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Abstract

We revisit the upper limits on the abundance of unstable massive relic particles provided

by the success of Big-Bang Nucleosynthesis calculations. We use the cosmic microwave

background data to constrain the baryon-to-photon ratio, and incorporate an extensively

updated compilation of cross sections into a new calculation of the network of reactions

induced by electromagnetic showers that create and destroy the light elements deuterium,
3He, 4He, 6Li and 7Li. We derive analytic approximations that complement and check the full

numerical calculations. Considerations of the abundances of 4He and 6Li exclude exceptional

regions of parameter space that would otherwise have been permitted by deuterium alone.

We illustrate our results by applying them to massive gravitinos. If they weigh ∼ 100 GeV,

their primordial abundance should have been below about 10−13 of the total entropy. This

would imply an upper limit on the reheating temperature of a few times 107 GeV, which

could be a potential difficulty for some models of inflation. We discuss possible ways of

evading this problem.
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1 Introduction

Some of the most stringent constraints on unstable massive particles are provided by their
effects on the abundances of the light nuclei produced primordially in the early Universe via
Big-Bang Nucleosynthesis (BBN) [1]-[14]. Astrophysical determinations of the abundances
of D, 4He and 7Li agree with those found in homogeneous BBN calculations, for a suitable
range of the baryon-to-photon ratio η [15, 16]. The decay products of massive unstable
particles such as gravitinos would have produced electromagnetic and/or hadronic showers
in the early Universe, which could have either destroyed or created these nuclei, perturbing
this concordance. Maintaining the concordance provides important upper limits on the
abundances of such massive unstable particles. The power of this argument has recently
been increased by observations of the power spectrum of fluctuations in the cosmic microwave
background (CMB) [17]. These now provide an independent determination of η that is in
rather good agreement with the value suggested by BBN calculations [18]-[22], reducing one
of the principal uncertainties in the previous BBN limits on massive unstable particles.

This development has triggered us to re-evaluate these BBN constraints. We do so via a
new calculation of the network of nuclear reactions induced by electromagnetic showers that
create and destroy the light elements deuterium (D), 3He, 4He, 6Li and 7Li. We perform a
coupled-channel analysis of the light-element abundances, which enables us to analyze the
possible existence of isolated ‘islands’ of parameter space that are not minor perturbations
of standard homogeneous BBN calculations. In carrying out this program, we also take the
opportunity to improve previous theoretical treatments of some reactions in essential ways.
We also derive analytic approximations to our results, which serve as a check of the numerics,
and offer additional insight into the essential physics.

Considerations of the D abundance alone would have led to the apparent existence of
finely-tuned ‘tails’ of parameter space that extend the region allowed by standard BBN
calculations to rather larger abundances of unstable relic particles. In the past, these ‘tails’
were argued to be excluded on the basis of the combined D + 3He abundance. It is now
widely considered that the complicated chemical and stellar history of 3He renders such
an argument unsafe [23]. However, we show here that these tails are excluded robustly
by the astrophysical abundance of 4He, and also conflict with the measured 6Li abundance.
These other abundances also exclude a disconnected ‘channel’ of parameter space that would
have been allowed by the D abundance alone. Overall, the most stringent upper limit on
the possible abundance of an unstable massive relic particle X with lifetime τX

>∼ 102 s is
provided by the 6Li abundance. For τX = 108 s, we find

MX
n0

X

n0
γ

< 5.0×10−12 GeV, (1)

with the upper limit from the 4He abundance being about two orders of magnitude less
stringent.

As an illustrative application of this new analysis, we reconsider the allowed abundance
of unstable gravitinos G̃ with masses up to about 10 TeV, which are expected to have
lifetimes >∼ 102 s. Using standard calculations of thermal gravitino production in the early
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Universe [24] - [32] , [8], the constraint (1) suggests a stringent upper limit on the reheating
temperature TR of the Universe following inflation:

TR
<∼ 106 GeV for MG̃ ∼ 100 GeV. (2)

Such a stringent upper limit can be problematic for standard inflationary models [33], some
of which predict higher TR ∼ 1012 GeV. A low reheating temperature might also be problem-
atic for some models of baryogenesis in which thermal production of baryon-number-violating
particles is necessary, though not for others. The simplest leptogenesis scenarios [34] require
the production of a right-handed neutrino state whose decays violate lepton number. How-
ever, even scenarios which require the thermal production of right-handed neutrinos can in
fact accommodate very low reheat temperatures [35, 36], and non-thermal production of
particles with masses less than the inflaton mass is possible for very low reheating tempera-
tures [37]. Leptogenesis scenarios [38] of this type as well as those involving preheating [39]
have been proposed 1.

Reheat temperatures higher than (2) would be allowed if τG̃
<∼ 104 s, as might occur

if MG̃
>∼ 3 TeV and/or the gravitino has many available decay modes. Alternatively, one

may consider the possibility of a very light gravitino that would be stable or metastable.
However, in this case the upper limit (1) would apply to the next-to-lightest supersymmetric
particle (NLSP). In conventional MSSM scenarios with a very light gravitino, this might be
the lightest neutralino χ. However, the relic χ abundance may also be calculated, and is
likely to conflict with the upper limit (1).

This brief discussion serves to emphasize the importance of evaluating the cosmological
upper limit on the possible primordial abundance of unstable relic particles, to which the
bulk of this paper is devoted. In Section 2, we discuss the most relevant photodissociation
and photoproduction processes and describe their implementation in a code to calculate the
network of reactions creating and destroying light elements in the early Universe. A brief
discussion of the observational constraints used is in Section 3. Analytical and numerical
results for light-element abundances are presented in Section 4. Our main constraints on
unstable particles are described in Section 5, where we compare and combine the upper
limits obtained by considering different light nuclei. Finally, in Section 6 we discuss in more
detail the implications of our results for cosmological gravitinos. Section 7 contains some
comments on particles with longer (and shorter) lifetimes. In Appendix A, we compile and
discuss the cross sections used in this analysis.

2 Photon Injection and Abundance Evolution

As an example of the constraints imposed on the abundance of a heavy metastable particle
by observations of light elements, we consider the radiative decay of a massive particle (such
as a gravitino) with lifetime >∼ 104 s. The energetic decay photon initiates an electromagnetic
shower, which in turn initiates a network of nuclear interactions. The decays of some unstable
heavy particles also initiate hadronic showers, which would provide an additional set of

1We also recall that Affleck-Dine [40] leptogenesis [36, 41] can be accomplished at low TR.

2



constraints. These are typically important for shorter lifetimes, τ <∼ 102 s. However, we
restrict our attention in this paper to the network of reactions induced by electromagnetic
showers, and comment on very short (and very long) lifetimes in Section 7.

2.1 The Initial Degraded Photon Spectrum

At the epoch of interest to us here, τX
>∼ 104 sec, the massive gravitino2 is very non-

relativistic, and can be treated as if at rest with respect to the background. We assume
that a gravitino of mass MX decays into a photon (γ) and a neutralino (χ), each with their
respective energies,

Eγ =
M2

X − m2
χ

2MX
and Eχ =

M2
X + m2

χ

2MX
. (3)

In the limit MX ≫ mχ, the energies become almost equal: Eγ ∼ Eχ ∼ 1
2
MX .

The primary photon with injection energy E0 interacts with the background plasma and
creates an electromagnetic cascade. The most rapid interactions in this cascade are pair
production γγbg → e+e− off of background photons, and inverse compton scattering. These
processes rapidly redistribute the injected energy, and the nonthermal photon spectrum
rapidly reaches a quasi-static equilibrium as discussed in [7, 9, 10]. The “zeroth generation”
quasi-equilibrium photon energy spectrum is

pγ(Eγ) =





K0

(
EX

Eγ

)1.5
if Eγ < EX

K0

(
EX

Eγ

)2.0
for EX < Eγ < EC

0 otherwise





(4)

where the normalization constant K0 is determined by demanding that the total energy be
equal to the injected energy: K0 = E0/[E2

X(2 + ln (EC/EX))]. This spectrum is the same as
that used by Protheroe, Stanev, & Berezinksy [10] and Jedamzik [12], and also agrees with
the result of a detailed numerical integration of the full Bolzmann equation by Kawasaki and
Moroi [9] 3. It is a broken power law with a transition at Eγ = EX and a high-energy cutoff at
Eγ = EC . We adopt the same energy limits as Kawasaki and Moroi, namely EX = m2

e/80T
and EC = m2

e/22T . Physically, these scales arise due to the competition between photon
degradation rates. The scales rise as the temperature drops, in which case there exist more
high-energy photons to break up nuclei.

The zeroth-generation nonthermal photons then suffer additional interactions of Compton
scattering, ordinary pair production off of nuclei, and γ − γ scattering. These slower pro-
cesses further degrade the photon specturm. The evolution of the resulting “first-generation”
photons is governed by

dNγ

dt
(Eγ) =

nX

τX

pγ(Eγ) −Nγ(Eγ)Γγ(Eγ), (5)

2For definiteness, we will refer to the decaying particle as a gravitino, though our analysis is general and
pertains to any massive particle with electromagnetic decays in the lifetime range considered.

3The spectrum stated in [9] includes further photon degradation, which has been factored out to determine
our spectrum.
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where nX = n0
X(1 + z)3 exp (−t/τX) and τX are the decaying particle number density at

redshift z and mean lifetime, respectively. Also, Nγ is the photon energy spectrum, which is
simply the product of the density of states Dγ and the occupation number fraction fγ . Inte-
grating Nγ over all energies yields the number density ninj

γ of the injected photons. Further,
Γγ is the rate at which the photons are further degraded through further interactions with
the background plasma. The key difference between pγ and Nγ is that the rates degrading
photons directly after injection are much faster than the rates that further degrade photon
energy determining Nγ. We note that the effects due to the expansion of the universe on
the photon spectrum are negligible because, during this epoch, electromagnetic interactions
are much faster than the expansion rate.

The dominant photon degradation rates are those for double photon scattering, Compton
scattering and pair production off nuclei. Because their high rates are fast compared to
the cosmic expansion, the photon distribution reaches quasi-static equilibrium (QSE). This
distribution is given by setting (5) equal to zero, yielding

NQSE
γ (Eγ) =

nXpγ(Eγ)

Γγ(Eγ)τX
. (6)

This QSE solution is the same as that derived in [9], where it is called fγ(ǫγ). The photon
spectrum pγ can be determined easily from this equation, knowing that double-photon scat-
tering dominates the high-energy region, whereas Compton scattering and pair production
off nuclei dominate at lower energies. We recall that the redshift dependence of this QSE
solution lies entirely in nX , pγ, and Γγ.

2.2 Photo-Destruction and -Production of Nuclei

The equations governing the production and destruction of nuclei are very similar to those
for photons, being given by

dNA

dt
(EA) = JA(EA) −NA(EA)ΓA(EA), (7)

where JA and ΓA are the source and sink rates of primary species A. The derivative, d/dt
takes into account the redshifting of energies and the dilution of particles due to the expansion
of the universe. The source terms for the primary species are due to the photodissociation
of background particles, and are defined by:

JA(EA) =
∑

T

nT

∫
∞

0
dEγNQSE

γ (Eγ) σγ+T→A(Eγ) δ
[
ET

A(Eγ) − EA

]
, (8)

where ET
A(Eγ) is the energy of the Ath species produced by the photodissociation reaction

γ + T → A. The sinks are similarly defined by

ΓA(EA) =
∑

P

∫
∞

0
dEγNQSE

γ (Eγ) σγ+A→P (Eγ). (9)
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Since we are interested in calculating total abundances of elements, it is necessary to integrate
(7) over the energy EA. The equation then becomes

dnA

dt
=
∑

T

nT

∫
∞

0
dEγNQSE

γ (Eγ) σγ+T→A(Eγ) − nA

∑

P

∫
∞

0
dEγNQSE

γ (Eγ) σγ+A→P (Eγ). (10)

This removes the redshifting term, leaving only the dilution term in the derivative, d/dt. It
is useful to use the mole fraction Yi ≡ ni/nB of baryons in a particular nuclide, rather than
the absolute abundance. This allows us to take out the expansion effects, yielding

dYA

dt
=
∑

T

YT

∫
∞

0
dEγNQSE

γ (Eγ) σγ+T→A(Eγ) − YA

∑

P

∫
∞

0
dEγNQSE

γ (Eγ) σγ+A→P (Eγ), (11)

where nB is the baryon number density and d/dt is an ordinary time derivative. It is also
convenient to change from time differentiation to differentiation with respect to redshift, and
also to extract the factor nXE0/τX out of NQSE

γ . In this way, we obtain

dYA

dz
= −rMXn0

γ

HrτX
exp

(
−1

HrτX(1 + z)2

)
(12)

×
[
∑

T

YT

∫
∞

0
dEγ

(
τX

E0nX
NQSE

γ (Eγ)
)

σγ+T→A(Eγ) (13)

−YA

∑

P

∫
∞

0
dEγ

(
τX

E0nX
NQSE

γ (Eγ)
)

σγ+A→P (Eγ)

]
, (14)

where we have used E0 = 1
2
MX (corresponding to two-body decay into a photon and a particle

of negligible mass), and have defined r ≡ n0
X/n0

γ and Hr ≡
√

32πGρ0
rad/3. We should note

that, with these terms pulled out, the integrals become functions only of redshift, and the
dependence on the properties of the decaying particle has been removed. This formulation
is very useful in making the numerical implementation fast and efficient.

2.3 Secondary Element Production

In the previous Section we discussed the production of light elements by the photo-dissociation
of heavier elements. However, the initial photo-production/destruction of light nuclei is not
necessarily the only process that happens before thermalization. The primary interactions
produce non-thermal particles, which then interact with the background plasma, degrading
their energy. However, they may still have enough energy to initiate further, secondary
nuclear interactions.

We now modify the evolution of the primary particles described in the previous section
to include energy-degrading interactions:

dNA

dt
(EA) = JA(EA) −NA(EA)ΓA(EA) − ∂

∂EA

[bA(EA)NA(EA)] , (15)
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Table 1: The relevant photo-dissociation reactions and their respective threshold energies are
listed in the Table below, and their cross sections are listed in Appendix A.

Reaction Threshold (Eγ,th)

d(γ,n)p 2.2246 MeV

t(γ,n)d 6.2572 MeV
t(γ,np)n 8.4818 MeV
3He(γ,p)d 5.4935 MeV
3He(γ,np)p 7.7181 MeV
4He(γ,p)t 19.8139 MeV
4He(γ,n)3He 20.5776 MeV
4He(γ,d)d 23.8465 MeV
4He(γ,np)d 26.0711 MeV
6Li(γ,np)4He 3.6989 MeV
6Li(γ,X)3A 15.7947 MeV
7Li(γ,t)4He 2.4670 MeV
7Li(γ,n)6Li 7.2400 MeV
7Li(γ,2np)4He 10.9489 MeV
7Be(γ,3He)4He 1.5866 MeV
7Be(γ,p)6Li 5.6058 MeV
7Be(γ,2pn)4He 9.3047 MeV

6



where we have added the last term to include the energy degradation of the species A, where
bA = −dE/dt is the rate of energy loss. This term appears as an energy gradient, conserving
particle number in the absence of sources and sinks.

In most situations, the energy degradation rate is much faster than any sink, so that
the sinks can be ignored. For unstable particles, if the lifetime of the particle is comparable
to the stopping time of that species, then the ΓA term cannot be ignored. In general the
interactions are fast enough to reach a quasi-static equilibrium, but the form of the solution
is somewhat more complicated than the photon case:

NQSE
A (EA) =

1

bA(EA)

∫
∞

EA

dE
′

A exp

[
−
∫ E

′

A

EA

dE
′′

A

ΓA(E
′′

A)

bA(E
′′

A)

]
JA(E

′

A). (16)

Substituting JA into this equation, we get

NQSE
A (EA) =

1

bA(EA)

∑

T

nT

∫
∞

E
−1

A
(EA)

dEγNγ(Eγ)σγ+T→A(Eγ) exp

[
−
∫

EA(Eγ)

EA

dE
′′

A

ΓA(E
′′

A)

bA(E
′′

A)

]
.(17)

With this QSE solution in hand, we can determine the rate of secondary production of an
element S:

dNS

dt

∣∣∣∣∣
sec

(ES) =
∑

T ′

∫
∞

0
dEANQSE

A (EA)ΓA+T ′
→S(EA)δ [ES(EA) − ES] . (18)

Integrating over ES yields:

dnS

dt

∣∣∣∣∣
sec

=
∑

T
′

nT ′

∫
∞

0
dEANQSE

A (EA)σA+T ′
→S(EA)|vA|. (19)

Again, using the mole baryon fraction to remove expansion effects from the differential
equation, we obtain

dYS

dt

∣∣∣∣∣
sec

=
∑

T ′

YT
′

∫
∞

0
dEANQSE

A (EA)σA+T
′
→S(EA)|vA|. (20)

After some algebraic manipulation, we obtain the following evolution equation for secondary
production:

dYS

dz

∣∣∣∣∣
sec

= −rMXη(n0
γ)

2

HrτX
(1 + z)3 exp

(
−1

HrτX(1 + z)2

)
∑

T,T ′

YTYT
′

∫
∞

0
dEA

σA+T
′
→S(EA)|vA|
bA(EA)

×
∫

∞

E
−1

A
(EA)

dEγ

(
τX

E0nX

NQSE
γ (Eγ)

)
σγ+T→A(Eγ) exp

[
−
∫

EA(Eγ)

EA

dE
′′

A

ΓA(E
′′

A)

bA(E
′′

A)

]
, (21)

where η is the baryon-to-photon ratio: η ≡ n0
B/n0

γ.
Table 2 lists the secondary reactions considered. Deuterium production does not occur

within the lifetime range of interested to us, since the neutron decays before it has a chance to
react with a proton to form deuterium, as pointed out in [7]. Also, we have verified that the
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Table 2: Relevant secondary reactions are listed below, in a format similar to Table 1.

Reaction Threshold (Ep,th)

p(n,γ)d 0.0000 MeV
4He(t,n)6Li 8.3870 MeV
4He(3He,p)6Li 7.0477 MeV
4He(t,γ)7Li 0.0000 MeV
4He(3He,γ)7Be 0.0000 MeV

secondary production of mass-7 elements is not significant, being small compared with that
produced during BBN. The only significant secondary production is that of 6Li, as first shown
in [12] and later in [13]. We show below that 6Li actually provides the strongest constraint
for the lifetime range we are interested in. Note that the relevant threshold energies (Table
2) are those in which the nuclei are in the cosmic rest frame, and thus are computed in the
fixed-target laboratory frame. Consequently, these are about a factor of two higher than the
center-of-mass thresholds used in [12] and [13].

3 Observational Constraints

Before we discuss the results of our numerical analysis, we first discuss the current status of
the observational determinations of the light-element abundances. The abundances subse-
quent to any photo-destruction/production must ultimately be related to these observations.
Furthermore, our results are dependent on the assumed baryon-to-photon ratio, which may
either be determined through the concordance of the BBN-produced abundances or through
the analysis of the CMB spectrum of anisotropies. As noted above, there is relatively good
agreement between the two.

3.1 Observed Light Element Abundances

Through painstaking observations of very different astronomical environments, primordial
abundances can be inferred for D, 4He, and 7Li. In addition, 3He and 6Li have also been
measured, and can provide important supplementary constraints. Here we summarize the
data and our adopted limits: more detailed reviews appear in [15]. For all nuclides, accurate
abundance measurements are challenging to obtain, due to systematic effects which arise
from, e.g., an imperfect understanding of the astrophysical settings in which the observations
are made, and from the process by which an abundance is inferred from an observed line
strength.

Deuterium is measured in high-redshift QSO absorption line systems via its isotopic shift
from hydrogen. In several absorbers of moderate column density (Lyman-limit systems), D
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has been observed in multiple Lyman transitions [42, 43]. Restricting our attention to the
three most reliable regions [42], we find a weighted mean of
(

D

H

)

p
= (2.9 ± 0.3) × 10−5. (22)

We note, however, that the χ2 per degree of freedom is rather poor ( ∼ 3.4), and that the
unweighted dispersion of these data is ∼ 0.6 × 10−5. This already points to the dominance
of systematic effects. Observation of D in systems with higher column density (damped
systems) find lower D/H [44], at a level inconsistent with (22), further suggesting that
systematic effects dominate the error budget [45]. If we used all five available observations,
we would find D/H = (2.6±0.3)×10−5 with an even worse χ2 per degree of freedom (∼ 4.3)
and an unweighted dispersion of 0.8. As an upper limit to D/H, we adopt the 2-σ upper
limit to the highest D/H value reliably observed, which is D/H = (4.0 ± 0.65) × 10−5, since
we cannot definitively exclude the possibility that some D/H destruction has occurred in the
other systems.

We also require a lower limit on the primordial D abundance. Since Galactic processes
only destroy D, its present abundance in the interstellar medium[46], D/H = (1.5±0.1)×10−5

provides an extreme lower limit on the primordial value, which is consistent with (22).
Therefore, we adopt the limits

1.3×10−5 <
(

D

H

)

p
< 5.3×10−5. (23)

This lower bound is quite conservative, in light of the fact that the existence of heavy elements
confirms that stellar processing and thus D destruction has certainly occurred at some level.

Unlike D, 4He is made in stars, and thus co-produced with heavy elements. Hence the
best sites for determining the primordial 4He abundance are in metal-poor regions of hot,
ionized gas in nearby external galaxies (extragalactic HII regions). Helium indeed shows a
linear correlation with metallicity in these systems, and the extrapolation to zero metallicity
gives the primordial abundance (baryonic mass fraction) [47]

Yp = 0.238 ± 0.002 ± 0.005. (24)

Here, the first error is statistical and reflects the large sample of systems, whilst the second
error is systematic and dominates.

The systematic uncertainties in these observations have not been thoroughly explored to
date [48]. In particular, there may be reason to suspect that the above primordial abundance
will be increased due to effects such as underlying stellar absorption in the HII regions. We
note that other analyses give similar results: Yp = 0.244 ± 0.002 ± 0.005 [49] and 0.239
±0.002 [50]. For concreteness, we use the 4He abundance in (24) to obtain the range

0.227 < Yp < 0.249, (25)

taking the 2-σ range with errors added in quadrature.
Helium-3 can be measured through its hyperfine emission in the radio band, and has

been observed in HII regions in our Galaxy. These observations find [51] that there are no
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obvious trends in 3He with metallicity and location in the Galaxy, but rather a 3He ‘plateau’.
There is, however, considerable scatter in the data by a factor ∼ 2, some of which may be
real. Unfortunately, the stellar and Galactic evolution of 3He is not yet sufficiently well
understood to confirm whether 3He is increasing or decreasing from its primordial value [23].
Consequently, it is unclear whether the observed 3He ‘plateau’ (if it is such) represents an
upper or lower limit to the primordial value. Therefore, we do not use 3He abundance as
a constraint. If future observations of 3He could firmly establish the nature of its Galactic
evolution, then 3He could be restored as a useful constraint on decaying particles, particularly
in concert with D.

The primordial 7Li abundance comes from measurements in the atmospheres of primitive
(Population II) stars in the stellar halo of our Galaxy. The 7Li/H abundance is found to
be constant for stars with low metallicity, indicating a primordial component, and a recent
determination gives
(

7Li

H

)

p

= (1.23 ± 0.06+0.68
−0.32)×10−10 (95% CL), (26)

where the small statistical error is overshadowed by systematic uncertainties [52]. The range
(26) may, however, be underestimated, as a recent determination [53] uses a different proce-
dure to determine stellar atmosphere parameters, and gives 7Li/Hp = (2.19± 0.28)× 10−10.
At this stage, it is not possible to determine which method of analysis is more accurate,
indicating the likelihood that the upper systematic uncertainty in (26) has been underesti-
mated. Thus, in order to obtain a conservative bound from 7Li, we take the lower bound
(once again combining the statistical and systematic errors in quadrature) from (26) and the
upper bound from [53], giving

9.0×10−11 <

(
7Li

H

)

p

< 2.8×10−10. (27)

Finally, 6Li is also measured in halo stars, in which the 6Li/7Li ratio is inferred from
the (thermally blended) isotopic line splitting. The lowest 6Li abudances comes from stars
with primordial Li, which yield 6Li/7Li = 0.05 ± 0.01 [54]. The 6Li in these stars is not
primordial, as it is produced by cosmic-ray interactions with the interstellar medium [55],
predominantly αα → 6Li + · · ·. These same processes lead to the production of Be and B,
which are observed in halo stars at levels consistent with 6Li cosmic-ray production. Since
the observed 6Li abundances are consistent with being entirely Galactic in origin, we can
use these to set an extreme upper limit on the primordial 6Li abundance. One complication
enters, due to the smaller binding energy of 6Li relative to 7Li. This means that 6Li could in
principle suffer depletion in stars due to nuclear burning, without a similar depletion of 7Li.
However, once nuclear burning becomes effective, 6Li depletion factors become extrelemly
large making such observations extremely unlikely [56]. It is therefore safe to use the 2-σ
upper bound on the 6Li/7Li ratio
(

6Li
7Li

)
<∼ 0.07. (28)
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Other depletion processes such as diffusion (included in the estimate of systematic uncer-
tainties in (26)), would affect both 6Li and 7Li similarly and not their ratio. It is also useful
to consider the upper bound on 6Li/H alone
(

6Li

H

)

p

<∼ 2 × 10−11. (29)

3.2 Cosmic Microwave Background Anisotropy Measurements

Cosmic Microwave Background (CMB) anisotropy data are now reaching the precision where
they can provide an accurate measure of the cosmic baryon content. Given a CMB measure-
ment of η, one can use BBN to make definite predictions of the light element abundances,
which can then be compared with the observations discussed above. This comparison con-
strains the effects of decaying particles more powerfully than if only the BBN calculations
were available to constrain η.

Recent results from DASI [18] and CBI [19] indicate that ΩBh2 = 0.022+0.004
−0.003, while

BOOMERanG-98 [20] gives ΩBh2 = 0.021+0.004
−0.003. These determinations are somewhat lower

than the central values found by MAXIMA-1 [21]: ΩBh2 = 0.026+0.010
−0.006 and VSA [22]: ΩBh2 =

0.029 ± 0.009. Taking a CMB value of

ΩBh2 = 0.022 ± 0.003 or η10,cmb = 6.0 ± 0.8 (30)

at the 1-σ level, we would predict the following light element abundances:

4He : 0.248 ± 0.001 (68% CL) (31)

D/H × 105 : 2.7+0.9
−0.3 (68% CL) (32)

3He/H × 105 : 0.9 ± 0.1 (68% CL) (33)
7Li/H × 1010 : 3.4+1.5

−0.8 (68% CL) (34)

Note that these numbers are not outputs of BBN calculations corresponding to η10 = 6.0,
but rather are the peak values of a likelihood function found by convolving the results of
the BBN Monte Carlo with an assumed Gaussian for the distribution of CMB η values. For
further details, see [16, 17]. With MAP data, the accuracy of ηcmb should be 10% or better,
which will give even tighter predictions on the light elements.

4 Model Results

We have implemented numerically the decaying-particle cascades discussed in Section 2.
Using BBN light-element abundance predictions [16] as initial conditions, we calculate the
final abundances for particular sets of baryon and dark matter parameters. The three free
parameters are:

ζX ≡ n0
X

n0
γ

MX = rMX = 2rE0, (35)

τX and η.
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4.1 Analytic Discussion

Some simple analytic approximations allow us to gain insight into the essential physics in
our problem. As we will see, the following analytic treatment reproduces well the behavior
of the light element abundance mountains and deserts in our parameter space.

The dependence on τX can be understood [11] in terms of the characteristic energy scales
in the photon spectrum (4). Both the break EX and the cutoff EC scale as Ei ∝ 1/T .
Thus, in the ‘uniform decay’ approximation where all particles decay at t = τX , the decay
occurs at T ∼ 10−4 MeV (τX/108 s)−1/2. Consequently, we have EX ∼ 28 MeV (τX/108 s)1/2,
and EC ∼ 103 MeV (τX/108 s)1/2, and cutoffs thus increase with τX . In other words, higher-
energy photo-erosion processes can occur for longer lifetime values. Comparison with Table 1
shows that, as τX increases, first EC and then EX pass the threshold energy Eth for any
given process, at which point the process becomes important. A reaction can turn on when
EC >∼ Eth, which in the uniform decay approximation occurs when

τX >∼ 106 s
(

Eth

10 MeV

)2

, (36)

while for shorter τX the channel is closed. The reaction grows stronger when EX >∼ Eth,
which occurs when

τX ∼ 107 s
(

Eth

10 MeV

)2

. (37)

We can also understand the ζX dependence of photodestruction (and secondary production)
analytically, as follows. In the limit of small ζX , the decaying particle has no influence on the
light-element abundances as predicted by primordial nucleosynthesis, predicting a universe
made of mostly hydrogen and 4He, with small but significant amounts of D, 3He, and 7Li.
Lithium-6 is not produced in significant quantities. Going beyond this trivial case we use a
similar treatment as above, and employ the uniform decay approximation. To begin, as long
as a reaction can proceed, a typical shower photon has energy

〈E〉 = 56 MeV
(

Eth

10 MeV

) 1

2
(

τX

108 s

) 1

4

, (38)

so that the number of such photons per decay is Nγ ∼ E0/〈E〉. Had the lower-energy piece of
the power law been much steeper (i.e., with a power index p > 2) we would have 〈E〉 ∼ Eth,
and if it was much shallower (i.e., p < 1) we would have 〈E〉 ∼ EX . However, we lie in an
interesting regime where 〈E〉 ∼ (Eth/EX)P−1EX , where 1 < p < 2. Thus the nonthermal
photon density is

ninj
γ = NγnX =

ζXnBG
γ

2〈E〉 . (39)

These photons are thermalized at a rate per photon of Γtherm ∼ neσT ∼ nBσT. The rate
per photon for the photodestruction of species T to yield species P is ΓT→P ∼ nT σT→P =
fT→PYT Γtherm, where YT = nT /nB, and fT→P = σT→P /σT is the relative strength of the cross
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section for photodestruction of T into P , compared with the thermalization cross section,
which we take as the Thompson cross section for this discussion. Consequently, the change
in the number density of A is the net production rate per volume (ΓT→A − ΓA→P )ninj

γ times

the loss time Γ−1
therm, or

δnA = nBδYA ∼ ninj
γ

(ΓT→A − ΓA→P )

Γtherm
. (40)

We see that the fractional change in an abundance is given by

δYA

YA
∼ ζX

2η〈E〉
(

YT

YA
fT→A − fA→P

)
. (41)

If we look at the two extremes when either production or destruction dominates, we can
derive the behavior of ζX , given that the fractional change in the abundance is ∼ 1/2:

ζprod
X ∼ 3.2×10−11 GeV


5000

YT

YA



(

5.0×10−4

fT→A

)(
η10

6

)(
Eth

20 MeV

) 1

2
(

τX

108 s

) 1

4

, (42)

ζdest
X ∼ 6.3×10−8 GeV

(
5.0×10−4

fA→P

)(
η10

6

)(
Eth

2.224 MeV

) 1

2
(

τX

108 s

) 1

4

, (43)

where the numbers are those appropriate for D.
This same treatment can be extended to secondary production of light elements. Since 6Li

is the only significant secondary production, this is the only example we consider here. In this
case, only a fraction of the primary products have enough energy for this reaction to proceed,
because of interactions with the background plasma. We estimate as follows the fraction that
can react to form 6Li. Each prospective reactant is produced with initial energy EA(〈E〉), and
the total amount of energy that can be lost between collisions is Eloss = bA(〈E〉)/nBσT |vA|.
The fraction of reactants left is the ratio of these two energies, NP ∼ EA(〈E〉)/Eloss ∼ 0.001.
Thus the number density of these remaining non-thermal particles is

ninj
P = NP δnA ∼ NP

ζXYTnB

2η〈E〉 fT→A. (44)

The rate per particle can be described in a similar way as before, where ΓA→S = fA→SYT ′Γthermβ.
Since these particles are non-relativistic, there is a factor β = v/c in the interaction rate.
We can thus determine the change in abundance of the secondary species:

δnS ∼ nBδYS ∼ ninj
P

ΓA→S

Γtherm
. (45)

The fractional change in the abundance is then given by

δYS

YS

∼ NP
ζXYT YT ′

2η〈E〉YS

fT→AfA→Sβ. (46)
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Figure 1: Contours of the 4He mass fraction Yp (a) in the (ζX , τX) plane, for η10 = 6, and
(b) in the (ζX , η) plane, for τX = 108 sec. See the text for discussion.

Using parameters appropriate for 6Li and β ∼ 0.01, we derive the value of ζX when secondary
production becomes important:

ζsec
X ∼ 2.6×10−12 GeV


2.5×1011

YT Y
T
′

YS



(

5.0×10−4

fT→A

)(
0.05

fA→S

)(
η10

6

)(
Eth

20 MeV

) 1

2
(

τX

108 s

) 1

4

.(47)

One should note that, at the high photon energies required to induce these tertiary reac-
tions, double-photon scattering is comparable to the Compton scattering and nuclear pair-
production mechanisms for photon energy-loss. This weakens the dependence of the reaction
rates on the baryon density.

We now turn to the full numerical results, using these analytical estimates as a guide to
interpretation.

4.2 Numerical Results

Our numerical results come from the integration of (12) and (21), using the input spectra
of (4). We present our results by showing abundance contours in ζX − τX space at fixed
η10 = 6, and in ζX − η space at fixed τX = 108 s. A key innovation of the present work is a
detailed fitting of the energy dependence of the relevant cross sections. These are discussed
in Appendix A, which also contains fitting formulae.
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Figure 2: Deuterium abundance contours plotted as in Fig. 1.

We begin our discussion with the most abundant compound nucleus, namely 4He. Since
the other light elements are predicted by BBN to have abundances that are orders of magni-
tude smaller than 4He, no significant production of 4He can take place. Thus electromagnetic
showers from decaying particles can only destroy 4He. These photodestruction processes have
an energy threshold of Eth ∼ 20 MeV and so, from (36), we expect this process to become in-
efficient for τX <∼ 4×106 s, and to shut down completely when τX <∼ 4×105 seconds. Indeed,
this is what is seen in Fig. 1(a), where we plot contours of Yp in the (ζX , τX) plane for η10 = 6,
the value preferred by CMB analyses (30). For τX >∼ 4 × 106 s, the 4He destruction factor
goes from a small perturbation to a large one as ζX grows from 10−10 to 10−9 GeV, until the
region ζX >∼ 10−8 GeV becomes a 4He ‘desert’. Over the region τX ∼ 4 × 105 s − 4 × 106 s,
4He destruction becomes important only at increasingly high ζX . This general behavior has
an impact on all of the other light elements, as 4He is the only important source for them.

In Fig. 1(b), we again plot contours of Yp, but now in the (ζX , η) plane for τX = 108 s.
We see the generic features mentioned above, that for low ζX

4He is at its BBN predicted
value and for very large ζX it is destroyed. At large η, the non-thermal photons are more
quickly thermalized, thus having less energy on average and making it more difficult to
destroy nuclei. This linear rise is as predicted in (42).

Fig. 2 plots the corresponding contours of D/H. Several distinct regions are apparent. For
all τX , in the region ζX <∼ 10−11 GeV, the decaying particles make only a small perturbation
to the primordial value of D/H. For values of ζX >∼ 10−11 GeV, the decaying particles can
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lead to significant perturbations to D/H, the sign and magnitude of which depend strongly
on τX . In the case of D, the important production processes are due to 4He + γ: the other
light elements have negligible abundances compared to 4He, and thus are unimportant as
D sources. The D production channels have thresholds Eth ∼ 25 MeV, so we expect these
process to become inefficient for τX <∼ 5 × 106 s. Furthermore, production is only efficient
when 4He destruction is not large, i.e., when ζX <∼ 10−9 GeV. Of course, D production can
only occur when there is sufficient 4He destruction, so we expect significant production to
occur only up to some maximum ζX . For higher ζX , photo-destruction becomes so dominant
that any production yields are immediately broken up via further photo-destruction reac-
tions, leaving a universe filled with only protons. Thus, as ζX increases, the D/H abundance
rapidly declines, dropping to and then below its primordial abundance, to approach zero in
a D ‘desert’. Thus, we expect D production only in a region bounded from above and below
in ζX , and to the left by τX <∼ 4× 106 s. These expectations are met by the D/H ‘mountain’
in Fig. 2, which stretches between ζX = 10−10 GeV to ζX = 10−8 GeV.

For τX <∼ 5 × 106 s, D production from 4He does not occur. Since the photo-destruction
processes d(γ, n)p has a threshold of Eth = 2.224 MeV (the D binding energy), D destruction
drops out at τX <∼ 4× 103 s, as seen in Fig. 2. Finally, note that the competing processes of
D production and destruction balance for some regions of parameter space, where D retains
its primordial values. These are the ‘channels’ which separate the regions we have already
discussed.

In Fig. 2(b), the contours of D/H are shown in the (ζX , η) plane for τX = 108 s. Just like
4He, these D contours show the features sketched out in our analytic discussion. For low ζX , D
is at its BBN value. At intermediate values, we are climbing the photo-production mountain.
At even higher values of ζX , we enter the photo-erosion desert. Again the dependences on η
are entirely due to the photon energy-loss mechanism being more efficient at higher baryon
density.

Results for 7Li/H are shown in Fig. 3. We see that the results are qualitatively similar to
those for 4He, reflecting the fact that secondary 7Li production is negligible. Since 7Li is only
destroyed, its weak binding compared to 4He leads to the wider expanse of the 7Li ‘desert’.
As mentioned earlier, we considered the secondary production of 7Li, through the reactions
4He(t,γ)7Li and 4He(3He,γ)7Be. These reactions have no energy threshold, only a strong
Coulomb barrier, so a priori they would seem important. However, the net production of
7Li through these reactions is small compared to its primordial value set by BBN. This is
due to the small cross sections for mass-7 production.

Unlike 7Li, standard BBN does not produce 6Li in any observable quantity, so any other
production mechanism is important. The behavior of 6Li, seen in Fig. 4a, can be understood
in terms of the 4He and 7Li dynamics, because these are the two 6Li sources. As with
D, we see a roughly horizontal ‘mountain’ of 6Li production, which is bounded on the left
by threshold effects. The dominant production channel is from secondary reactions, and
thus is tied to the 4He destruction threshold. The secondary reactions 4He(t,n)6Li and
4He(3He,p)6Li, also have low energy resonances, further increasing their yields. The 6Li
production from 7Li and 7Be, however, has lower thresholds, and thus becomes dominant for
small lifetimes, τX <∼ 107 s. These channels are important where 7Li destruction is moderate
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Figure 3: Contours of 7Li/H, plotted as in Fig. 1.
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Figure 4: Contours of 6Li/H, plotted as in Fig. 1.
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Figure 5: Contours of 6Li/7Li, plotted as in Fig. 1.

but still sufficient to make significant amounts of 6Li, leading to a break in the slope of the
6Li curve at ζX ∼ 10−11. The inclusion of two 6Li destruction channels leads to the ‘nose’
at ζX ∼ 10−7 GeV and τX ∼ 107 s. This feature is absent in the 6Li plot in [13], since there
only a single destruction channel was considered.

In Fig. 4b we see that the secondary production dominates the evolution of 6Li for quite
low ζX. Since the 6Li secondary-production cross sections have thresholds, the average
initiating photon energy must be higher than in the standard photo-destruction process.
In this higher-energy regime, double-photon scattering is comparable to the other photon
energy-loss mechanisms. This reduces the dependence on the baryon density, effectively
flattening out the contours in the (ζX , η) plane where secondary production is important.
At higher ζX , photo-destruction of 6Li takes over, taking us to the 6Li desert.

As noted in [11], the 6Li/7Li ratio offers additional constraints besides those provided
by each nuclide separately. We plot 6Li/7Li contours in Fig. 5, where we see that these are
smoother than the contours for 6Li alone. Because 6Li dissociation has a higher threshold
than 7Li - see Table 1 - 6Li/7Li is large in the ‘desert’ region of high ζX , though each
individual abundance is quite small. For smaller ζX , 6Li increases with ζX , while 7Li either
remains constant or decreases. The upshot is that 6Li/7Li grows with ζX , as seen in Fig. 5.

Having described the physics that leads to the abundance patterns we have computed, we
can now discuss how this physics allows the observed abundances to place constraints on de-
caying particles. To obtain these constraints, we combine this analysis with the observational
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data discussed previously.

5 Limits on Unstable Relic Particles

We now impose the observed light-element abundance constraints of Section 3.1 with the
results of the previous section. We do this for each element individually, then combine the
results to obtain the strongest constraints.

We remind the reader that light element constraints on decaying particles depend on
η, but of course one cannot use the standard BBN limits on η as part of ones limits. In
the past, this difficulty has only been overcome by adopting limits on η derived from non-
nucleosynthetic arguments. These limits have, until recently, been rather weak, which has
weakened the power of the light element constraints. This situation has now changed dras-
tically. We recall that the CMB now imposes η10 ≃ 6 with rather small uncertainty. Thus,
if we adopt the CMB results, we no longer must treat η as weakly constrained by non-BBN
arguments, strengthening the results we derive.

We quote limits for η10 = 6, and emphasize results for τX = 108 s, which is roughly the
lifetime for which the constraints are the strongest, and is also within the range of current
interest for gravitino decays. Results at lower τX weaken rapidly, while the constraints at
higher τX scale roughly as τ

1/4
X , as in (42), (43) and (47).

Also, the current observational status of standard BBN comes into play. Namely, the
present observational data on 4He and 7Li are in tension with those for D, the former pre-
ferring η10 ∼ 3 and the latter η10 ∼ 6. On the one hand, if standard BBN is correct and
the tension is due to systematic errors, the result is that these errors weaken the constraints
that one can place on decaying particles. On the other hand, if the observations were to
improve to the point that the light-element disagreement can no longer be accommodated,
this could herald new physics. In this case, decaying particles offer a way [11] of reconciling
the abundances of the light elements, in which case one also derives estimates of the required
ζX and τX .

We turn first to the elements which are only destroyed, namely 4He and 7Li. The observed
constraints on 4He (25) give

ζX(4He) < 2.5×10−10 GeV, (48)

which is driven by the lower limit Yp > 0.227 that we adopted. The sharp drop of 4He with
increasing ζX (i.e., the descent into the desert of Fig. 1) ensures that the constraint on ζX

is insensitive to the precise Yp limit chosen. The situation is similar for 7Li, for which (27)
give the weaker constraint

ζX(7Li) < 2×10−9 GeV. (49)

For deuterium, net production and net destruction are both possible. In terms of Fig.
2, this means that limits on D exclude the ridge in the D mountain, while allowing regions
at higher and lower ζX . In particular, the observed D abundances (22) allow the range
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Figure 6: Exclusion limits based on deuterium are shown in (a) the (ζX , τX) plane for η10 = 6
(b) the (ζX, η) plane for τX = 108 s. The dark (blue) shaded region corresponds to an
overabundance of D/H, while the light (blue) shaded region corresponds to an underabundance
of D/H.

2×10−8 GeV <∼ ζX <∼ 3×10−8 GeV, but the 4He and 7Li constraints are each able to exclude
this regime. Consequently, the only remaining region is the low-ζ side of the mountain,

ζX(D) < 3×10−11 GeV. (50)

The since 6Li is not produced significantly in standard BBN, only production is important
for low ζX , while for higher ζX destruction dominates. Thus, the situation is similar to that
of D: there is a 6Li mountain, with the observations allowing a narrow high-ζX region and a
large low-ζX region. The 6Li/H abundance of (29) gives

ζX(6Li) < 5×10−12 GeV (51)

in addition to a higher region that is discordant with 4He and 7Li. The 6Li/7Li ratio (28)
gives

ζX(6Li/7Li) < 7.0×10−12 GeV. (52)

Figure 6 summarizes our results for the constraints based on D/H in both the (ζX , τX)
plane (for η10 = 6) and the (ζX , η) plane for τX = 108 s. The dark (blue) shaded regions
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Figure 7: As in Figure 6, including the constraints from 4He - medium (pink) shading and
7Li - medium-light (green) shading.

correspond to an overabundance of D/H, i.e. regions where there is net production of deu-
terium. The lighter (blue) shaded regions represent an underabundance of D/H or regions
where there is net destruction of deuterium. Notice that the thin strips which are unshaded
for which the D/H abundance is acceptable. These will be excluded when the constraints
from the other light elements are included.

In Figure 7, we include the constraints from 4He and 7Li. Here we superimpose the 4He
constraint, shown as the medium shaded (pink) region. and the 7Li constraint, shown as the
medium-light (green) shaded region, on the D/H constraints. We see that D, 4He, and 7Li
alone, i.e., primordial species, impose a limit of

ζX <∼ ζmax = 3.5×10−11 GeV, (53)

which is dominated by the limits from D. We can do better if we include 6Li. Our limit
6Li/H <∼ 2 × 10−12 pushes the above constraint down to

ζX <∼ ζmax = 5×10−12 GeV (54)

for τX = 108 s as seen in Figure 8 by the dark (red) shaded region. The constraint from
the 6Li/7Li ratio is shown as the light (yellow) shaded region. Notice that it becomes the
stronger constraint at η < 5.0.
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Figure 8: As in Figures 6 and 7 including the constraints from 6Li (dark red).

These constraints are subject to uncertainties in the 6Li limit, due both to the possible
stellar depletion of 6Li and the known Galactic production of 6Li by cosmic rays. Our limit is
intended conservatively to allow for both effects. Even so, we see the power of 6Li. We thus
urge further observations of the Li isotopic ratio, as a firmer understanding of this nuclide
could further strengthen the constraint we have derived.

As already noted, if the observed light-element abundances retain their current central
values, but the error budget shrinks, then the light-element data will be in discord with
standard BBN. Decaying particles might provide one possible means of reconciling such
light-element observations and theory. As an illustrative example, consider the case in which
the CMB fixes η10 = 6, and the observed light element abundances remain as above, but
with the total error budget equal to that of the current statistical errors. Then 7Li and D
would be in significant disagreement. One could, however, bring these nuclides and 4He into
agreement by appealing to the decaying-particle scenario we have laid out here, the allowed
region of parameter space still open being one in which a non-zero ζX is preferred. The
new 7Li upper limit would eliminate low values of ζX , allowing only a narrow band with
ζ ≈ 10−9. The observations would force us to live in the narrow channel where D production
and destruction are nearly balanced, with a decaying particle lifetime τX ≈ 3×106 sec. In
this regime, 4He is at its BBN value, because of its high photoerosion threshold, shown
in Table 1. However, the more weakly bound 7Li is destroyed, at just the right level to
bring the observations in accord with the D observations. This rather fine-tuned scenario is
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testable with 6Li observations. In this region of parameter space, we predict a 6Li abundance
of 6Li/H ≈ 10−11 and 6Li/7Li ≈ 0.03. This 6Li abundance would appear as a pre-Galactic
plateau in halo stars. Indeed, the 6Li level would be large enough to dominate the cosmic-ray
component of 6Li over most of the Population II metallicity range.

6 Application to Cosmological Gravitinos

We now illustrate the impact of our calculations by discussing their implications for cosmo-
logical gravitinos. In conventional supergravity scenarios, the gravitino is expected to have
a mass comparable to that of supersymmetric partners of standard Model particles, which
should weigh less than about 1 TeV if they are to stabilize the gauge hierarchy [57]. There-
fore, the gravitino is usually thought to weigh between about 100 GeV to 10 TeV, though
both larger and smaller masses have sometimes been considered. The lightest supersymmet-
ric particle (LSP) is generally thought to be the lightest neutralino χ, a model-dependent
mixture of the photino γ̃, the zino Z̃ and the neutral Higgsinos H̃1,2 [58]. The LSP would
be stable in models in which R parity is conserved, as we assume here. On the other hand,
the gravitino would be unstable, with a partial G̃ → χ + γ decay rate calculated to be

Γ(G̃ → χγ) =
1

4

(
M3

G̃

M2
P

)
O2

χγ, (55)

where Oχγ is the fraction of γ̃ in the wave function of the LSP χ, and MP is the Planck
mass. In many models, the LSP is essentially a pure U(1) gaugino (Bino) B̃, in which case
Oχγ = cos2 θW and the neutralino mixing does not suppress the gravitino decay rate (55).
We assume for now that χ = B̃ and that no other gravitino decay modes are significant, in
which case the gravitino lifetime is

τG̃ = 2.9 × 108

(
100 GeV

MG̃

)3

s. (56)

We discuss later the modifications to our analysis needed if the LSP is essentially a pure
Higgsino, another possibility sometimes considered, or if other decay modes are open to the
gravitino.

The production of gravitinos in the early Universe has been the subject of heated discus-
sion. An unavoidable contribution is thermal production [59, 8, 60, 61]. Here, we will apply
our results in combination with the recent calculation in [61], which gives

YG̃ ≡ nG̃

nγ
= 1.2 × 10−11


1 +

m2
g̃

12m2
G̃


×

(
TR

1010 GeV

)
(57)

where TR is the maximum temperature reached in the early Universe4. In conventional in-
flationary cosmology, TR is the reheating temperature achieved at the end of the inflationary

4We note that this calculation is based on the dominant strong contributions to gravitino production.
Electroweak corrections would enhance the production rate by about 5 – 20 %.
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epoch. In some inflationary scenarios, there may be additional gravitino production, either
during the inflationary epoch or later, before thermalization is achieved. Either of these ef-
fects would only accentuate the potential problem we discuss below, and we do not consider
such possibilities here.

In (57), mg̃ is the low-energy gluino mass. In supersymmetric models with gaugino mass
unification, there is a definite relation between the gluino mass and the bino mass, which, at
the one-loop order sufficient for our purposes, is mg̃/mB̃

≃ α3(mg̃)/α1. Typically, this ratio
is between 5 and 6. If the bino is the LSP, as we are presently considering, then mG̃ ≥ m

B̃
.

The middle term in (57) is therefore never larger than 4, and tends to unity for large gravitino
masses. Thus we estimate

YG̃ ≃ (0.7 − 2.7) × 10−11 ×
(

TR

1010 GeV

)
(58)

in this case.
The upper limit (1) can be expressed as a limit on YG̃:

YG̃ < 5 × 10−14 ×
(

100 GeV

mG̃

)
(59)

Comparing the calculated abundance (58) with the upper limit (59), we infer the following
upper limit on the reheating temperature TR, for MG̃ ∼ 100 GeV:

TR < (1.9 − 7.5) × 107 GeV (60)

This upper limit is far smaller than the reheating temperature TR ∼ 1012 GeV expected in
conventional inflationary scenarios. As noted in the introduction, this bound places impor-
tant constraints on models of baryo/leptogenesis.

We recall that the upper limit (60) comes from a combination of data and calculations of
different light-element abundances. It could not be obtained by considering the deuterium
abundance alone, as this would allow a ‘tail’ of the parameter space extending to large
gravitino abundances YG̃, as well as an isolated ‘channel’ at large YG̃. The ‘tail’ cannot
be excluded just by considering also the abundance of 4He, though the ‘channel’ probably
can. However, as discussed earlier, the ‘tail’ can be excluded by also considering the 6Li
abundance. We have already discussed why we think that measurements of the relevant
photoreaction cross sections and the astrophysical data are now sufficiently reliable for the
6Li data to be regarded as a serious constraint.

As we commented at the end of the previous Section, if the observed light-element abun-
dances were to retain their current central values while the error budget shrank, the light-
element data would become inconsistent with standard BBN, and decaying particles might
be able to reconcile such light-element observations with theory. This scenario would predict
a lifetime τG̃ ≈ 3×106 sec and an abundance ζG̃ ≈ 10−9 GeV. These constraints would place
the gravitino mass at MG̃ ≈ 460 GeV, with a relic abundance of YG̃ ≈ 2×10−12, corresponding
in turn to a reheating temperature TR ≃ (0.8 − 3.1)×109 GeV.

How might the potentially embarrassing conclusion (60) be avoided or evaded?
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The first option one might consider is diluting the density of gravitinos by several orders
of magnitude some time between their production at a temperature close to TR and the
period when they decay. This large entropy release should certainly occur before BBN, i.e.,
when the age t <∼ 1 s, in order to avoid destroying its predictions completely. Very likely, such
a large entropy release would also have had to occur before baryogenesis, in order to avoid an
unacceptable dilution of the primordially-generated baryon asymmetry. The latest epoch at
which baryogenesis is seems likely to have occurred is the electroweak phase transition, which
occurred when the age t ∼ 10−10 s. Afleck-Dine baryogenesis [40] offers one such possibility.
In these models the Universe becomes dominated by the oscillation of a scalar field along
a supersymmetric flat direction. In general, the net baryon asymmetry produced in these
models can be quite large, actually necessitating late entropy production [62]. The dilution
of the gravitino abundance would be an immediate consequence. The issue of gravitino
production and dilution in connection with baryogenesis was recently considered [63] in the
context of the pre-big bang scenario [64].

It is possible that the mass and decay modes of the gravitino are such that the bounds
discussed here, which cover lifetimes from 104 – 1012 s, become inapplicable. We see from
(55) that the rate for G̃ → χ + γ decay would increase by three orders of magnitude if
MG̃ were one order of magnitude larger. In fact, a heavier gravitino might have additional
decay modes open kinematically, possibly decreasing its lifetime by another two orders of
magnitude if all the MSSM particle weighed less than MG̃. If τG̃ ∼ 104 s, as might occur
if MG̃ ∼ 1 TeV and it could decay into X̃EW + XEW as well as χ + γ, where XEW is
any Standard Model particle with only electroweak interactions, our limits are significantly
weakened. However, we remind the reader that outside the range 104 – 1012 s other bounds
come into play. At smaller lifetimes, hadronic decay products will upset the prediction of
BBN [5, 6, 14]. From the recent results of [14], one finds that for lifetimes in the range 1 –
104 s, the upper limit to YG̃ is of order 10−13, and this bound weakens at lower lifetimes. For
τ < few × 10−2 s, the BBN limit disappears. Similarly, at longer lifetimes > 1012 s, there
are non-negligible constraints from the observed gamma-ray background [65, 7, 66]. These
are strongest for decay lifetimes of order the age of the Universe ∼ 1018 s, where the bound
on mG̃YG̃ is of order 10−16. At still longer lifetimes, the bound weaks quickly and becomes
ineffective at lifetimes longer than about 1024 s.

Could the cosmological embarrassment be avoided if MG̃ ≪ 100 GeV? In such a case, the
gravitino would presumably be the LSP, and absolutely stable if R parity is conserved, as we
have been assuming. In fact, as argued in [61], a reheating temperature of order 1010 GeV
would result in an acceptably large relic density of gravitinos. Converting the gravitino
abundance in (58) to its contribution to closure density, one finds,

ΩG̃h2 = (0.026 − 0.1) ×
(

mG̃

100 GeV

)(
TR

1010 GeV

)
(61)

In this case, the lightest MSSM sparticle (presumably the lightest neutralino χ) would be
the next-to-lightest supersymmetric particle (NLSP), and would itself be unstable: the decay
NLSP → γ + G̃ would have a lifetime similar to (56), and the bound (57) could be applied
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to the NLSP abundance YNLSP , which in terms of Ωχh2 is

Ωχh2 < 2 × 10−4. (62)

However, suppressing Ωχh2 to such a low value seems very difficult. Characteristic values of
Ωχh2 in the MSSM are O(0.01−10.0) [67], corresponding to Yχ ∼ 10−10, which is far above the
bound (57). Indeed, in much of the phenomenologically allowed supersymmetric parameter
space, the relic density is too large. Relic neutralino densities as low as (62) would require
special parameter choices for which the neutralino is either primarily a massive Higgsino, in
which case important coannihilation effects might suppress the abundance, or the neutralino
mass happens to be very close to half the mass of the Heavy Higgs scalar and pseudo scalar,
so that rapid s-channel annihilation reduces the neutralino density. In the former case, it is
in fact unlikely that coannihilations are sufficiently strong to satisfy the bound (62), despite
reducing the relic density to a level well below critical. In the latter case, however, very low
relic densities are possible.

Could the cosmological embarrassment be avoided by altering the composition of the
LSP into which the gravitino is supposed to decay? The gravitino decay amplitude could be
suppressed, and the lifetime estimate (56) correspondingly increased, if the LSP did not have
photino component, for example if it were essentially a pure Higgsino. However, in view of
the discussion above, in realistic models it seems difficult to suppress the G̃−χ−γ coupling
enough to increase the gravitino lifetime sufficiently to relax the bound (57) adequately,
bearing in mind the bounds applicable for longer lifetimes.

Finally, we consider briefly the situation if R parity is violated. First we consider R-
violating decays of the lightest MSSM particle, assumed to be the lightest neutralino χ. As
discussed earlier, its abundance is likely to be Yχ

>∼ 10−10, which conflicts with our bounds
unless τχ

<∼ 104 s 5. Considering now the decays of the gravitino, assuming it to be heavier
than χ, there are two options to consider. The simplest possibility is that it decays in the
same way as in the R-conserving case: G̃ → χ + γ, etc., in which case the previous R-
conserving gravitino analysis applies, and we again conclude that τG̃

<∼ 104 s. Alternatively,
the dominant G̃ decays might violate R parity. In this case, the bound τχ

<∼ 104 s again
applies, and, as discussed above, the same bound applies to the decays of the lightest MSSM
sparticle.

7 Discussion and Conclusions

We have re-examined in this paper the upper limits on the possible abundance of any un-
stable massive relic particle that are provided by the success of Big-Bang Nucleosynthesis
calculations. A new aspect of this work has been the use of cosmic microwave background
data to constrain independently the baryon-to-photon ratio, which was not possible in previ-
ous studies of this problem. We have also incorporated in our analysis the an updated suite
of photonuclear and nuclear cross sections, and calculated both analytically and numerically

5Note that the case τχ
<∼ 102 s requires further consideration, going beyond the scope of this paper.
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the network of reactions induced by electromagnetic showers that create and destroy the
light elements deuterium, 3He, 4He, 6Li and 7Li.

It was pointed out in previous work that considerations of the deuterium abundance alone
would allow certain exceptional regions of parameter space with relatively large abundances
of unstable particles. However, as shown in this paper, considerations of the abundances of
4He and 6Li exclude these particular regions.

We have illustrated our results by applying them to massive gravitinos. If they weigh
∼ 100 GeV, their primordial abundance YG̃ should have been <∼ 5× 10−14 × (100 GeV/mG̃),
corresponding to a reheating temperature TR < (1.9−7.5)×107 GeV. This could present a
potential difficulty for some models of inflation and leptogenesis. We have discussed various
scenarios for evading this potential embarrassment, for example by varying the gravitino
mass, or by postulating an alternative scenario for baryogenesis, such as non-thermal lepto-
genesis or the Affleck-Dine mechanism.

This example of the gravitino illustrates the power and importance of the cosmological
upper limits on the abundances of unstable massive particles. Extensions of this analysis are
clearly desirable. For example, it would be valuable to combine our analysis of electromag-
netic decay cascades with a similar analysis of hadronic showers, a topic that lies beyond the
scope of this paper.
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A Cross Sections

Kawasaki, Kohri and Moroi [13] have provided a useful table of reactions and references to
nuclear data. We have supplemented the data by using tabulations made by the National
Nuclear Data Center (NNDC) [68] and the NACRE collaboration [69]. The relevant cross
sections are listed here for convenience, and we refer the interested reader to the NNDC and
NACRE websites for further references on the data.

We have computed thresholds and |Q| values using the mass data of Audi and Wapstra[70],
available on the US Nuclear Data Program website [71]. Reverse reaction data were some-
times available, in which cases we used detailed balance to transform the data into forward
data. The equations of detailed balance for the reactions γ+T → A+B and P +T → A+B
are:

σγ+T→A+B =
gAgB

(1 + δAB)gT

(
µEcm(A, B)

E2
γ

)
σA+B→T+γ (63)

σP+T→A+B =
(1 + δPT )gAgBmAmBEcm(A, B)

(1 + δAB)gPgT mP mT Ecm(P, T )
σA+B→P+T , (64)
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where the gi are the statistical weights of each species, µ is the reduced mass of the system
A + B, and Ecm(x, y) is the center-of-mass energy of the system x + y. See Blatt and
Weisskopf [72] and Fowler, Caughlan, and Zimmerman [73] for discussions on these relations.

In the numerical fits, all energies are in MeV. In a few cases, which we have noted, the
fits are those previously published. Otherwise, we have adopted a specific empirical form
for the nonresonant parts of the cross sections. This form is the product of a power law in
photon energy Eγ , and a power law in photon energy above threshold, Eγ − |Q|. We have
found that expressions of this type provide a simple but accurate representation of the data.

1. d(γ,n)p Eγ,th = |Q| = 2.224573 MeV [74].

σ(Eγ) = 18.75mb







√
|Q|(Eγ − |Q|)

E




3

+ 0.007947




√
|Q|(Eγ − |Q|)

E




2(√|Q| −
√

0.037
)2

Eγ − (|Q| − 0.037)




2. t(γ,n)d Eγ,th = |Q| = 6.257248 MeV [75, 76].

σ(Eγ) = 9.8mb
|Q|1.95(Eγ − |Q|)1.65

E3.6
γ

3. t(γ,np)n Eγ,th = |Q| = 8.481821 MeV [76].

σ(Eγ) = 26.0mb
|Q|2.6(Eγ − |Q|)2.3

E4.9
γ

4. 3He(γ,p)d Eγ,th = |Q| = 5.493485 MeV [77, 78]. We use reverse reaction data from
NACRE [69, 79].

σ(Eγ) = 8.88mb
|Q|1.75(Eγ − |Q|)1.65

E3.4
γ

5. 3He(γ,np)p Eγ,th = |Q| = 7.718058 MeV [78, 80].

σ(Eγ) = 16.7mb
|Q|1.95(Eγ − |Q|)2.3

E4.25
γ

6. 4He(γ,p)t Eγ,th = |Q| = 19.813852 MeV [81, 82, 83].

σ(Eγ) = 19.5mb
|Q|3.5(Eγ − |Q|)1.0

E4.5
γ
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7. 4He(γ,n)3He Eγ,th = |Q| = 20.577615 MeV [82, 84, 85, 86, 87].

σ(Eγ) = 17.1mb
|Q|3.5(Eγ − |Q|)1.0

E4.5
γ

8. 4He(γ,d)d Eγ,th = |Q| = 23.846527 MeV [88, 89]. We use reverse reaction data
from NACRE [69, 90].

σ(Eγ) = 10.7mb
|Q|10.2(Eγ − |Q|)3.4

E13.6
γ

9. 4He(γ,np)d Eγ,th = |Q| = 26.0711 MeV [84].

σ(Eγ) = 21.7mb
|Q|4.0(Eγ − |Q|)3.0

E7.0
γ

10. 6Li(γ,np)4He Eγ,th = |Q| = 3.698892 MeV [91, 92].

σ(Eγ) = 104.mb
|Q|2.3(Eγ − |Q|)4.7

E7.0
γ

11. 6Li(γ,X)3A Eγ,th = |Q| = 15.794685 MeV [93].

σ(Eγ) = 38.1mb
|Q|3.0(Eγ − |Q|)2.0

E5.0
γ

×

(
3.7 exp

[
−1

2

(
Eγ − 19.0

3.5

)2
]

+ 2.75 exp

[
−1

2

(
Eγ − 30.0

3.0

)2
]

+ 2.2 exp

[
−1

2

(
Eγ − 43.0

5.0

)2
])

12. 7Li(γ,t)4He Eγ,th = |Q| = 2.467032 MeV Ecm = Eγ − |Q| [92]. We use
reverse reaction data from NACRE [69], with modifications from Cyburt, Fields, and
Olive [16, 94].

σ(Eγ) = 0.105mb

(
2371MeV2

E2
γ

)
exp

(
−2.5954√

Ecm

)
×

exp (−2.056Ecm)
(
1. + 2.2875E2

cm − 1.1798E3
cm + 2.5279E4

cm

)
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13. 7Li(γ,n)6Li Eγ,th = |Q| = 7.249962 MeV [95, 96, 97].

σ(Eγ) = 0.176mb
|Q|1.51(Eγ − |Q|)0.49

E2.0
γ

+ 1205mb
|Q|5.5(Eγ − |Q|)5.0

E10.5
γ

+
0.06mb

1 +
(

Ecm−7.46
0.188

)2

14. 7Li(γ,2np)4He Eγ,th = |Q| = 10.948850 MeV [92].

σ(Eγ) = 122.mb
|Q|4.0(Eγ − |Q|)3.0

E7.0
γ

15. 7Be(γ,3He)4He Eγ,th = |Q| = 1.586627 MeV Ecm = Eγ − |Q|. We use
reverse reaction data from NACRE [69], with modifications from Cyburt, Fields, and
Olive [16, 98].

σ(Eγ) = 0.504mb

(
2371MeV2

E2
γ

)
exp

(
−5.1909√

Ecm

)
×

exp (−0.548Ecm)
(
1. − 0.428E2

cm + 0.534E3
cm − 0.115E4

cm

)

16. 7Be(γ,p)6Li Eγ,th = |Q| = 5.605794 MeV. We use reverse reaction data from
NACRE [69, 99].

σ(Eγ) = 32.6mb
|Q|10.0(Eγ − |Q|)2.0

E12.0
γ

+ 2.27×106mb
|Q|8.8335(Eγ − |Q|)13.0

E21.8335
γ

17. 7Be(γ,2pn)4He Eγ,th = |Q| = 9.30468 MeV. No data exist. We assume isospin
symmetry and use the data for the reaction 7Li(γ, 2np)4He [92].

σ(Eγ) = 133.mb
|Q|4.0(Eγ − |Q|)3.0

E7.0
γ

18. 4He(t,n)6Li Ep,th = 8.386972 MeV |Q| = 4.78293 MeV Ecm = m4

m4+mt
Ep. We use

reverse reaction data [100].

σ(Eγ) = 1940.mb
[(Ecm − |Q|)/|Q|].75

1 +
(

Ecm−5.03043
.09

)2 + 46.2mb
[(Ecm − |Q|)/|Q|].25

1 +
(

Ecm−7.1329
3.0

)2 + 32.8mb
[(Ecm − |Q|)/|Q|].5

1 +
(

Ecm−7.5239
25.0

)2

19. 4He(3He,p)6Li Ep,th = 7.047667 MeV |Q| = 4.019167 MeV Ecm = m4

m4+m3
Ep. We

use reverse reaction data [101].

σ(Eγ) = 170.mb
[(Ecm − |Q|)/|Q|].75

1 +
(

Ecm−5.8192
.6

)2 + 75.0mb
[(Ecm − |Q|)/|Q|].25

1 +
(

Ecm−7.5192
3.0

)2 + 32.1mb
[(Ecm − |Q|)/|Q|].5

1 +
(

Ecm−12.019
11.5

)2
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Figure 9: Cross-section data for the reaction 4He(t,n)6Li are plotted versus the center-of-
mass energy. The solid curve is the parameterization we use, whilst the dashed curve is that
adopted in previous studies [12, 13].
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Figure 10: Cross-section data for the reaction 4He(3He,p)6Li are plotted versus the center-
of-mass energy. The solid curve is the parametrization we use, whilst the dashed curve is
that adopted in previous studies [12, 13].
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