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Abstract

We have taken advantage of the release of version 2 of the Global Data Analysis Project data product

(Olsen et al. 2016) to refine the locally interpolated alkalinity regression (LIAR) code for global estimation of

total titration alkalinity of seawater (AT), and to extend the method to also produce estimates of nitrate (N)

and in situ pH (total scale). The updated MATLAB software and methods are distributed as Supporting Infor-

mation for this article and referred to as LIAR version 2 (LIARv2), locally interpolated nitrate regression

(LINR), and locally interpolated pH regression (LIPHR). Collectively they are referred to as locally interpo-

lated regressions (LIRs). Relative to LIARv1, LIARv2 has an 18% lower average AT estimate root mean squared

error (RMSE), improved uncertainty estimates, and fewer regions in which the method has little or no avail-

able training data. LIARv2, LINR, and LIPHR produce estimates globally with skill that is comparable to or

better than regional alternatives used in their respective regions. LIPHR pH estimates have an optional adjust-

ment to account for ongoing ocean acidification. We have used the improved uncertainty estimates to

develop LIR functionality that selects the lowest-uncertainty estimate from among possible estimates. Cur-

rent and future versions of LIR software will be available on GitHub at https://github.com/BRCScienceProd-

ucts/LIRs.

The locally interpolated alkalinity regression (LIAR)

method and software was developed to estimate AT globally

from other measurable seawater properties (Carter et al.

2016b). The original application for the method was provid-

ing AT estimates as a second carbonate parameter for use

with data from the emerging network of biogeochemical

floats that measure pH (Johnson and Claustre 2016; Johnson

et al. 2016; Wanninkhof et al. 2016). However, LIAR may

also prove useful for studies or models interested in estimat-

ing a climatological AT baseline with limited variability or

deviations from such a baseline (e.g., Carter et al. 2016a).

Locally interpolated nitrate regression (LINR) and locally

interpolated pH regression (LIPHR) are primarily intended to

provide cross-comparisons for nitrate (N) and pH sensor meas-

urements that can be used to assess potential float sensor

errors or measurement drifts. Profiling biogeochemical floats

cannot typically be retrieved for sensor recalibration, so it is

important to have independent means to assess such problems

that may arise during or after float deployment. A common

approach to this problem is to use known atmospheric, sur-

face, or climatological concentrations (Takeshita et al. 2013;

Bushinsky et al. 2016; Plant et al. 2016) to recalibrate sensors,

but such known values are not always available for N and pH.

LINR and LIPHR are designed to provide estimated values in

the stable 1000–2000 m depth range of the ocean as alterna-

tives. All three locally interpolated regressions (LIRs) have sec-

ondary scientific applications when AT, N, or pH estimates are

desirable and some seawater property information is available.

By default, LIRs have the limitation that they are unable

to capture changes in the relationships between the esti-

mated properties and the predictor properties. An example

of such an unresolved change comes from the influence of

ocean acidification (OA), the effect of continually increasing

ocean storage of anthropogenic carbon dioxide (CO2) on
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seawater pH. LIPHR contains an option to adjust for the

effects of OA on pH, but we expect OA induced pH changes

to result in LIPHR estimates becoming less skillful over time

even when this adjustment is used because the adjustment

does not account for regional or temporal variations in the

rate of OA. All three LIRs are expected to be most skillful at

reproducing measurements below the ocean surface where

the effects of OA and other changes are smaller, or for esti-

mates made close in time and space to the measurements

used to train the LIRs. Another limitation of these algo-

rithms is that they break down any time relationships

between predictors and the estimated properties become sig-

nificantly nonlinear. An example of a region where estimate

skill would be expected to be diminished by this limitation

would be on the margins of O2 deficient zones where the

influences of both denitrification and aerobic respiration can

be important.

Regressions for estimating pH, N, and AT have been

reported numerous times. AT regressions are the most com-

mon variant (e.g., Millero et al. 1998; Lee et al. 2006; Alin

et al. 2012; Bostock et al. 2013; Sasse et al. 2013; Velo et al.

2013; McNeil and Sasse 2016) with regressions for pH being

less frequently reported (e.g., Juranek et al. 2011; Alin et al.

2012; Williams et al. 2016) and nitrate regressions being

even less frequently reported still (e.g., Williams et al. 2016;

Supporting Information). The LIRs presented here make

improvements over earlier versions with respect to global

applicability, ease of use, and the ability to scale uncertainty

estimates based on input uncertainties. Critically, they also

produce estimates that reproduce pH measurements at least

as skillfully as earlier versions. The bulk of the improvement

results from the larger quantity and span of data available

through the Global Data Analysis Project version 2 (GLO-

DAPv2) data product (Olsen et al. 2016) than was available

to train earlier methods. A similar method to the LIRs devel-

oped recently is the “carbonate system and nutrients con-

centration from hydrological properties and oxygen using a

neural-network” (CANYON) approach (Sauzède et al. 2017).

CANYON was also trained using the GLODAPv2 data prod-

uct and is capable of estimating pH, AT, silicate (Si), N, total

dissolved inorganic carbon (CT), and pCO2 globally from O2,

temperature, salinity (S), latitude, longitude, depth, and day

of year. We expect the LIRs we propose here will provide

complementary estimates to those provided by CANYON for

most applications, and note that the LIRs presented here do

not require O2 and temperature as measurement inputs.

In the remainder of this article, we describe version 2 of the

LIAR software (LIARv2) in the context of the improvements

relative to version 1 (LIARv1: Carter et al. 2016b), and extend

the LIR approach to nitrate and in situ total scale seawater pH

estimates with LINR and LIPHR. Particular attention is paid to

new procedures required to address complications with

extending the LIR framework to pHmeasurements.

Methods

Summary of LIR methods

As with LIARv1, the LIR methods developed here use

regression coefficients that are determined at each location

on a 58 latitude and longitude grid with 33 depth surfaces

(44,957 total locations). Each set of regression coefficients is

determined using a robust multiple linear regression (MLR) of

the subset of measurements from the global training dataset

that are found within a volume defined by latitude, longi-

tude, and depth/density windows of the grid coordinates (the

same grid used by Carter et al. 2016b). The windows used are

58 for latitude, (108=cos ðlatitudeÞ) for longitude, and either

0.01 kg m23 for potential density or 50 m for depth (which-

ever is more inclusive). The dimensions of these windows are

iteratively scaled by a factor of the iteration number until at

least 100 measurements are selected to train each regression.

When generating estimates, the LIAR software then interpo-

lates between regression coefficients specific to these grid loca-

tions to arbitrary locations where the user desires regression

estimates. LIARv2 works with 16 different combinations of

the predictor variables: salinity S, potential temperature h,

nitrate N, apparent oxygen utilization (AOU), and silicate (Si).

LINR uses the same combinations as LIAR with phosphate P

in place of N in the eight regressions that included N. LIPHR

uses the same predictors as LIAR, but also includes depth (z)

in meters as a predictor. This additional predictor is intended

to allow for the effects of pressure on in situ pH. The specific

combinations of variables used are indicated in “LIARv2,”

“LIPHR,” and “LINR” sections. A full description of the

LIARv1 method is provided by Carter et al. (2016b). In this

update, we focus on how LIARv2, LIPHR, and LINR adapt and

improve upon the LIARv1 methods.

In some instances where spectrophotometric pH measure-

ments are unavailable, we use in situ total scale pH as calcu-

lated from AT and CT. These calculations were made with

carbonate constants from Lueker et al. (2000), borate dissoci-

ation coefficients from Dickson (1990), total borate from Lee

et al. (2010), and HF dissociation constant (KF) from Perez

and Fraga (1987). Calculations are performed using the

CO2SYS for MATLAB routine by van Hueven et al. (2011).

Data products used to train and test LIRs

The primary improvement in LIARv2 relative to LIARv1

stems from regression coefficients having been re-estimated

using the GLODAPv2 data product. All measured and calcu-

lated values in GLODAPv2 were used except those from 161

cruises (40,303 measurements) that had AT quality control

(QC) adjustments of610 lmol kg21 or greater, were flagged

as poor data, or were not quality controlled for AT (Olsen

et al. 2016). The new training data set is comprised of

236,852 AT measurements and AT estimates from CO2-calcu-

lations based on other CO2 parameters, 211,704 of which

had the property measurements required for training all 16

regressions (Fig. 1). The LIAR test data set omits the 2279
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calculated AT values that are included in the training data

set. We use the coefficient re-estimation strategy used by

Carter et al. (2016b) to allow overlap between our training

and test data sets without compromising the validity of the

assessments (described in “Assessment” section).

LINR regression coefficients were estimated using 684,475

N measurements, 569,761 of which had associated property

measurements required for training all 16 regressions. This

training dataset is all GLODAPv2 data product N measure-

ments excepting those from 187 cruises that had multiplica-

tive adjustments greater than 10%, that were not QC’d, or

that were flagged as having poor quality measurements.

GLODAPv2 QC protocols changed reported negative N val-

ues to 0 lmol kg21. The LINR code does likewise. The LINR

test data set is identical to the training data set.

There are several additional difficulties for constructing a

consistent data product for training LIPHR that originate

from changes in ocean pH and in pH measurement practices

over time. Dealing with these inconsistencies requires under-

standing several adjustments that we and others (Olsen et al.

2016) have made to pH measurements and estimates. We list

these adjustments here and explain them in this section and

the next.

1. GLODAPv2 adjustments: These are recommended adjust-

ments to cruise pH, AT, and CT measurements based on

deep crossovers (Olsen et al. 2016). We do not use these

adjustments for pH, though we do use them for AT and CT.

2. Impure-dye adjustments: These are adjustments to pH

measurements that we make for pH values measured

using impure dye (i.e., commercially available indicator

dye that has not been specially purified). These adjust-

ments are intended to bring these values in line with pH

calculated from AT and CT. They are detailed below.

Fig. 1. Maps of the data used for the training (left) and test (right) data sets for LIARv2 (top: a, b), LIPHR (middle: c, d), and LINR (bottom: e, f).
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3. Calculation-to-purified-dye-pH adjustment: This is a single

adjustment we apply to impure-dye measurements (after

they have been adjusted by the impure-dye adjustment)

and to calculated pH values. This adjustment is intended

to bring these values in line with pH measurements made

with purified dyes. LIPHR includes optional code to apply

the inverse of this adjustment to returned pH estimates if

the user desires estimate that match what would be

expected for pH calculations from AT and CT. This adjust-

ment is also detailed below.

4. OA adjustment: This is an optional adjustment applied to

LIPHR pH estimates to reflect the impacts of ongoing OA

on seawater pH (detailed in “An OA adjustment for pH

estimates” section).

The primary additional difficulty for pH stems from the

variety of ways pH is measured or calculated, as well as the

evolution of accepted best practices for pH measurement

over the decades for which GLODAPv2 contains data. GLO-

DAPv2 contains a mixture of pH calculated from carbonate

system measurements, pH measured using electrodes, and

pH measured spectrophotometrically. Also, although the

spectrophotometric pH method has been used since the

early 1990s, Yao et al. (2007) revealed that impurities in the

indicator dye used can significantly bias spectrophotometric

pH measurements, and Liu et al. (2011) subsequently pub-

lished calibration equations that allow seawater pH measure-

ments to be made using purified m-cresol purple dye. Others

(Carter et al. 2013; Patsavas et al. 2015; Williams et al. 2017)

have since shown that measurements with purified dyes

appear to have an (unexplained) broadly consistent-but-pH-

dependent discrepancy from the pH calculated from combi-

nations of AT, CT, and pCO2 whether calculated at in situ or

laboratory conditions (Fig. 2c). This pH dependent discrep-

ancy is not unique to a single pH sample handling approach,

as it exists for both manual and automated pH measure-

ments. It exists also for multiple carbonate constant sets

(Carter et al. 2013). It exists for multiple characterizations of

the properties of purified dyes: there is a small pH-

dependent discrepancy between spectrophotometric pH

obtained from various sets of purified dye coefficients (Liu

et al. 2011; DeGrandpre et al. 2014), but the discrepancy

(ranging from � 0.006 at a pH of 8.2 to � 0.002 at a pH of

7.4) is too small to account for the differences between cal-

culated pH and pH measured with purified dyes. The pH-

dependent pH discrepancy is less apparent for electrode pH

measurements (Fig. 2a) and impure dye measurements (Fig.

2b) considered collectively across many cruises. However,

there are many strongly differing discrepancy relationships

visible when impure dye measurements are considered on a

cruise-by-cruise basis (see Supporting Information Figures),

with some discrepancies increasing and some decreasing

with pH. It should be noted that Fig. 2c includes no meas-

urements from the subset of research groups that produced

impure dye measurements showing a relationship between

the pH discrepancy and pH with a negative slope.

A second complication arises in the GLODAPv2 data

product QC process. This data product relies on deep cross-

overs to obtain measurement adjustments intended to bring

measurements from various cruises in line with one another.

However, the variety of pH-dependent pH discrepancies

found in various cruises casts doubt on the comparability of

deep-ocean pH measured on different cruises. Adjustments

based on forcing an agreement at depth between pH distri-

butions obtained with different approaches could therefore

create, exacerbate, or inadequately capture discrepancies at

the surface.

Our approach to these challenges is to first divide the

data into three subsets and then apply linear adjustments to

the first two subsets to make them comparable to the third.

The first subset is the earlier measurements made with

impure dyes. The second subset is pH calculated from AT

and CT. These two subsets collectively comprise the majority

of the GLODAPv2 data product. The third subset is the subset of

Fig. 2. Two-dimensional (2D) histograms showing the number of in situ total scale pH measurements falling within bins of discrepancy between

measured and calculated pH (y-axis) and measured pH (x-axis) for (a) the electrode-based measurements; for (b) the impure-dye subset primarily

measured prior to 2011, and (c) our test data set, which is the purified dye measurement subset predominantly made since 2011.
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the GLODAPv2 data product where pH was measured with puri-

fied dyes. We augment the purified dye subset with 11 cruises

conducted too recently to appear in the GLODAPv2 data product

(Expocodes: 096U20160108, 096U20160426, 29HE20130320,

318M20130321, 320620140320, 320620151206, 33AT20120324,

33RO20150410, 33RO20150525, and 33RO20161119). We fur-

ther add data from two recent cruises measured with impure dye

to the impure-dye subset (33RO20130803, 33RO20131223). Data

from one additional recent cruise using purified dyes along the

I09N transect (33RR20160208) is withheld from the pH training

data set entirely to provide a completely independent assessment

(“Example section”). Linear pH-dependent adjustments (D1!2,

adjustment 2) are applied separately to each cruise measured

with impure dyes to make the pH measurements comparable to

the “calculated pH” subset. The coefficients for these adjust-

ments are determined with a robust linear regression of the pH

discrepancy (measured minus calculated) against measured pH.

Coefficients for these adjustments are supplied as Supporting

Information. Next, a single pH dependent adjustment (D2!3,

adjustment 3,�10.004 to20.020, Fig. 2b) is applied to the com-

bination of the second subset and the adjusted first subset to

make them comparable to the third “purified-dye” subset. The-

adjustment is (Fig. 2c):

adjustment 3 � D2!3 � 20:316810:0404pH (1)

After applying D2!3, the combined training pH data set has a

pH-dependent pH discrepancy with calculated pH (Fig. 3).

Adjustments to the impure data are designed to take the place

of the recommended GLODAPv2 adjustments (adjustment 1),

and—except when noted—pH data presented herein do not

include the GLODAPv2 adjustments. Supporting the decision

to omit the GLODAPv2 pH adjustments, the algorithms we

produce have a � 3% smaller RMSE and 4% smaller average

bias when reproducing the unadjusted data than adjusted-

data-trained algorithms have when reproducing adjusted data.

Our use of the purified-dye adjustment (adjustment 3)

reflects our need for a consistent training data product and

not any confidence that purified dye measurements are nec-

essarily more accurate representations of the “true” seawater

pH than pH calculations. The apparent pH-dependent pH

discrepancy remains an unresolved challenge to our carbon-

ate system knowledge. Our strategy is to allow LIPHR users

to decide whether pH estimates specific to purified dye meas-

urements or pH calculations with Lueker et al. (2000)’s car-

bonate chemistry coefficients are more appropriate for their

own applications. LIPHR therefore includes an optional

counter-adjustment for adjustment 3 (D3!2) derived from Eq.

1 to return pH estimates that are consistent with pH calcu-

lated from AT and CT. Broadly, we recommend the default

“purified dye estimates” without this counter-adjustment

when pH is the parameter of interest, and “calculation-pH

estimates” with this adjustment when LIPHR estimates are

being used as one of two constraints to estimate another

carbonate system parameter. Whichever is used, the user

should be aware of this mismatch in our understanding of

carbonate system chemistry.

In total, the LIPHR training data set consists of 51,325 impure-

dye measurements (adjusted with D1!2 and D2!3); 99,061 calcu-

lated pH values (adjusted with D2!3); and 35,383 unadjusted

purified dye measurements (185,769 total measurements). The

test data set contains only the 35,383 purified dyemeasurements.

These data sets exclude 416 electrode pH measurements and

14,983 impure dye measurements for which no calculated pH

value was available. These totals also exclude measurements and

calculations from cruises that either had GLODAPv2 pH adjust-

ments estimated to be larger than60.015 pH units, that were cal-

culated from cruises with (applied) total dissolved inorganic

carbon (CT) or total seawater titration alkalinity (AT) GLODAPv2

adjustments greater than610 lmol kg21, or that were flagged as

having poor quality pH measurements. When viable pH

measurements and calculations were both available for a

sample, only the pH measurements were included. We also

omitted data from seven cruises (Expocodes: 49K619990523,

49HG19950414, 49HG19940413, 49HG19930807, 49HG19930413,

33RR19971202, 318M19940327) either because they came

from series of cruises with large and variable GLODAPv2

adjustments or because the calculated and measured pH values

did not agree with a 60.03 or less root mean squared (RMS) or

60.015 average difference. A full list of cruises and how they

were classified is provided in Supporting Information.

An OA adjustment for pH estimates

Johnson et al. (2017) find that recent profiling float sen-

sor pH measurements are significantly lower than most

nearby pH stations in the GLODAPv2 record, and that these

Fig. 3. A 2D histogram showing the number of in situ total scale pH

measurements falling within bins of discrepancy between measured and

calculated pH (y-axis) and measured pH (x-axis) for the LIPHR training

data set after adjustments 2 and 3 are applied.
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disagreements are largest in the better-ventilated surface

ocean. LIPHR includes an optional adjustment (on by

default) to reflect these expected effects of OA on modern

and future seawater pH (adjustment 4). For this adjustment,

the rate of pH change (cOA) is approximated from the robust

regression:

pHTestDat2pHLIPHR5cOA DTestData2DTrainingData

� �

(2)

This is a regression between the reconstruction error

(pHTestDat2pHLIPHR) as the dependent variable and the

difference (DTestData2DTrainingData) between the mean deci-

mal years of the training measurements used to estimate

the regression coefficients (DTrainingData) and the decimal

years of the test data (DTestData) as the independent

variable. The term “decimal years” is used to mean the

year (C.E.) with a decimal added to represent the fraction

of 365 d elapsed in that year (such that a measurement

on the 200th day of 2020 would be represented by

� 2020.55). This regression has been performed for the

reconstructions of 10 subsets of the GLODAPv2 data prod-

uct used separated by every 10th percentile of potential

density (rh) (Fig. 4). If the OA adjustment is enabled in

the LIPHR code, cOA is linearly interpolated to the rh

estimated for the query data location and the adjusted

LIPHR estimate (pH�
LIPHR) is supplied as:

pH�
LIPHR5pHLIPHR1cOA DQueryData2DTrainingData

� �

(3)

The OA pH change rates we find here are consistent with

previous estimates (e.g., Feely et al. 2009). These simplistic

OA adjustments may be poor estimates of the impacts of OA

on seawater pH generally because they treat all water of a

given density identically despite strong regional differences

in the degree of water mass ventilation and Canth storage.

Nevertheless, we believe the optional adjustment is useful

for LIPHR pH estimates made in the coming decades, and

note that including the adjustment decreases mean estimate

bias by 85% and RMSE by � 51%. Due to the progressive

effects of OA, we contend this adjustment will be yet more

important for modern estimates than for our test data set.

Limited experimentation suggested additional cruises would

be needed to adequately constrain regional differences in

this adjustment. The LIPHR code therefore contains an

option for users to input cOA estimates that are specific to

the OA rates found in their study regions, if desired. The

assessment values we report in “Assessment” section include

the OA adjustment.

Update to uncertainty estimation

The LIRs generate uncertainty estimates for each property

estimate returned. As with LIARv1, uncertainty estimates

(EEst) are quantified as:

EEst5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EMeas
21EMLR

21

X

n

j51

ðUjajÞ
2

v

u

u

t (4)

E terms refer to the RMS uncertainties as assessed in the

“Assessment” section. EMeas represents AT, N, and pH mea-

surement uncertainties in our data product, and is assumed

to be a constant 2.8 lmol kg21 AT, 0.3 lmol kg21 N, and

0.005 pH units, respectively (Olsen et al. 2016). Uj are the n

input uncertainties for the predictor properties provided by

the user, or default uncertainties if no U values are provided.

The default uncertainties are now 0.005 for S, 0.0058C for h,

1% O2, and 2% of N, P, and Si. The aj terms are the n regres-

sion coefficients used in the estimate. EMLR represents the

component of the overall uncertainty inherent to regression

based estimates. It is estimated for LIR outputs using esti-

mates of EMLR that are specific to each of the 16 equations

and to 10 depth ranges (for N and pH) or 50 ranges of depth

and S (for AT). These ranges correspond to every 10th percen-

tile of depth and/or salinity in the training data product

(with a single range spanning the 20th through 80th percen-

tile of salinity). The EMLR estimates for these ranges are

obtained by solving Eq. 4 for EMLR using assessment data

with known EEst. These range-specific EMLR estimates are

then interpolated by these properties to the depth and/or

Fig. 4. The average annual rate of OA-related impacts on LIPHR esti-

mate errors (c
OA
) calculated for every 10th percentile of potential density

(rh) in the GLODAPv2 data product. If the optional OA adjustment is

used (Eq. 3), LIPHR uses user-provided dates with this relationship to

adjust estimates it returns for the effects of OA. The green envelope indi-

cates 95% confidence intervals of the fits. The blue envelope shows the

larger confidence intervals obtained if one degree of freedom is assumed

for each cruise rather than each measurement. Values in this figure are

calculated using regression 7 (of the 16 regressions LIPHR can employ,

see Table 2). Values for the other 15 regressions would be within

�60.0005 yr21 of these.
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salinity inputs for the EEst calculations. LINR and LIPHR

errors also scale slightly with salinity, but not as strongly as

LIAR errors do because of the smaller impact of freshwater

cycling on N and pH than on AT. All LIR uncertainties

increase near the surface due to a larger impact of seasonal-

ity, episodic biogeochemical cycling, and gas exchange.

Minimum uncertainty estimates

One difficulty with LIRs is choosing between up to 16

possible estimates. We have added (optional, on by default)

functionality to all LIR routines that automatically picks the

estimate with the smallest estimated uncertainty from

among all estimates it is possible to generate using the suite

of input predictor data provided by the user. This feature is

intended in part to address a limitation of the method, being

that some LIR equations have too many terms (i.e., are over-

fit) for some of the>2 million combinations of predicted

variables, predictor variables, and grid locations. Over-fitting

leads to larger-magnitude regression coefficients due to

“Variance Inflation.” Larger magnitude coefficients (aj) prop-

agate through Eq. 4 to return larger uncertainty estimates.

Once the increase in EEst from having more and larger-

magnitude coefficients (i.e., from over-fitting) balances the

typically lower EMLR values for the equations with more

terms, this functionality automatically selects the less com-

plex and less over-fit equation. This feature therefore selects

an equation that minimizes overall error from over-fitting,

input uncertainties, and method errors generally. This

option modestly decreases estimate RMSE by 0–11% and,

more importantly, makes the function easier to use without

compromising estimate skill. The estimate improvement

becomes more marked with (known) larger input uncertain-

ties such as those that will be common with sensor measure-

ments. For example, the AT estimate RMSE improvement

with this feature increased from 3% to 10% after simulated

errors were applied to AOU (these were normally distributed

offsets with a mean of 0 and a standard deviation of 5 lmol

kg21 O2).

Assessment

Estimate bias and RMS errors are calculated in the same

way as the error estimates provided by Carter et al. (2016b),

except using the subsets of the GLODAPv2 data product and

additional cruises specified as “test data” sets in “Data prod-

ucts used to train and test LIRs” section. These values are

presented as “bias (6 RMSE).” The bias is the mean residual

for the assessment and can be positive or negative. LIR bias

estimates are small compared to RMSE at the global level,

suggesting the LIR estimates are appropriately centered on

the measured values. However, bias grows (in an absolute

sense) as the number of measurements averaged decreases,

so the bias estimates are presented alongside RMSE as poten-

tially useful indicators of how correlated LIR errors are for

various regions. Bias estimates are also useful when compar-

ing assessments from various algorithms. In particular, lower

biases for LIPHR than for other pH algorithms highlight the

Fig. 5. A 2D histogram of measured AT (x-axis) against estimated AT
(y-axis). Darker colors along the thin blue 1 : 1 line indicate orders of

magnitude more measurements fall on the line than in the light-colored

histogram bins off the line.

Table 1. Error estimates expressed as “bias (6 RMSE)” with
units lmol kg21 for the subset of our data product found within
the open-ocean salinity range of 33–38. EMLR is uncertainty
inherent to the use of a MLR approach, EInput is error arising
from uncertainties in the input data (i.e., the summed term in
Eq. 4), ELIARv2 is the overall estimate uncertainty for LIARv2.
GLODAPv2 data product is used as test data for all estimates.
Errors are expressed as standard errors in lmol AT kg21.

Reg. # Parameters used EMLR EInput ELIARv2

1 S, h, N, AOU, Si (63.6) (60.8) 0.1 (65.0)

2 S, h, N, Si (63.7) (60.7) 0.1 (65.0)

3 S, h, AOU, Si (63.6) (60.7) 0.1 (64.9)

4 S, h, Si (63.7) (60.6) 0.1 (65.0)

5 S, h, N, AOU (63.8) (60.9) 0.0 (65.1)

6 S, h, N (64.0) (60.9) 0.1 (65.3)

7 S, h, AOU (63.8) (60.7) 20.1 (65.1)

8 S, h (64.4) (60.5) 0.2 (65.5)

9 S, N, AOU, Si (63.6) (60.8) 0.1 (65.0)

10 S, N, Si (63.7) (60.7) 0.1 (65.0)

11 S, AOU, Si (63.6) (60.6) 0.1 (65.0)

12 S, Si (63.7) (60.6) 0.1 (65.0)

13 S, N, AOU (64.6) (61.2) 20.1 (65.8)

14 S, N (64.4) (61.0) 20.1 (65.6)

15 S, AOU (64.6) (60.8) 20.2 (65.7)

16 S (65.1) (60.4) 0.1 (66.1)
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importance of the OA adjustment and the dye-impurity-

related adjustments applied to the training data set. An

important feature of the error estimation method used is

that a separate set of regression coefficients is estimated for

each data point in our test data sets, and is estimated with-

out using any data from the cruise that produced that

particular test pH value. Data from the same cruise is omit-

ted to avoid under-estimating error by including numerous

measurements in the training dataset found proximally in

time and space to the test measurement.

LIARv2

The updates to LIAR decreased the overall reconstruction

errors (ELIARv2) for all 16 regressions relative to ELIARv1 by 7–

26% (average 18%) when both sets of errors are calculated

using the newer test dataset. The largest improvements are

for regressions with the fewest predictors. We attribute the

majority of the improvements to the increased size, quality,

and consistency of the subset of the GLODAPv2 data prod-

uct we used relative to the merged data product we used for

LIARv1 (Fig. 5). LIARv1 compared favorably to regional AT

regressions in literature (many are compared in Carter et al.

2016a,b) and Table 1 shows LIARv2 does somewhat better

still. CANYON AT estimates reproduce our entire test data-

set with errors of 20.2 (6 5.4) lmol kg21 while LIARv2

(Regression 7) has errors of 20.1 (6 5.1) lmol kg21. These

errors are slightly smaller at 20.5 (6 5.2) lmol kg21 for

CANYON and 0.2 (6 4.4) lmol kg21 for LIARv2 when lim-

ited to the open ocean test regions used by Sauzède et al.

(2017).

Interestingly, regression 3 (S, h, AOU, and Si) slightly out-

performs regression 1 (S, h, N, AOU, and Si) on average, and

there is little difference between the error estimates for the

various equations for AT. This suggests that regression 1 and

possibly others are over-fitting AT in places (this observation

does not hold true if we include the test data in the training

Table 2. LIPHR error estimates expressed as “bias (6 RMSE)” for the subset of our data product found within the open-ocean salin-
ity range of 33–38. EMLR is the uncertainty inherent to the use of a MLR approach, EInput is error arising from uncertainties in the input
data (i.e., the summed term in Eq. 4), and ELIPHR is the overall estimate uncertainty. ELIPHR2000m is the uncertainty estimate for pH
measurements between 1000 m and 2000 m, or the approximate depth range at which biogeochemical floats will require pH esti-
mates for cross-comparison.

Reg. # Parameters used EMLR EInput ELIPHR ELIPHR2000m

1 z, S, h, N, AOU, Si (60.0080) (60.004) 0.002 (60.010) 0.001 (60.008)

2 z, S, h, N, Si (60.0110) (60.005) 0.002 (60.013) 0.000 (60.009)

3 z, S, h, AOU, Si (60.0090) (60.003) 0.001 (60.011) 0.001 (60.007)

4 z, S, h, Si (60.0190) (60.002) 0.001 (60.020) 20.003 (60.014)

5 z, S, h, N, AOU (60.0070) (60.004) 0.001 (60.010) 0.001 (60.006)

6 z, S, h, N (60.0110) (60.004) 0.002 (60.013) 0.000 (60.007)

7 z, S, h, AOU (60.0090) (60.003) 0.001 (60.011) 0.001 (60.006)

8 z, S, h (60.0230) (60.001) 0.001 (60.024) 20.003 (60.013)

9 z, S, N, AOU, Si (60.0090) (60.004) 0.001 (60.011) 0.001 (60.007)

10 z, S, N, Si (60.0120) (60.005) 0.002 (60.014) 0.001 (60.008)

11 z, S, AOU, Si (60.0100) (60.003) 0.001 (60.011) 0.001 (60.006)

12 z, S, Si (60.0200) (60.002) 0.001 (60.021) 20.003 (60.014)

13 z, S, N, AOU (60.0090) (60.004) 0.001 (60.011) 0.001 (60.007)

14 z, S, N (60.0130) (60.004) 0.002 (60.015) 0.000 (60.008)

15 z, S, AOU (60.0100) (60.003) 0.001 (60.011) 0.001 (60.006)

16 z, S (60.0300) (60.001) 0.001 (60.031) 20.003 (60.015)

Fig. 6. A 2D histogram of measured or calculated pH (x-axis) against

OA-adjusted estimated pH (y-axis). Darker colors along the thin blue

1 : 1 line indicate orders of magnitude more measurements fall close to

the line than in light-colored histogram bins off the line.
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data). See “Minimum uncertainty estimates” section for how

the LIR minimum-uncertainty functionality automatically

avoids using over-fit relationships despite this.

LIPHR

LIPHR pH estimates reconstruct the test pH data set well

(Table 2; Fig. 6). We separately estimate error between

1000 m and 2000 m as these estimates are more likely to be

used to compare with float data (Table 2).

LIPHR estimates compare well to the few published pH

regression estimates. Williams et al. (2016) designed

regression estimates for south of 458S between 2006 and

2017 and between 0 m and 2100 m depth. For the subset

of our data product within these bounds and omitting

their S04P and P16S training cruises, their published

regressions have errors of 20.006 (6 0.017) and 20.006

(6 0.016), while similar LIPHR regressions (6 and 7,

respectively) have errors of 20.001 (6 0.010) and 20.001

(6 0.011). Williams et al. (2016) also report a regression

for estimates in the same region but trained specifically

for estimates between 1000 m and 2100 m depth, the

depth range most useful for assessment of biogeochemical

profiling float sensor performance. For the relevant subset

of our test data product, their algorithm has errors of

20.001 (6 0.005), while the LIPHR regression 7 has errors

of 0.002 (6 0.005). LIPHR (also regression 7) estimates

have errors of 0.004 (6 0.014) in the California Current

Ecosystem specific window of 1148N to 1248W, 278N to

368N and 15–500 m depth after 1994 where the algorithm

from Alin et al. (2012) uses temperature and O2 measure-

ments to generate estimates with errors of 20.008 (6

0.015). CANYON pH estimates reproduce our entire test

dataset with errors of 0.009 (6 0.017) while LIPHR

(Regression 7) has errors of 0.000 (6 0.010). At mid depths

(1000–2000 m), these estimates are 0.013 (6 0.017) for

CANYON and 0.000 (6 0.006) for LIPHR. The CANYON

Table 3. LINR error estimates expressed as “bias (6 RMSE)” with units lmol kg21 for the subset of our data product found within
the open-ocean salinity range of 33–38. EMLR is the uncertainty inherent to the use of a MLR approach, EInput is error arising from
uncertainties in the input data (i.e., the summed term in Eq. 4), and ELINR is the overall estimate uncertainty. ELINR2000m is the uncer-
tainty estimate for N measurements between 1000 m and 2000 m, or the approximate depth range at which biogeochemical floats
will require N estimates for cross-comparison.

Reg. # Parameters used EMLR EInput ELINR ELINR2000m

1 S, h, P, AOU, Si (60.56) (60.12) 20.01 (60.64) 0.00 (60.45)

2 S, h, P, Si (60.58) (60.14) 0.00 (60.67) 0.02 (60.47)

3 S, h, AOU, Si (60.81) (60.10) 20.01 (60.87) 0.00 (60.84)

4 S, h, Si (61.00) (60.09) 0.03 (61.05) 0.03 (60.89)

5 S, h, P, AOU (60.56) (60.13) 20.02 (60.65) 20.00 (60.44)

6 S, h, P (60.60) (60.16) 0.00 (60.69) 0.01 (60.48)

7 S, h, AOU (60.80) (60.11) 20.02 (60.86) 0.00 (60.47)

8 S, h (61.23) (60.07) 0.05 (61.27) 0.04 (60.58)

9 S, P, AOU, Si (60.58) (60.13) 20.01 (60.67) 0.00 (60.44)

10 S, P, Si (60.61) (60.15) 0.00 (60.69) 0.02 (60.47)

11 S, AOU, Si (60.87) (60.10) 20.01 (60.92) 20.00 (60.83)

12 S, Si (61.06) (60.10) 0.05 (61.11) 0.06 (60.81)

13 S, P, AOU (60.62) (60.14) 20.03 (60.70) 20.00 (60.44)

14 S, P (60.65) (60.17) 20.01 (60.74) 0.01 (60.49)

15 S, AOU (60.96) (60.11) 20.03 (61.01) 20.00 (60.46)

16 S (61.68) (60.07) 0.06 (61.71) 0.07 (60.62)

Fig. 7. A 2D histogram of measured N (x-axis) against estimated N (y-

axis). Darker colors along the thin blue 1 : 1 line indicate orders of mag-

nitude more measurements fall on the line than in the light-colored his-

togram bins off the line.

Carter et al. LIR: Global alkalinity, pH, and nitrate estimates

127



error estimates are the same at this precision when the

GLODAPv2 adjustments are retained.

LINR

LINR estimates also reproduce the test data product well

(Table 3; Fig. 7). Williams et al. (2016) provide an N estima-

tion algorithm specific to the Pacific sector of the Southern

Ocean south of 458S between 1000 m and 2100 m. This algo-

rithm has errors of 0.42 (6 0.65) lmol kg21 for the portion

of our data product in the target region for this regression.

LINR (Regression 7) has an error of 20.11 (6 0.45) lmol

kg21 for this same subset. CANYON nitrate estimates repro-

duce our entire test dataset with errors of 20.01 (6 0.89)

lmol kg21 while LINR (Regression 7) has errors of 20.02

(6 0.86) lmol kg21. These errors are slightly smaller at 0.03

(6 0.66) lmol kg21 for CANYON and 20.02 (6 0.65) lmol

kg21 for LINR when limited to the open ocean test regions

used by Sauzède et al. (2017).

Uncertainty estimation skill

With the changes to the error estimation strategy noted

in “Update to uncertainty estimation” section, the overall

standard error estimates provided by the software are now

greater than or equal to the test data set reconstruction error

for 76% of the data product for LIARv2, for 75% for LIPHR,

and for 80% for LINR. For perfectly estimated normally dis-

tributed RMS uncertainties, this number would be 68%. This

was true for 87% of the data product with LIARv1.

Example section

Example LIAR, LIPHR, and LINR estimates are derived

from hydrographic measurements from the 2016 occupa-

tions of the I09 section in the Indian Ocean by the Global

Ocean Ship Based Hydrographic Investigations Program (GO-

SHIP) program (Fig. 8). These estimates provide an indepen-

dent validation when compared to the measurements made

along the cruise because the data from these cruises were

not included in either the test or training datasets for the

LIRs. The LIRs do an excellent job of reproducing the meas-

urements with errors of 20.6 (6 4.2) lmol kg21 for AT, 0.001

(6 0.008) for pH, and 0.14 (6 0.32) lmol kg21 for N. LIPHR

errors increase to 20.014 (6 0.017) when the OA adjustment

is omitted.

Fig. 8. Measured (a, d, g) and estimated (b, e, h) AT (a–c), pH (d–f), and N (g–i)—and differences between the two (c, f, i)—along the I09N sec-

tion in the Indian Ocean.
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Future directions

Climatological distributions of carbonate parameters from

LIAR AT and LIPHR pH—or calculated from this pair of prop-

erties—may be of interest and would be simply calculated

for the measurement-dense World Ocean Atlas climatology

(Locarnini et al. 2013; Zweng et al. 2013; Baranova 2015) or

similar products. Such a regression-based climatology—like

the AT climatologies created by Lee et al. (2006) and used by

Takahashi et al. (2014)—would be one step further removed

from the measurements than gridded climatologies like

those provided by Lauvset et al. (2016) and Key et al. (2004).

However, it would have the advantage that it could be based

on property measurements (such as O2, S, and temperature)

that are more numerous, more broadly spatially and tempo-

rally distributed, and less seasonally biased than the carbon-

ate measurements.

With LIAR and LIPHR, it is now possible to estimate two

parameters for the carbonate system, thus—in principle—

providing a complete carbonate system description. While

measurements would be preferable for most applications,

this pair of algorithms allows additional context to be added

to historical data products.

As Velo et al. (2013) pointed out, regressions can be

potentially powerful tools for data QC. An algorithm that

uses many measured properties to estimate many other

measured properties and then assesses the various resid-

uals may provide a fast method for identifying apparent

outliers and interesting anomalies in property measure-

ment sets. Such automated measures designed to assist

human-QC efforts may be of increased importance as

growing sensor networks increase the quantity of data

being produced relative to the amount of human-effort

available for data QC.

The OA rate estimation strategy used (Eq. 2) provides a

means to incorporate a large number of measurements that

are disparate in space and time into unified global trend

estimates. This framework could perhaps be applied to

examine the low-signal-to-noise scientific questions of

whether long term trends are occurring in AT (c.f. Carter

et al. 2016a), N, or O2 relative to other measured

parameters.
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