therapeutic
tool for the treatment of gut motility disorders, reducing overall
PD motility symptoms and non-motility symptoms such as
constipation (Leta et al., 2021; Table 2).

Harmful Bacteria: Helicobacter pylori
Gut bacteria are interdependent and symbiotic. A series of
problems caused by gut dysbiosis in PD patients have been
described above. The following sections take Hp as an example
to discuss the relationship between harmful bacteria in the gut of
PD patients and the progression of PD.

About half of the earth’s population carries H. pylori
(Alexander et al., 2021). As the only bacteria that can survive
in the human stomach for a long time, it is one of the culprits
of digestive diseases such as chronic gastritis, peptic ulcer, and
gastric cancer (Dobbs et al., 2000a). Triple or quadruple therapy
of proton pump inhibitor (PPI), bismuth, and 1-2 antibiotics
is commonly used clinically to eradicate H. pylori. Hp can be
absorbed by dopamine, while PD patients lack dopamine, which
may be one of the reasons why the infection rate of Hp in
PD patients is higher than that in normal people (Charlett
et al., 1999; Table 3). Dopaminergic drugs can inhibit the
growth of Hp and benefit PD patients. Dopamine antagonists

can cause experimental ulcers (Dobbs et al., 2000a). The higher
positive rate of serum Hp in PD patients may be due to host
susceptibility, or conversely, infection with specific Hp strains
reduces dopaminergic status (Dobbs et al., 2000a).

Helicobacter pylori aggravates the symptoms of PD by affecting
the absorption of levodopa, the main drug for the treatment
of PD. PD patients with HP infection were less responsive
to drugs, have more severe motor symptoms, and motor
complications were easy to occur (Zhong et al., 2022). Eradication
of Hp infection in PD patients with antibiotics can improve
GI symptoms, facilitate the absorption of levodopa, increase
daily “on” time, reduce motor fluctuations, and ameliorate
motor function to a certain extent (Lee et al., 2008; Çamcı
and Oğuz, 2016; Bai and Li, 2021; Lolekha et al., 2021).
However, according to the latest study by Tan et al. in
Malaysia, Hp eradication has no significant improvement in
motor symptoms, non-motor symptoms, or quality of life in PD
patients (Tan et al., 2020).

To sum up, Hp infection appears to be associated with PD
risk, but the available evidence found no statistical difference
(Figure 2, p = 0.108). Family-gathered Hp may increase the
risk of familial PD, which may be mistaken for hereditary PD.
Eradication of Hp infection is not associated with a reduced
risk of PD, but may improve the bioavailability and therapeutic
efficacy of levodopa (Nyholm and Hellström, 2021). Further
studies are needed to determine whether Hp eradication can
optimize the prognosis of PD.

Neuroendocrine
The brain communicates with the viscera through multiple
parallel pathways, such as the autonomic nervous system (ANS),
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TABLE 3 | Effect of radical cure of Helicobacter pylori on Parkinson’s disease (PD).

Country References Study Method of Hp
detection

Hp (+) in the PD
patients group

Hp (+) in the
control group

OR(95%CI)

United Kingdom Charlett et al., 1999 Case-control ElISA 23/33 31/78 3.49(1. 46, 8.32)

United Kingdom Dobbs et al., 2000b Case-control ElISA 25/58 43/136 1.64 (0.87, 3.09)

Krean Lee et al., 2008 nRCT 13C-urea breath test 35/65 – –

United Kingdom Charlett et al., 2009 Cross-sectional ElISA 57/120 77/196 1.40 (0.88, 2.21)

Denmark Nielsen et al., 2012 Case-control Prescriptions for Hp
eradication drugs

138/4484 505/22416 1.38(1.14, 1.67)

United Kingdom Blaecher et al., 2013 Case-control RT-PCR 17/60 42/256 2.01 (1.05, 3.87)

Malaysia Nafisah et al., 2013 Cross-sectional 13C-urea breath test 14/29 5/23 3.36 (0.98, 11.49)

China Bu et al., 2015 Case control ElISA 60/131 44/141 1.86 (1.14, 3.06)

Malaysia Tan et al., 2015 Case-control 13C-urea breath test 33/102 – –

Greece Tsolaki et al., 2015 Case-control Gastroscopy and
histologic examination

6/9 14/31 2.43 (0.51, 11.51)

India Mridula et al., 2017 Prospective case
cohort

ElISA 18/36 – –

Greece Efthymiou et al., 2017 Case-control ElISA 14/39 33/68 0.59 (0.26, 1.33)

FIGURE 2 | Forest map of Helicobacter pylori (Hp) infection and the Parkinson’s disease (PD) risk.

the hypothalamic-pituitary-adrenal axis (HPA), the sympathetic-
adrenal axis, and the descending monoaminergic pathway
(Mayer, 2011).

Nervous Systems
Enteric Nervous Systems
The ENS is the largest cluster of neurons and glial cells outside
the CNS (de Weerth, 2017). The ENS is huge and complex, which
can control and regulate GI function independently of the CNS.
A large number of neurons buried in the GI wall constitute a
multitude of GI ganglia, also known as nerve plexus, together
with the surrounding capillaries to form a "blood-intestinal
plexus barrier" similar to the "blood-brain barrier." An intact ENS
is essential to health, and ENS dysfunction is often associated with
digestive diseases (Rao and Gershon, 2016).

Mucosal biopsy samples show that abnormally folded
α-syn aggregates form Lewy bodies and neurites in the
ENS of PD patients before clinical diagnosis or untreated

(Travagli et al., 2020). Studies focusing on Lewy body pathology
in the ENS have found α-syn in the ENS of almost every PD
patient. As previously mentioned, large abnormal aggregation of
α-syn was also found in the GI of PD patients. Therefore, based
on the discovery of Lewy bodies in the GI before the symptoms of
PD, it is reasonable to infer that α-syn is introduced from the GI
to the brain through ENS, ultimately leading to the manifestation
of PD (Rota et al., 2019). In PD patients, there is no denying that
α-syn bi-directional transport may aggravate the GI symptoms of
PD due to the presence of ENS. The interaction between the ENS
and CNS is often described as the GBA.

Autonomic Nervous System
Abundant neuronal loss and pathological aggregation of α-syn
were observed in both sympathetic and parasympathetic nerves
of PD patients (Uchihara and Giasson, 2016). The significant
involvement of the GI tract and peripheral ANS is one of the
characteristics that distinguish PD from other neurodegenerative
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diseases. It has been proposed that the α-syn aggregation in some
PD patients originated from the unmyelinated, hyperbranched
axons, and terminals of the peripheral autonomic nerve terminals
and then spread centripetally by axonal transport to the central
nervous system (CNS).

The parasympathetic component of the vagus is the main
component of the parasympathetic nervous system and plays a
prominent role in the regulation of GI motor function (Chen
et al., 2020). The vagus nerve is one of the largest nerves
connecting the GI tract and the brain, and it is a crucial pathway
for the transmission of β-syn between the periphery and the brain
(Figure 3). In animal experiments, α-syn can spread from the
duodenum to the brain stem and then from the brain stem to the
stomach via the vagus nerve (Ulusoy et al., 2017; Uemura et al.,
2018; Kim et al., 2019; Van Den Berge et al., 2019). Although
the level of α-syn used in the above was much higher than in
PD, it may not accurately mimic human pathophysiology, but
the existence of this pathway had been explored to some extent.
The dual-hit hypothesis suggests that α-syn pathology initially
forms in the olfactory bulb and the autonomic nerve endings
of the GI mucosa. Then transported prion-like centrally from
the ENS to the DMV via retrograde axons of the vagus nerve,
and from there to more rostral areas of the CNS (Braak et al.,
2003; Borghammer, 2018; Kujawska and Jodynis-Liebert, 2018).
It can be hypothesized that gut neuropathogens ingested in the
environment may induce or accelerate the progression of PD
by entering the CNS through the vagus nerve (Larroya-García
et al., 2019; Travagli et al., 2020). About half of the neurons in
the dorsal nucleus of the vagus nerve in PD patients were lost
during the disease (Braak et al., 2003). Ultrasound also found a
reduction in the diameter of the vagus nerve, indicating that the
degeneration of the ANS may play a key role in the pathogenesis
of PD, especially the vagus, which may be a potential target for
therapy (Orimo et al., 2018).

As an important surgical procedure for peptic ulcer disease,
vagotomy has also been found to reduce the risk of PD,
especially full truncal vagotomy (Svensson et al., 2015; Liu
et al., 2017; Girard-Madoux et al., 2018). This showed that
the vagus nerve is not only involved in the transmission
of PD but also plays a key role in the pathogenesis of
PD, supporting the view that PD is closely related to the
gut. However, vagotomy will not be performed in the early
clinical stages of PD. This is because although it can reduce
the risk of developing PD, it can also lead to serious
complications such as dysphagia, vomiting, and diarrhea, which
can have incalculable side effects on the intestines, brain,
and other organs. Therefore, effective screening of people at
risk for PD, and thus necessary early intervention, is crucial
(Rahimpour et al., 2022).

Enteric Glial Cells
The enteric glial dysfunction in the colon of PD patients in
association with the early appearance of Lewy pathology (Lewy
bodies and neuritis) in neurodegeneration areas of the ENS
(Shannon et al., 2012). Some pathological gut diseases associated
with impaired intestinal barrier permeability may trigger EGCs
dysfunction and transition to a pro-inflammatory phenotype

(Benvenuti et al., 2020). Chronic constipation can impair the
activity of enteric glial cells (EGC), cause localized enteritis,
and changes in enteric neuronal activity, resulting in early
deposition of extracellular α-syn and typical PD-related gut
motor dysfunction. In addition, the pro-inflammatory markers
related to glial cells in the colon of PD patients were increased,
such as GFAP, SOX-10, IL-6, IL-1β, and TNF- α (Clairembault
et al., 2015). This reactive glial hyperplasia destroys the integrity
of the intestinal barrier and the neuroinflammatory response
rises to the CNS through the vagus nerve or glial cell Cx-43.
This may be related to neuroinflammation associated with PD
and pathological changes associated with the ENS (Benvenuti
et al., 2020). A possible turning point in the treatment of
PD in the development of a new EGC-targeted therapy to
regulate the activity of EGC in the early stages of the disease
(Seguella et al., 2019).

Astrocytes are the most abundant glial cells in the CNS.
In the ENS, astrocytes like EGCs play an important role in
protecting enteric neurons by secreting neurotrophic factors
and antioxidant factors, and are also potential neuroprotective
factors in PD (Isooka et al., 2021). Like glial cell line-derived
neurotrophic factor (GDNF) mediated by lentiviral vectors, the
antioxidant molecules glutathione (GSH) and metallothionein
(MT)-1,2 (Chung et al., 2004; Dowd et al., 2005; Steele
et al., 2013). Furthermore, targeting 5-HT1A receptors on
astrocytes may be a potential neuroprotective strategy for PD.
Rotigotine, for example, upregates the expression of MT-1
and MT-2 by activating the astrocyte 5-HT1A receptor, and
mirtazapine also has a similar effect (Miyazaki and Asanuma,
2016; Isooka et al., 2021).

Neurotransmitters
Neurotransmitters can play an important role in regulating
GBA, including adenosine, acetylcholine (Ach), dopamine (DA),
epinephrine (E), glutamate, histamine, norepinephrine (NE),
serotonin (5-HT), and γ-aminobutyric acid (GABA), The levels
of neurotransmitters in the striatum of PD patients changed as
follows: DA, GABA, adenosine decreased; glutamate and Ach
increased (Jamwal and Kumar, 2019).

Dopamine is the most ubiquitous catecholaminergic
neurotransmitter that regulates movement, cognition, emotion,
and positive reinforcement (Luo and Roth, 2000). The decrease
of dopamine level is accountable for the regular manifestation
and progression of the signs and symptoms of PD.

5-hydroxytryptamine (5-HT), also known as serotonin,
is a critical signaling regulator that can modulate complex
physiological functions such as gastric secretion, cognitive
function, and body temperature. 95% of serotonin is
synthesized in the intestine, in which gut microorganisms
play an important role.

Generally, neurons are activated by glutamate and inhibited
by GABA. The abnormal changes of these two activation
systems are one of the pathophysiological bases of neurological
diseases. Glutamate is the principal excitatory neurotransmitter
in the basal ganglia of the midbrain, which plays a central
role in mediating excitatory neurotransmission. The normal
concentration of glutamate is necessary for the physiological
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FIGURE 3 | The peripheral autonomic nervous system (ANS) consists of three main parts: the sympathetic nervous system, the parasympathetic nervous system,
and the enteric nervous system (ENS).

function of the brain, but when it exceeds normal, it will cause
the death of excitatory neurons and produce neurotoxic or
excitotoxic events (Dong et al., 2009). In neurodegenerative
diseases, the excitotoxicity caused by glutamate causes the death
of a large number of neurons (Jamwal and Kumar, 2019).
Neurotransmitter alterations in direct and indirect nigrostriatal
pathways occurring in PD were known to involve glutamatergic
hyperactivity. Furthermore, clinical and preclinical evidence
found that the mRNA and protein levels of GABA B receptors
decreased in globus pallidus external (GPe), and increased in
globus pallidus internal (GPi) (Calon et al., 2003).

The pre and post-ganglionic parasympathetic neurons are
cholinergic, accounting for 70% of the ENS. M4 receptor in
striatum mainly mediates the automatic inhibition of Ach release.
In PD patients, the level of Ach in the striatum increased and
cholinergic neurons continuously released Ach, which did not
seem to be inhibited by M4 receptor feedback. High levels of Ach
in the striatum seem to seriously and selectively affect indirect
pathway neurons and lead to motor and non-motor symptoms of
PD (Sharma et al., 2016).

Adenosine plays a neuroregulatory and homeostasis
regulatory role in the CNS. This neuroregulatory effect of
adenosine makes it a valuable and effective therapeutic target in
various neurodegenerative diseases such as PD, HD, or AD and
appears to have benefits in some psychiatric disorders as well.

Numerous neurotransmitters also play a prominent role in
gut physiology, affecting gut movement, nutrient absorption,
GI innate immune system, and GI flora. The disorder of
neurotransmitter levels in PD may be one of the causes of various
GI symptoms and other manifestations (Mittal et al., 2017).

Endocrine
Enteroendocrine Cells
Enteroendocrine cells (EECs) along the GI tract represent were
found to be the biggest producers of hormones and biogen
amines in the body, remarking the function of histamine,
serotonin, and catecholamines. EECs lining the GI tract might
also serve as a conduit for the central spread of misfolded α-syn
(Chandra et al., 2017).

Brain-Gut Peptides
Plenty of brain-gut peptides have neuroprotective effects
in vivo and in vitro, and the mechanisms may be related
to anti-inflammation, anti-oxidative stress, anti-apoptosis,
neurotrophic action, and autophagy (Zheng et al., 2021). The
brain-gut peptides related to the pathogenesis and treatment
of PD mainly include GLP-1, ghrelin, nesfatin-1, and pituitary
adenylate cyclase-activating polypeptide (PACAP) (Dong
et al., 2019). Serum levels of them show varying degrees of
reduction in PD patients (Song et al., 2017; Emir et al., 2019;
Pham et al., 2022).

The research on GLP-1 is more extensive and comprehensive.
Most of the GLP-1 in CNS comes from the periphery and
can cross the BBB freely by diffusion, and a few of them are
produced by neurons and glial cells (Athauda and Foltynie,
2018). GLP-1 has many biological functions such as anti-
inflammation, inhibiting apoptosis, reducing appetite, inhibiting
gastric emptying and gut peristalsis, and reducing weight
(Yildirim Simsir et al., 2018). The neuroprotective effect of GLP-1
analogs can alleviate the dyskinesia of the PD model, but it can
also lead to constipation, abdominal pain, indigestion, anorexia,
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and other GI adverse reactions (Badawi et al., 2017). Dual GLP-
1/GIP receptor agonists (DA) have been tested to perform better
than single GLP-1 receptor agonists (exenatide, liraglutide, etc.)
in PD mouse models and are considered promising as therapeutic
agents for PD. Dual agonists include DA-JC1, DA-JC4, and DA-
CH5 (Feng et al., 2018; Zhang et al., 2020). Clinical trials had
evidence that exenatide improves dyskinesia in patients with PD
(Mulvaney et al., 2020).

Ghrelin may be involved in anti-apoptosis, anti-inflammation,
anti-oxidative stress, neurotrophic effect, and autophagy, and
has a neuroprotective effect on PD (Bayliss et al., 2016). The
reduction in serum levels of ghrelin was more pronounced in
patients with PD weight loss (Fiszer et al., 2010). Ghrelin was
neuroprotective against neurotoxicity in a variety of PD models.
It antagonized neuronal apoptosis and dopamine loss (He et al.,
2022). It also inhibits microglial activation, astrocyte-induced
inflammatory responses, and oxidative stress (Moon et al., 2009;
Jiao et al., 2021). The acylated form of which is essential for the
biological activity of ghrelin. Ghrelin or its agonists can also be
used to treat GI symptoms that occur with PD and levodopa
treatment (Shi et al., 2017).

The neuroprotective effects of Nesfatin-1 may be related to
anti-apoptosis, anti-inflammation, and anti-oxidative stress.
Nesfatin-1 can antagonize the toxic effects of MPP + on
dopaminergic cells by restoring mitochondrial function,
inhibiting cytochrome C release, and caspase-3 activation (Dore
et al., 2017; Shen et al., 2017). A recent study by Kuo et al.
(2021) found that astragaloside IV and Nesfatin-1 encapsulated
phosphatidylserine liposomes conjugated with wheat germ
agglutinin and leptin activated the anti-apoptotic pathway and
blocked the expression of phosphorylated tau protein, promising
for the treatment of PD.

Pituitary adenylate cyclase-activating polypeptide exhibits
neuroprotective effects in multiple animal models of PD (Maasz
et al., 2017; Reglodi et al., 2017, 2018; Hajji et al., 2019). PACAP
exerts its neuroprotective effects of antioxidant stress mainly
by inhibiting ROS and caspase3 activation by PKA, PKC, and
MAPK signaling pathways (Reglodi et al., 2018). PACAP has
been shown to enhance the expression of tyrosine hydroxylase
(TH) and VMAT2, protect dopaminergic neurons against the
neurotoxin 6-OHDA, regulate neuronal mitochondria, and
inhibit inflammation. DA neurons in the SN of PACAP knockout
mice are more susceptible to paraquat than wild-type mice.

To summarize numerous in vitro and in vivo studies
have shown that four brain-gut peptides GLP-1, PACAP,
Nesfatin-1, and Ghrelin exert their neuroprotective effects
through similar molecular mechanisms and signaling pathways
and ameliorate PD motor symptoms. Most of them play a
significant neuroprotective role in PD by inhibiting caspase-
3 activation, reducing mitochondria-related oxidative stress,
and inhibiting microglial activation and anti-autophagic activity
(Zheng et al., 2021). It suggested that there is a close link between
GBA dysfunction and neurodegenerative diseases. Analogs of
brain-gut peptides are being developed and are undergoing
relevant animal and clinical trials as new promising therapeutic
strategies for PD (Dong et al., 2019; Glotfelty et al., 2020;
Apostol et al., 2022).

The Immune System
Inflammatory reaction affects neurological control through the
GBA, modulating the cooperation between the CNS, ENS, and
the gut-associated lymphoid tissue (GALT) (Seguella et al.,
2019). CRP, TNF-α, interleukins (IL), and other cytokines can
reflect the collective immune-inflammatory state of the body.
Mice with traditional microbiota produce sufficient lymphocyte-
driven immune response to protect tissue during brain injury
(Singh et al., 2018). The regulation of GI flora on immune
cells is transmitted to the brain through the migration of T
cells from the GI tract to the meninges (Benakis et al., 2016).
Gut infection in PINK1 knockout mice triggers an autoimmune
mechanism mediated by cytotoxic mitochondrial specific CD8+
T cells, which is related to the damage of dopaminergic neurons
(Matheoud et al., 2019).

Parkinson’s disease may be an autoimmune disease, as
approximately 40% of patients have autoreactive T cell activated
by SNCA peptides (Sulzer et al., 2017). T cell infiltration had
been detected in the SN of PD patients, and the fragment of
α-syn source recognized by specific T cells was the antigen
epitopes, indicating that T cells were activated by α-syn and
autoimmunity. The number of CD4Þ T helper cells and B cells
in circulation decreased significantly, indicating that the immune
function may be impaired. PD Patients have increased levels of
peripheral and CNS inflammation and increased GI permeability
(Schwiertz et al., 2018; Elfil et al., 2020). Colon biopsies and fecal
markers demonstrate elevated levels of inflammatory cytokines
in the intestines and blood (Houser et al., 2018; Schwiertz et al.,
2018). This suggests that the process of migration of peripheral
activated immune cells to the brain directly connects the
inflammation of the whole body to the brain (Harms et al., 2018).
Patients with GI bowel disease taking anti-TNF-α therapy and
individuals being treated with non-steroidal anti-inflammatory
drugs (NSAIDs) have a decreased risk for PD (Ascherio and
Schwarzschild, 2016), suggesting that anti-inflammatory therapy
and immunoregulatory therapy may also play a role in the
treatment of PD. But in fact, targeted inflammation inevitably
faces the risk of immunosuppression, which can easily lead to
opportunistic infections. Therefore, high selectivity must be a
prerequisite for this therapy (Pajares et al., 2020).

Mitochondrial Dysfunction
As a vital organelle of energy production, mitochondria play a
crucial role in metabolism and oxidative stress. Mitochondrial
dysfunction is considered to be one of the causes of neuronal
death in PD (Abeliovich and Gitler, 2016). Generally, α-syn
can induce multiple neuronal pathological phenotypes, including
nuclear, mitochondrial, endoplasmic reticulum, Golgi, lysosome,
and synaptic dysfunction (Wong and Krainc, 2017). In particular,
the elimination of damaged mitochondria was directly connected
to PD pathogenesis given the central role of PD-related genes
PINK1 and Parkin in the cellular process of mitochondrial
autophagy (Sliter et al., 2018). Gut microflora disorders
can transmit signals to mitochondria, change mitochondrial
metabolism, activate immune cells, induce inflammation, and
destroy the epithelial barrier (Mottawea et al., 2016).
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TREATMENT

Various hypotheses and treatments for constipation and other
GI disorders in PD, including probiotics, antibiotics, analogs
and receptor agonists of brain-gut peptides, radical cure of
Hp infection, even vagotomy, have been discussed in the
previous article. Other possible treatment options for PD,
including dietary intervention, physical activity, GI motility
drugs, and microflora transplantation, will be introduced in the
following sections.

Diet and Nutrition
Dietary composition and nutritional status have been proved to
be one of the most critical changeable factors including heredity,
health status, mode of delivery, and environment (Larroya-
García et al., 2019). Diet can influence the immune system
by regulating the gut microbiota (Wastyk et al., 2021). As a
microbial community regulator, an active diet can transform pro-
inflammatory bacteria into anti-inflammatory bacteria, which
not only alleviates GI dysfunction but also has the potential
to treat various neuropsychiatric diseases (Larroya-García et al.,
2019). Dietary intervention is thought to be helpful to prevent
motor and non-motor symptoms of PD.

There are three famous dietary patterns in the world: the
Eastern diet, the Western diet, and the Mediterranean diet. It is
common to conduct a comparative study of the Mediterranean
diet and the western diet. The Mediterranean diet is dominated
by vegetables, fruits, grains, beans, nuts, olive oil, and healthy
fats, while the Western diet is known for its high fat, high
protein, high sugar, and low dietary fiber intake. The microbial
community in the Mediterranean diet is rich in polysaccharide-
degrading bacteria, which use dietary fiber and polysaccharides
to ferment to produce SFCAs, which can inhibit inflammation
and prevent obesity (Shankar et al., 2017). For western diets with
low dietary fiber intake, microbiota use proteins as energy sources
that are beneficial to the growth of Gram-negative bacteria, and
bacteria that produce SFCAs may decrease, leading to metabolic
disorders, GI flora imbalance, dysbiosis, and an increase in
LPS (Statovci et al., 2017). This can lead to obesity, systemic
inflammation, and damage to the BBB (Kendig et al., 2021).
This proves that the GI flora can be shaped to some extent by
our dietary patterns. This provides a way to regulate GI flora
through diet, regulate GI health, and then affect PD (Shankar
et al., 2017; Larroya-García et al., 2019). Some studies confirm
this assumption. Adherence to the Mediterranean diet in middle
age was inversely associated with the risk of developing PD later
in life (Yin et al., 2021). Adherence to the Mediterranean diet
was also positively associated with lower prodromal PD in older
adults (Maraki et al., 2019).

Omega-3 Fatty Acids
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have the
potential to prevent and treat PD as anti-neuritis agents. Several
animal studies in aged animals and neurodegenerative models
have demonstrated that dietary phospholipid precursors, such
as uridine, ω-3 PUFA, and choline, may increase cephalin,
axonal growth, synaptic proteins, dendritic spine formation, and

neurotransmission via the Kennedy pathway (Joffre et al., 2019).
ω-3 PUFA is an important component in the cell membrane,
which has three main types: EPA (eicosapentaenoic acid), DHA,
and ALA (eicosapentaenoic acid). DHA is the most important ω-
3 PUFA in the brain, which can reduce oxidative stress and α-syn
accumulation (Dyall, 2015).

Omega-3 polyunsaturated fatty acids has a protective effect on
dopaminergic neurons, which may be related to its antioxidant
and anti-inflammatory properties. DHA treatment reduces
astrocyte proliferation and microglia proliferation in striatum
and SNPC (Mori et al., 2018). In animal experiments, it was
found that a diet containing both uridine and DHA could
prevent rotenone-induced motor and GI dysfunction, reduce
α-syn accumulation, colon shortening, T cell infiltration, and
delayed GI transport (Perez-Pardo et al., 2018). DHA and
uridine both reduced drug-induced rotational behavior in the
6-OHDA rat model, possibly by enhancing dopamine turnover
in the remaining neurons, attenuating the loss of dopaminergic
neurons and striatal nerve endings caused by 6-OHDA toxicity
in rats, and partially restoring dopaminergic neurotransmission
to ameliorate motor and cognitive function (Gómez-Soler et al.,
2018). Interestingly, an in vivo study found that ω-3 PUFA can
inhibit microglial activation and dopaminergic damage induced
by inhibiting LPS-induced activation of NF-κb (Ji et al., 2012).

Different clinical studies have also shown a certain relationship
between ω-3 PUFA and the risk of PD: ω-3 PUFA intake in PD
patients was significantly reduced, and high ω-3 PUFA intake
was associated with decreased risk of PD (de Lau et al., 2005).
PD patients take ω-3 PUFA to improve depressive symptoms,
plus vitamin E can also have a good effect on UPDRS and
insulin metabolic markers (da Silva et al., 2008). In addition,
ω-3 PUFA is an effective way to increase SCFA production,
thereby improving GI environmental balance. Because ω-3 PUFA
supplements induce the reversible increase of several SCFA-
producing bacteria, including Bifidobacterium, Lactobacillus
roseus, and Lactobacillus (Watson et al., 2018).

Dietary Fibers and Short Chain Fatty Acids
Dietary fiber fermented and degraded by GI microorganisms
will produce a large number of SCFAs in the gut (Makki et al.,
2018; Dalile et al., 2019). SCFAs can directly affect GI physiology
and GI barrier function, keep digestive structure in the best
state, and enhance GI peristalsis. SCFAs also play an important
role in gene expression and mitochondrial function and can
induce the expression of anti-inflammatory cytokines, inhibit
the expression of pro-inflammatory cytokines and inflammatory
cytokines, regulate adaptive immune tolerance, and regulate the
levels of GI hormones and neuropeptides (Mulak, 2018).

Short chain fatty acid is the final product of indigestible
carbohydrates fermented by the gut Microbiota. The
levels of SCFA-producing bacteria and fecal SCFA in
PD patients were lower, while the levels of conditionally
pathogenic bacteria and carbohydrate metabolic probiotics
were higher (Unger et al., 2016; Wallen et al., 2020).
Prevotellaceace and Lachnospiraceae family members, as
well as the genus Blautia, Roseburia, and Faecalibacterium,
are all involved in GI mucus formation and short-chain
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fatty acid (SCFAs) production, and their contents in GI
microorganisms in PD patients are reduced (Unger et al.,
2016; Vascellari et al., 2020). The reduction of SCFA in
PD may affect gut permeability and lead to local and
systemic sensitivity to bacterial antigens and endotoxin
due to the destruction of GI mucus, which may be an
environmental trigger for PD.

Recalling the above, the Mediterranean diet promotes SCFAs
production to the extent that it maintains a healthy microbiome
that contributes to GI homeostasis. The antioxidant and
anti-inflammatory effects of SCFAs reduce the potential risk
of PD. At the same time, increasing the intake of plant
fiber may also relieve constipation symptoms in PD patients.
However, one study has the opposite result. They found that
when SCFAs was used to treat PD model mice, it could
activate microglia, aggravate inflammation, and then aggravate
dyskinesia and lead to more serious constipation in PD mice
(Sampson et al., 2016).

Vitamins
Numerous studies have found some relationship between
the vitamin family and PD. Since oxidative stress and
neuroinflammation play an important role in neurodegeneration
and PD, the antioxidant properties of vitamins and their
biological function of regulating gene expression suggest that
vitamins may be an effective adjuvant therapy for PD (Zhao
et al., 2019). Appropriate vitamin supplementation can reduce
the incidence of PD, delay the development of PD and ameliorate
the clinical symptoms of PD patients (Shen, 2015; Zhao et al.,
2019; Chong et al., 2021; Marie et al., 2021).

The vitamin level in PD patients is different from that in
normal people. Lower vitamin B12 level in PD patients is
associated with more serious motor dysfunction, while higher
homocysteine level is associated with more serious cognitive
decline (Christine et al., 2018). The level of vitamin B3 (nicotinic
acid) in the feces of PD patients is low (Christine et al., 2018), but
the side effects of nightmares and rashes limit the development
of nicotinic acid in treating PD. Lack of 25-OH vitamin D and
decreased sunlight exposure was also significantly associated with
increased risk of PD (Zhou Z. et al., 2019).

However, some studies do not support the above conjecture.
The folic acid level of PD patients is similar to that of normal
people, and there is no significant correlation between dietary
folic acid and vitamin B12 intake and PD risk (Shen, 2015).
Vitamin D supplementation can effectively increase the level of
25-OH vitamin D, protect dopaminergic neurons in SN and
prevent PD from deteriorating further (Rimmelzwaan et al.,
2016), but it has no significant benefit in improving the motor
function of PD patients (Zhou Z. et al., 2019). Vitamin C,
ascorbic acid (AA), can even enhance the selectivity and toxicity
of 6-OHDA in a mouse model. Its mechanism is mainly to induce
the increase of intracellular calcium, destroy calcium homeostasis
and induce cell death, which leads to the activation of calpain
and mitochondrial damage (Wang et al., 2017). At the same
time, there is not enough evidence to support the hypothesis that
taking antioxidant vitamins (including vitamin E, vitamin C, and
carotenoids) can reduce the risk of PD (Hughes et al., 2016).

Dietary Restriction and the Ketogenic Diet
Epidemiological data suggest that excessive energy intake,
especially in middle age, increases the risk of stroke and
Alzheimer’s and PD later in life. Dietary restriction (DR) has
been proved to slow down the onset of age-related diseases
and prolong life (Madeo et al., 2019). There are two types of
DR programs in the clinic: intermittent fasting (IF) and calorie
restriction (Rubovitch et al., 2019). Compared with randomly fed
PD mice, fasting mimicking diet (FMD) can increase the levels
of BDNF and dopamine, inhibit neuroinflammatory response,
and regulate the composition of GI microbiota in PD mice. This
results in decreased motor function and less loss of dopaminergic
neurons in the SN (Zhou Z. L. et al., 2019).

During fasting, when the glycogen reserve of the liver is
exhausted, the liver will convert fatty acids into ketone bodies
to serve as life fuel, especially to provide the main energy
source for the brain. Ketones can regulate the expression and
activity of many proteins and molecules that affect health and
aging and stimulate the expression of BDNF genes, which
are related to brain health, psychiatric and neurodegenerative
diseases (Mattson et al., 2018). In addition, a low-calorie diet
can ameliorate glucose regulation, strengthen mitochondrial
function, reduce insulin resistance, enhance anti-stress ability,
reduce the production of free radicals, activate the internal
defense of cell oxidation, inhibit inflammation, stimulate
autophagy, and even remove or repair damaged DNA molecules,
protect neurons from excitotoxicity degeneration, and promote
cell survival (Mattson et al., 2017).

Dietary restriction intervention is considered to ameliorate
obesity, hypertension, dyslipidemia, inflammation, and
ameliorate mood and cognition (Montefusco et al., 2021). Long-
term or regular reduction of calorie intake while maintaining
nutrition is a reliable strategy to keep mammals healthy with
increasing life expectancy. It is believed that calorie restriction
can intervene, reverse or prevent age-related diseases, such as
neurodegenerative diseases, age-related cardiovascular diseases,
and malignant diseases, such as tumors (Madeo et al., 2019;
Montefusco et al., 2021).

At a sufficient degree of ketosis, the direct signal effect of
the ketone body can induce the gene expression of antioxidant
enzymes, reduce apoptosis through a metabolic state similar to
fasting, and theoretically increase neurotransmitters. A ketogenic
diet with a high percentage of fat, a low percentage of
carbohydrates, protein, and other nutrients that cause nutritional
ketosis in PD patients has indeed been found to ameliorate the
condition to some extent (Phillips et al., 2018; Choi et al., 2021).

Others
Caffeine intake is associated with a reduced risk of PD, especially
in men, and later onset in coffee drinkers (Palacios et al.,
2012; Socała et al., 2020; Gabbert et al., 2022). Absolute serum
concentrations of caffeine and its downstream metabolites are
significantly lower in PD than in healthy controls (Fujimaki
et al., 2018). The beneficial effects of caffeine are achieved by
antagonizing adenosine receptors (AR), interfering with GABA
receptors, activating ryanodine receptors (RyRs), reducing pro-
inflammatory and increasing anti-inflammatory marker levels to
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exert anti-inflammatory activity (Rodak et al., 2021; Ishibashi
et al., 2022). Therefore coffee can be part of a healthy diet and
may even be an adjuvant in the treatment of PD.

Tea consumption may reduce the risk of PD. L-theanine,
which is contained in black or green tea beverages, may
be a potential therapeutic pathway for PD. It is similar in
structure to glutamate, the major excitatory neurotransmitter
in the brain, and shows antioxidant and anti-inflammatory
properties, increases dopamine supply, ameliorates motor
behavior abnormalities, and has neuroprotective effects (Zhou Z.
D. et al., 2019; Malar et al., 2020).

High consumption of milk and dairy products was positively
associated with the risk of PD (Hughes et al., 2017), possibly
related to the effect of dairy products on reducing uric acid (Chiu
et al., 2020). Uric acid salts are potent endogenous antioxidants
that prevent oxidative stress-induced neuronal degeneration and
death. It has neuroprotective properties and may prevent the
progression of PD to significant motor symptoms. Low blood uric
acid is a risk factor for PD, and this negative association is more
pronounced in the male population. In women, urate is protective
only at older ages, when urate levels are comparable to those of
men (Cortese et al., 2018; Tana et al., 2018).

Alcohol, especially beer intake, is negatively associated with
the risk of PD (Zhang et al., 2014), which may be related to
increased uric acid levels (Yamamoto et al., 2005). Meanwhile,
beer is mostly made by fermentation, while fermented milk
intake was not associated with an increased risk of PD (Olsson
et al., 2020). The new study found that highly fermented foods
steadily increase microbial diversity and reduce inflammatory
markers, which could be a potential protective method for PD
(Wastyk et al., 2021).

Levodopa is the main drug used to treat PD. A good diet can
optimize the desired therapeutic effect of levodopa by facilitating
its absorption or reducing its side effects. The effects of dietary
fiber, caffeine, and vitamin C mainly depend on improving gastric
emptying. Restricting protein intake may promote levodopa
absorption, thereby improving clinical efficacy and reducing
motor fluctuations. Vitamin B (including vitamin B-12, vitamin
B-6, and folic acid) may reduce homocysteine levels and thus
reduce metabolic complications caused by levodopa-induced
hyperhomocysteinemia (Boelens Keun et al., 2021).

Physical Activity
Physical exercise can reduce the risk of PD and has a
positive impact on the prevention and treatment of PD. It
can ameliorate the motor ability and non-motor symptoms
of PD patients and is beneficial to cognitive function, mental
state, and autonomic nervous function (Gubert et al., 2020).
Physical exercise is considered to reduce the accumulation
of synaptophysin, regulate neuronal autophagy, inflammation,
oxidative stress, reduce neuronal death, enhance mitochondrial
function, and increase the activity of BDNF (Fan et al., 2020).
At the GI level, exercise can increase key antioxidant enzymes
(catalase and GSH peroxidase), anti-inflammatory cytokines,
and anti-apoptotic proteins in GI lymphocytes, while reducing
pro-inflammatory cytokines and pro-apoptotic proteins, thereby
reducing GI inflammation and protecting the nervous system

(Allen et al., 2018). Exercise also has a positive effect on
GI flora. Moderate exercise can increase the diversity of GI
microorganisms and increase the number of bacteria involved in
amino acid biosynthesis and carbohydrate/fiber metabolism, thus
producing more SCFA and other key metabolites. But excessive
exercise may increase inflammation (Clauss et al., 2021). Exercise
can reduce constipation, shorten the time of feces in the GI
tract, and reduce the contact between pathogens and the mucus
layer of the GI tract, thus reducing contact with the circulatory
system and absorption of toxins (Allen et al., 2018). Exercise
can also produce a state of IF similar to that mentioned above:
induce ketosis, and then eat, rest, or sleep (Mattson et al., 2018).
Intermittent metabolism is formed in the whole life cycle, which
optimizes brain function and flexibility, especially in neuron
circuits involving cognition and emotion (Mattson et al., 2018).

Medicine
Some anti-PD drugs have side effects that can cause GI
symptoms. GI damage, in turn, can interfere with drug
absorption, creating a negative cycle. For example, the delayed
gastric emptying caused by levodopa. The GI tract of PD
may have GI motility decline, motor dysfunction, related
autonomic nerve dysfunction, and other effects caused by various
anticholinergic and dopamine agonist drugs.

Parkinson’s disease patients treated with camicinal
(GSK962040), a gastroprokinetic, showed ameliorated motor
responses to levodopa (Marrinan et al., 2018). The inhibition of
α-syn aggregation and toxicity by squalamine can significantly
change the bioavailability of other drugs. Oral ENT-01 (a
synthetic squalamine salt) is safe for GI function in PD patients.
It can quickly and effectively restore disordered colonic activity
and significantly ameliorate GI function, so it may be beneficial
to the treatment of constipation (West et al., 2020). This suggests
that ENS is not irreversible damage in PD patients, and its
improvement may be local stimulation of ENS through Lewy
corpuscles, thus alleviating PD-related CNS damage.

The neurodegeneration of PD is accompanied by microglial
activation, upregulated expression of cyclooxygenase-1 and -
2, increased inflammatory cytokines and related molecules,
and the involvement of leucine-rich repeat protein kinase 2
(LRRK2) protein in the inflammatory pathway (San Luciano
et al., 2020). In theory, anti-inflammatory drugs can delay
or prevent the clinical development of PD, especially LRRK2-
Related PD, by inhibiting the cyclooxygenase-2 enzyme and the
pro-inflammatory response of microglia (Crotty et al., 2020).
NSAIDs aspirin and ibuprofen reduce LRRK2 episodes and lower
the risk of PD (Fyfe, 2020). Aspirin has the greatest effect on
age at onset, and its total intake, number of weekly doses, and
duration of dosing are associated with delayed onset of PD
(Gabbert et al., 2022). However, no significant association has
been found between the use of other NSAIDs and the risk of
PD (Poly et al., 2019), suggesting that aspirin may have a specific
neuroprotective effect.

Fecal Transplantation
Fecal microflora transplantation (FMT) is the most effective
method for the intervention of GI microflora, and the recovery of
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GI microflora to the pre-onset state of PD is a promising method
for prevention and treatment (Wang et al., 2021). FMT has been
shown to protect PD mice by inhibiting neuroinflammation and
reducing TLR4/TNF-α signaling (Sun et al., 2018).

Fecal microflora transplantation plays a positive role in the
treatment of PD, and has the potential to reconstruct the gut
microbiota of PD patients and ameliorate their motor and
non-motor symptoms (Huang et al., 2019; Kuai et al., 2021).
It transplants the GI microbiome of a healthy person into
the patient’s intestines through nasogastric, nasoduodenal, or
rectal enema tubes. FMT can significantly reduce the disorder
of GI microflora and supplement GI microflora beneficial
bacteria, such as SCFA-producing bacteria. These bacteria
can regulate GI function and protect the mucosal barrier
(Zhu et al., 2021). FMT can increase the levels of striatal
neurotransmitters DA and 5-HT, decrease the activation of
microglia and astrocytes in SN, inhibit neuroinflammation and

ameliorate motor function (Sun et al., 2018). FMT has a
certain prospect in the treatment of PD, but the development
of this therapy is limited because of the rapid change of
the bacterial community and the short effective time after
a single treatment. At the initial stage of transplantation,
the microflora structure of the patient was similar to that
of the donor, and the leg tremor and constipation were
significantly ameliorated.

However, as time goes on, the difference in the structure of
GI flora gradually appeared, and the effect of this treatment
gradually weakened. This showed that the GI flora status of
patients is significantly related to the severity of symptoms
(Huang et al., 2019). Two solutions are possible in the
future: one is to prolong the duration of the treatment and
establish a good GI flora through diet, drugs, and other
auxiliary microflora transplantation; the second method is to
develop a new method of transplanting fecal flora, so that flora

FIGURE 4 | Gut-brain axial pattern diagram.
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transplantation can be as painless as taking medicine, to the
extent that it can be transplanted regularly. FMT also carries
the risk of infection transmission, which may cause bacterial
infections such as bacterial metastasis, septicemia, and multi-
drug resistant organisms (Wang et al., 2021). Given this, we
should strengthen the physical examination of donors to ensure
the quality of feces. At the same time, additional antibiotics are
used within a reasonable range to optimize the cure rate of FMT
(Cheng et al., 2019).

CONCLUSION

Although the article is divided into sections for a more coherent
description, in fact, each factor is interrelated and inseparable,
and together constitutes the homeostasis and balance of the
GBA (Figure 4).

For more than 20 years before the diagnosis of PD,
the GI tract was disturbed by various factors in vivo and
in vitro, resulting in a variety of gut prodromal pathological
changes, such as abnormal accumulation of α-syn, mitochondrial
dysfunction, and GI inflammation, through the ANS, crossing
the BBB, constantly affecting the functional state of the
brain. This is most likely a pathway leading to PD. During
this period, various symptoms of the GI tract, especially
persistent and painful constipation, constantly remind us of
the deterioration of human function. Although GI symptoms
are not fatal, these dysfunctions can lead to impaired quality
of life in PD patients, affect drug absorption, and cause
symptoms fluctuate.

Some animal studies clearly showed that the gut
microenvironment can affect behavior through various
compounds produced by the gut and its microbes (gut-to-
brain), whereas stress can perturb the composition of the
microbiota (brain-to-gut) (Schretter et al., 2018; Gubert et al.,
2020; Lee et al., 2021).

Based on the GBA theory of PD, we can see many promising
ideas and methods for the treatment of PD. Increasing beneficial
dietary intakes, such as probiotics, ω-3, SCFAs, vitamins, a
Mediterranean diet, a low-calorie intermittent diet, and moderate
exercise are all ways to ameliorate GI status and PD. Eradication
of Hp and brain-gut peptide analogs also have certain therapeutic
potential. In addition, FMT to regulate the onset of PD by
interfering with GI microflora seems to be an effective treatment.

DISCUSSION

In our review, we comprehensively described the pathogenesis of
GBA in PD, summarized the relevant treatments, and put forward
some promising treatments for PD. However, in the process of
writing, it is found that there are many different research results
of pros and cons, some of which I have given my understanding
and explanation, and some may prove that that point of view is
still in doubt and needs future generations to continue to study.
In addition, the following four suggestions are put forward for
follow-up researchers in this field.

We should admit that constipation in PD patients may
result not only from myenteric ganglion dysfunction or
the mechanisms mentioned above but also from side
effects of anti-PD drugs, especially anticholinergic drugs
and dopamine agonists (Fasano et al., 2015). Therefore,
constipation in PD patients should be recognized in two
stages: one is constipation that occurs before the official
diagnosis of PD, which is a precursor symptom that can
help diagnose PD; the other is constipation that occurs after
the diagnosis of medication, which may be caused by the
progression of the disease, but the effect of drugs cannot be
completely ruled out.

We suggest a multidisciplinary collaborative approach and a
greater role for neurology and gastroenterology in untangling
the mysterious role of the GBA in various neurodegenerative
diseases. At the same time, we have learned that other diseases
related to the GBA mechanism of PD include SIBO, IBD,
appendicitis, and even systemic diseases such as tuberculosis
and diabetes (Chen et al., 2021; Dãnãu et al., 2021; Li et al.,
2021; Lv et al., 2022). Small intestinal bacterial overgrowth
(SIBO) is very common in PD, and it is hypothesized that
the more severe the degree of PD, the more severe the GI
motility impairment and the more prone to SIBO (Fasano
et al., 2013). It is also thought that it may play a synergistic
role with Hp infection in the pathogenesis of PD motor
fluctuations. People with IBD are at higher risk of developing
PD in later life. They share a common LRRK2 allele, which
may indicate that LRRK2 kinase inhibitors also have therapeutic
potential (Lee et al., 2021). The appendix is thought to contain
aggregates of α-syn, and appendectomy affects the incidence
of PD (Killinger et al., 2018; Chen et al., 2021). The risk of
PD in tuberculosis patients was 1.38 times higher than that in
normal people, and Mycobacterium paratuberculosis was also
associated with PD (Shen et al., 2016; Dow, 2021). In vitro
model, the anti-tuberculosis drug rifampicin has been found to
have a neuroprotective effect on PD by inhibiting inflammation
and apoptotic autophagy. People who were vaccinated with
BCG to prevent tuberculosis showed lower PD disease (Klinger
et al., 2021). Patients with diabetes are at increased risk of
developing PD, which progresses more rapidly and is more severe
(Komici et al., 2021). Therapeutic diabetes drugs, particularly
DPP4 inhibitors and/or GLP-1 analogs, may beneficially alter
the pathophysiology of PD, reduce the incidence of PD, and
improve the functioning of PD patients (Brauer et al., 2020;
Wang et al., 2020). More in-depth analysis and research can
be carried out on the interaction between these diseases and
PD, especially whether the treatment of these diseases is also
beneficial to PD.

In dietary therapy, there are a lot of discussions about
dietary intervention only comparing the western diet with
the Mediterranean diet, but few people pay attention to the
role of the oriental diet. However, patients who belong to
the oriental diet account for nearly half of the global PD
patients, and its impact on the changes of GI flora should not
be ignored. We suggest that research on the role of various
mainstream diets in the world in the pathogenesis of PD
can be carried out.

Frontiers in Neuroscience | www.frontiersin.org 14 July 2022 | Volume 16 | Article 878239

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-878239 June 30, 2022 Time: 15:8 # 15

Sun et al. Gut-Brain Axis and Parkinson’s Disease

The correct diagnosis rate of PD has not been significantly
ameliorated in the past 20 years. Non-motor symptoms and
biomarkers are helpful to ameliorate the early and correct
diagnosis of PD. What is described in this paper can potentially
ameliorate the early and correct diagnosis of PD, but further
studies are warranted to clarify the time and causal relationship
between GI microflora and PD, as well as the suitability of
microbiome as a biomarker (Scheperjans et al., 2015).
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