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Abstract

Recent developments of transition-edge sensors (TESs), based on extensive experi-
ence in ground-based experiments, have been making the sensor techniques mature
enough for their application on future satellite cosmic microwave background
(CMB) polarization experiments. LiteBIRD is in the most advanced phase among
such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY)
with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes
of reflective low-frequency and refractive medium-and-high-frequency telescopes in
order to detect a signature imprinted on the CMB by the primordial gravitational
waves predicted in cosmic inflation. The total wide frequency coverage between 34
and 448 GHz enables us to extract such weak spiral polarization patterns through
the precise subtraction of our Galaxy’s foreground emission by using spectral dif-
ferences among CMB and foreground signals. Telescopes are cooled down to 5 K
for suppressing thermal noise and contain polarization modulators with transmis-
sive half-wave plates at individual apertures for separating sky polarization signals
from artificial polarization and for mitigating from instrumental 1/f noise. Passive
cooling by using V-grooves supports active cooling with mechanical coolers as well
as adiabatic demagnetization refrigerators. Sky observations from the second Sun—
Earth Lagrangian point, L2, are planned for 3 years. An international collaboration
between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019,
the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the
strategic large mission No. 2.

Keywords Satellite - Cosmic microwave background - Polarization - Inflation -
Primordial gravitational wave

1 Concept of LiteBIRD

It has been suggested since the 1980s [1-3] that inflation occurred in the very
early, high energy Universe, to resolve remaining issues of the Big Bang theory,
such as uniformity, flatness, and monopole problems. Cosmic inflation predicts
primordial gravitational wave production, with quantum fluctuations of spacetime
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Fig. 1 Left: Conceptual design of LiteBIRD. Warm launch is planned with JAXA’s H3 rocket. Right:
Scans with spin angle 50° and precession angle 45° at L2. (Color figure online)

as its origin. The LiteBIRD (Lite (Light) satellite for the studies of B-mode polar-
ization and Inflation from cosmic background Radiation Detection) aims to detect
signatures of these primordial gravitational waves in the form of specific curl pat-
terns [4, 5] of polarization angle distribution of the Cosmic Microwave Back-
ground (CMB). The sizes of expected spiral patterns in the sky are characterized
by Hubble lengths at the electron scattering eras of the CMB, since primordial
gravitational waves that enter the horizon in these eras most effectively produce
tensor anisotropies. It is therefore essential to cover the whole sky to investigate
these large Hubble lengths at the recombination era as well as the reionization
era.

LiteBIRD is focused on this point: targeting [6] both the recombination era
with the multipole moment 1 between 11 and 200 and the reionization era with
1 between 2 and 10, optimizing the angular resolution. The other important con-
cepts of this satellite are a warm launch without the requirements of heavy ves-
sels/tanks and use of multichroic detectors for the effective exploitation of finite
focal-plane areas. Advantages of measurements from space are being free from
atmospheric effects, providing high sensitivity, stability with less systematic
uncertainties [e.g., 7], and no restrictions on observing band selection. Space
measurements also give no pickup from the ground. The Sun—Earth L2 point has
been selected, since the Sun, the Earth, and the Moon are all located in almost the
same direction, which makes it easier to avoid facing them in terms of optical and
thermal aspects. Care should be taken, however, on cosmic ray effects [8] because
the satellite is more directly exposed to them. Sky observations are planned for
3 years: The presently guaranteed cooling-chain lifetime is 3.5 years, in which
0.5 year is assigned to the transitional period to the normal observation phase on
course to L2. A scanning strategy with a combination of boresight spin angle of
50° around the satellite axis and its precession-like rotation around the anti-Sun
direction of 45° is used (Fig. 1), since this combination provides not only a fairly
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uniform sky coverage but also the minimization of instrumental systematic uncer-
tainties in polarization measurements.

2 Status of LiteBIRD

In May 2019, the Institute of Space and Astronautical Science (ISAS), JAXA,
confirmed that LiteBIRD completed activities planned during Pre-phase A2 (pre-
viously called Phase-A1l and dedicated to the concept study and development of
key technologies) and selected LiteBIRD as the strategic large mission No. 2,
with modifications to the cooling chain and subsequently the focal-plane designs:
We have chosen to use adiabatic demagnetization refrigerators (ADRS) in series,
removing ideas [6, 9] of using a JAXA-provided 1-K J-T cooler and of having
2-K telescope apertures. To recover the degraded sensitivity with 5-K apertures

Table 1 Updated basic parameters and current baseline design for LiteBIRD

Mission category JAXA'’s strategic large mission

Launch vehicle H3-22L or equivalent

Launch schedule 2027FY
Ground station JAXA'’s ground stations (USC, GREAT)
Observation period 3 years
Uncertainty of tensor-to-  8r< 1x 1073
scalar ratio r
Multipole moment 2212200

Orbit Second Sun—Earth Lagrangian point L2; Lissajous orbit

Scan
Pointing knowledge

Cooling system

Focal-plane detector

Sensitivity

Observing frequencies
Modulation

Data transfer

Mass

Electrical power

Precession angle 45° (1072-1073 rpm); spin angle 50° (0.05-0.1 rpm)
<2.1 arcmin

Radiative cooling and mechanical refrigerators (Stirling and JT) without
cryogens. Cool in space after launch. ADRs are used to cool the focal plane
down to 100 mK

Multichroic superconducting detector arrays with more than 4000 TES
bolometers

2 pK arcmin

15 bands between 34 and 448 GHz

Satellite spin and half-wave plate modulation
9.6 GByte/day

2.6 ton

3.0kW

@ Springer



1110 Journal of Low Temperature Physics (2020) 199:1107-1117

Table 2 LiteBIRD telescope parameters

Telescope Low freq. Medium freq. High freq.
Frequency 34-161 GHz 89-224 GHz 166-448 GHz
Telescope field of view 20°x10° 28° diameter 28° diameter
Aperture diameter 400 mm 300 mm 200 mm
Angular resolution 70-24 arcmin 38-28 arcmin 29-18 arcmin
Rotational HWP 46-83 rpm 39-70 rpm 61-110 rpm
Number of detectors 1248 2074 1354

instead, we have increased the number of detectors. With the international col-
laboration between Japan, the USA, Canada, and Europe, the satellite is planned
to be launched with JAXA’s H3 rocket in 2027FY (Fig. 1). Tables 1 and 2 sum-
marize the updated basic parameters and current baseline design.

3 Current Design and Technical Progresses of LiteBIRD
3.1 Cooling Chain

With the design modification required, we have selected the following baseline com-
bination for the cooling chain: (i) down to 5 K a sunshield and passive cooling with
V-grooves [10], 15-K pulse tube coolers, and a 4-K J-T with 2ST precoolers; (ii)
from 5 to 1.75 K a parallel three-stage ADR for providing continuous cooling at
1.75 K; and (iii) from 1.75 K to 100 mK a multistaged ADR with continuous cool-
ing at 300 mK and 100 mK. Detailed schemes for this cooling chain are described
in [11].

3.2 Telescopes and Polarization Modulator Units

The accurate, precise, and robust foreground cleaning requires 15 frequency bands
covering a wide range of 34 to 448 GHz. This will be achieved with two kinds of tel-
escopes (Table 2): a reflective one for the lower-frequency range (LFT) and refrac-
tive ones for medium- and high-frequency ranges (MHFT [12]). While the LFT uses
crossed-Dragone reflective optics [13, 14] to minimize effects from multireflection
among refractive surfaces, the MHFT uses lens optics with the advantage of com-
pactness. For the LFT, the F#3.0 and the crossing angle of 90° have been selected,
since this combination suppresses the straylight [9, 15] (Fig. 2), and aluminum is
used as the mirror material [16]. All the telescopes are cooled down to 5 K for sup-
pressing thermal noise.

Each telescope has a polarization modulator unit (PMU) [12, 17-19], which con-
sists of a transmissive half-wave plate (HWP) system rotated with a superconduc-
tive magnetic bearing (SMB), as the first optical element, close to the aperture stop
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Fig.2 Top: Designs of LFT (left) [9] and MHFT (right) [12]. Middle: Pixel distribution in LFT (lef?),
MEFT (center), and HFT (right) focal planes. Pixel diameters are: 23.6 mm for red (central frequencies of
40, 60, 78 GHz) and orange (50, 68, 89 GHz) pixels; 15.6 mm for green (68, 89, 119 GHz) and light blue
(78, 100, 140 GHz) pixels in LFT; 11.6 mm for black (100, 140, 195 GHz) and gray (119, 166 GHz) pix-
els in MFT; 6.6 mm for pink (195, 280 GHz) and light green (235, 337 GHz) pixels; and 5.7 mm for blue
(402 GHz) pixels in HFT. Bottom: Predicted LiteBIRD sensitivity. Colors correspond to those shown in
the pixel distributions. Frequency ranges for LFT, MFT, and HFT are shown with black arrows. Frequen-
cies of CO J=1-0, 2-1, 3-2, 4-3 and HCN J=1-0 lines are shown as thin vertical brown dashed lines.
Total sensitivity is 2 pK arcmin. (Color figure online)

to distinguish the sky and instrumental polarization components and to reduce the
instrumental 1/f noise. The SMB enables contactless operation of the HWP system,
which minimizes heat generation, through magnetic levitation by using YBCO bulk
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and permanent SmCo magnets. The LFT HWP system consists of multilayer stacked
sapphire HWPs with optical axes shifted relative to each other to achieve high polar-
ization efficiency over the wide frequency range [20], while the MHFT employs the
metal-mesh HWPs [19]. At the top and bottom surfaces of the LFT HWP system,
we adopt anti-reflection with sub-wavelength structure produced by laser machin-
ing. A cryogenic testbed is designed to study interactions, such as between space-
optimized detectors and the PMU, consisting of a magnetically levitated and rotating
HWP system [21].

3.3 Detectors and Readout

Transition-edge sensor (TES) bolometers are used to form multichroic pixels, based
on maturity from successful ground-based and balloon experiments [22]. TES
bolometers are coupled with a silicon lenslet and a sinuous antenna for individual
broadband pixels for LFT and MFT, while silicon platelet-based corrugated horn
and orthomode transducers are used for HFT [23, 24]. The noise equivalent power
of TES bolometer is proportional to N(P,,, T}), with the T./T} ratio being optimized.
Here, P, T,, and T, are the saturated power, transition temperature, and thermal
bath temperature, respectively. The TES parameter optimization for LiteBIRD,
toward low-saturation power detectors for the satellite environment, has been car-
ried out, as well as a sensor impedance that readily couples to the frequency-domain
multiplexer. The electro-thermal time constants are controlled by slowing down with
the additional heat capacity. Details of these experimental results are described in
[25]. Cosmic ray mitigation methods have been developed by reducing propagation
with palladium structures to absorb phonons and with the removal of bulk silicon
to block phonons [26]. Readout will be carried out through digital frequency multi-
plexing, with 68 bolometers connected to each SQUID array amplifier [27, 28]. The
updated focal-plane designs and the expected sensitivities are shown in Fig. 2.

4 Foreground-Cleaning and Systematic Uncertainty Studies

The focal-plane designs have been determined through iterations with sensitivity
calculations based on thermal studies [10], as well as with foreground-cleaning (by
using methods described in [29-32]) and systematic uncertainty studies. The base-
line foreground-cleaning results have been obtained based on an eight-dimensional
parameterization of the foregrounds, including synchrotron power-law spectral index
plus curvature and effective temperature of dust, plus power-law index of dust emis-
sivity for Q and U Stokes parameters, each of which is allowed to vary across the
sky. Systematic uncertainties have also been studied [33], including beam system-
atics [14], instrumental polarization and HWP harmonics, polarization efficiency,
relative and absolute gain, pointing, polarization angle, time-correlated noise,
cosmic ray glitches, bandpass mismatch [34], transfer function, nonlinearity, and
non-uniformity in HWP, with realistic ground/in-flight calibration methods taken
into account [e.g., 15, 35]. Through all these studies, it has been shown that the
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updated focal-plane designs satisfy LiteBIRD’s full success of the total uncertainty
in the tensor-to-scalar ratio of less than 0.001, with its uncertainty budgets distrib-
uted comparably into a statistical part (including foreground residual and lensing
B-mode), a systematic part, and a margin.
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