
Updates of Relational Views

STAVROS S. COSMADAKIS

Massachusetts Institute of Technology, CambrMge, Massachusetts

AND

CHRISTOS H. PAPADIMITRIOU

Massachusetts Institute of Technology, Cambridge Massachusetts
and National Techntcal University of Athens, Athens, Greece

Abstract. The problem of translating updates of database views is studied. View updates are disambi-
guated by requiring that a specified view complement (i.e., a second view that contains all the information
omitted from the given view) remain constant during the translation. Some of the computational
problems related to the apphcafion of this general methodology in the context of relational databases
are studied. Projective views of databases that consist of a single relation and satisfy funcuonal
dependencies are emphasized. After characterizing complementary views, the authors show that finding
a minimum complement of a given view is NP-complete. The problem of translating the insertion of a
tuple into a view is then studied in detail, and the results are extended to the cases of deletion and
replacement of a tuple. Finally, the explicit functional dependencies, a new kind of dependency that
intuitively states that some part of the database information can be computed from the rest, are defined
and studied.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design--data models,
schema and subschema

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Translation of view update, view complement, relational database,
projections, functional dependencies, join dependencies, polynomial-time hierarchy, explicit functional
dependencies

1. Introduction

In database systems, the a m o u n t and structure of the stored data are decided by

the database administrator . However , individual users often want to deal with only

part o f the informat ion in the database, and moreover they m a y want to restructure

it in a way suitable to their needs. For this reason, database systems often provide

the view facility. A view is defined by giving a query on the whole database. At any

point, the contents o f the view are just the ou tcome o f this query. The user queries

and updates the view as though it were a database in itself, with no reference to

the underlying database. The view idea spares the user f rom the conceptual

complexit ies o f the whole database, makes queries easier by "factoring out" a

Authors' present addresses: S. S. Cosmadakis, M.I.T. Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139; C. H. Papadimitriou, Department of Computer Science, Stanford
University, Stanford, CA 94305.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commeroal advantage, the ACM copyright notice and the title of the
publication and ~ts date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, reqmres a fee and/or specific permission.

© 1984 ACM 0004-5411/84/1000-0742 $00.75

Journal of the Assooatlon for CompuUng Machinery, VoL 31, No 4, October 1984, pp 742-760

Updates of Relational Fiews 743

common subexpression, and can serve as a protection mechanism by restricting
access only to insensitive information. A view facility is an important part of many
relational database systems, for example, PRTV [34], QBE [42], System R [2], and
INGRES [33] (as well as of database systems designed along the lines of the network
data model, like DBTG [14], or the hierarchical data model, like IMS [16, 22]).

In relational database systems, a view is generally implemented by naming and
storing its definition, which is just a query definition in the query language of the
system. Queries on the view arc translated into database queries by composing
them with the view definition. Thus, querying a view presents no serious conceptual
problems.

What is much more complex is the subject of updating a flew. A simple update
operation, such as inserting a tuple in the view, may create formidable problems.
The underlying database update may be ambiguous or ill-defined, create inconsist-
encies in the database, or have side effects on the view. This problem is related to
such fundamental issues as null values [13, 41] and update anomalies [5, 10, 12]
in relational databases. Most existing systems do not allow updates of views (e.g.,
PRTV, QBE), or allow them only in the trivial case in which the view consists of
one of the database relations. This omission apparently reflects our poor under-
standing of the subject.

In one of the first works dealing with view updates, Dayal and Bernstein [17]
stipulated a notion of correct translation of a view update and gave some straight-
forward conditions for the existence of such translations. From this and subsequent
works, for example, [8, 20, 29], it has become apparent that we need a method for
assigning semantics to view updates. This method should be formal (resolving the
delicate ambiguities involved) and simple (so the users would be able to define the
semantics themselves, perhaps with the aid of the database system).

An excellent solution to this problem was suggested in the work of Bancilhon
and Spyratos [3, 31]. They developed an elegant theory (quite independent of the
relational model) of database mappings, that is, functions from database states to
database states. A view v is such a mapping, and so is an update u on the view.
How can we translate u? The translation, Tu, must be' such that the updated
database maps via v into the updated view. As may be suspected, there are typically
many Tu's, so the problem remains. Bancilhon and Spyratos resolve this ambiguity
by the notion of the complement of a view. A complement ofv is another view v',
such that the mapping s ~ {v(s), v'(s)) (denoted by v x v' - s is the database state)
is one to one. In other words, any information lost by v can be recovered by v'. A
view has many complements (e.g., the identity mapping is a complement of all

views). Choosing a complement that must remain constant assigns unambiguous

semantics to a view update. The scenario is the following: A user defines a view.
Before updating the view, the user must define (probably with the assistance of the
system) another view (a complement of the first), which must be held constant
during updating (this corresponds to the "rectangle rule" of [9] and the "absence
of side effects" of [17]). Using this information, the system translates (or rejects as
untranslatable) the user's updates.

Translating under constant complement amounts to finding a database state s '
such that v(s') = uv(s) and v'(s') -~ v'(s). By the definition of a view complement,
s' is unique, if it exists at all. Thus, if such an s' can be found for any s (in which
case we say that u is v'-translatable), we can translate u as the database update Tu
= (v x v') -~ (uv x v'). The soundness of the overall approach is demonstrated by
the following facts [3]:

744 s . s . COSMADAKIS AND C. n. PAPAOIMITRIOU

(i) Tu is consistent: that is, the updated database always maps, under the view
definition v, on the updated view (formally vT~ = uv); also T~ is acceptable,
meaning that if u does not change the view, no change is made on the database
either (i.e., for all s, uv(s) = v(s) implies Tu(s) = s).

(ii) Suppose U is a set of view updates, which is reasonable in the sense that it
satisfies minimal user requirements; that is, it is closed under composition and
there is a means of canceling the effect of every allowed update on the view
(formally, if u, w E U, then uw E U, and if s is a database state and u E U, there
is an update w E U such that wuv(s) ~- v(s)). If v" is a view complement such that
any update in U is v'-translatable, then the mapping that associates to an update
u in Uthe database update T,, is a morphism; that is, Tuw = TuTw for all u, w ~ U.
(Clearly, any reasonable way to translate a set of updates should have this property;
i.e., the result of the translation shouM be the same whether the user applies two
updates from the set one after the other or their composite update.) On the other
hand, the converse also holds: If T is a mapping off U such that, for every u E U,
T(u) is a consistent and acceptable database update, and also T is a morphism (i.e.,
T is a reasonable way to translate view updates into database updates), then there
is a view complement v' such that, for every u E U, u is v'-translatable and
T(u) = 7/',.

However, as was pointed out earlier, this approach is essentially independent of
any particular data model. In this paper we investigate some of the issues and
problems that arise when one attempts to apply this methodology in the context
of the relational model [11, 12], with a view toward rendering it realizable in
practice. We discover that very interesting theoretical questions already arise at
very simple eases of the application. In particular, we concentrate on database
schemas consisting of a single relation, with integrity constraints that are (for the
most part) just functional dependencies (FDs) [1, 10]. The views we consider are
simply projections of the relation. Working with a single relation corresponds to
some unrealistic universal relation assumption [36], but it yields a simplified
problem that must be conquered first. Functional dependencies constitute a simple
and practical class of constraints. Projective views are, again, the simplest imagi-
nable, and they are also important from a practical point of view.

In Section 2 we characterize when two projections are complements of each
other. There is an interesting parallel between this characterization and the notion
of independence of Rissanen [27]. Our necessary and sufficient condition (which
can be generalized to include the presence of join dependencies) states that the
common part of the projections must be a superkey of one of the projections. As
a consequence, it is easy to test whether two given projections are complementary
in a schema. It is also possible to construct a nonredundant (minimal) complement
of a given projection in polynomial time. Unfortunately, finding a smallest com-
plement of a given projection (i.e., the complement with the fewest attributes) is
shown to be NP-complete.

In Section 3 we study how to implement the insertion ofa tuple into a projection,
keeping a given complementary projection unchanged. We show that this can be
done in a unique way, and so the problem reduces to testing whether the resulting
database is consistent. We show that this test can be carried out in time cubic in
the number of tuples o f the view. Since this is likely to be impractical, we also
develop two alternative stronger tests that can be executed more efficiently.

Ideally, we would like the time complexity of our update algorithms to depend
on the number of attributes, functional dependencies, and other parameters of the

Updates of Relational Views 745

schema, not of the instance. When the time must depend on the number oftuples,
we would at least like this dependence to be logarithmic, since this number is
expected to be very large. However, complexities like those described in the previous
paragraph resemble, in a practical sense, exponential complexities. We show some
negative complexity results which suggest that this "exponential" behavior is
inherent: The translatability problem becomes II~-hard [32] if the view is repre-
sented in some exponentially succinct way (e.g., as the union of two Cartesian
products). Even one of the simpler, stronger tests mentioned above becomes co-
NP-hard.

Finally, we examine the complexity of finding a complement that renders a
given insertion translatable. We show that this problem is polynomial in the
number of tuples of the view, but inherently exponential in the size of the schema
(and the logarithm of the number of tuples of the view). Similar results can be
obtained for the two stronger tests.

In Section 4 we extend these results to the case of deletions and replacements of
tuples. We find that, for the most part, the extension is rather straightforward.
Finally, in Section 5 we define and examine a new kind of functional dependency
that is important in the context of complements, the explicit functional dependency.
We extend our characterization of complementary projections to allow also for the
presence of explicit functional dependencies. Section 6 concludes this work by
pointing out some directions for further research.

2. Defining a Complement

Let S be a database schema (U, Z), where U is a universal set of attributes and
is a finite set of dependencies. (For the fundamental notions and notations of the
relational model, see [35].) A relation R over U (an instance of U) is called legal if
it satisfies all the dependencies in 2; (notation: R ~ Z). A view of S is for us a
projection defined by a subset X of U. For each instance R, the corresponding
instance of the view is 7rx(R). We disambiguate updates on a view by defining a
second view, Y, the complement of X. Two views X and Yare called complementary
if 7rx(R) = lrx(R') and Try(R) - - lrr(R') imply R = R' , whenever R and R ' are both
legal instances. In other words, the two views together contain enough information
to reconstruct the whole database.

When are two views X and Y complementary? Clearly, a sufficient condition is
that the multivalued dependency (MVD) [18, 28, 40] *[X, Y] holds in every legal
instance; that is, Z implies the MVD *[X, Y]. If this is the case, the database can
be reconstructed from its projections on X and Y by join. Recently, it has been
shown [37] that the condition is not necessary; that is, if Z consists of general first-
order sentences, then ~rx and a-r can be complementary without the reconstruction
operator being the join. However, we show that this cannot happen in the special
case of interest in which Z consists of functional and join dependencies (also
proved independently by Beeri and Vardi [7]):

THEOREM 1. Let ~ consist of functional dependencies and join dependencies.
Then X, Y are complementary iff Z ~ *IX, Y].

PROOF. The/fdireetion is immediate: If X implies the MVD *IX, Y], then for
every legal instance R we have ~rx(R)*~ry(R) = R. Consequently, if for two legal
instances, R, R ' we have Irx(R) = 7rx(R') and ~rr(R) = rr(R') , we get lrx(R)%rr(R)
= rx(R')*~rr(R') and from this R = R' ; that is, X, Yare complementary.

746 S .s . COSMADAKIS AND C. H. PAPADIMITRIOU

For the only/fdirection, assume that Z does not imply the MVD *[X, Y]; we
show that X, Y are not complementary, by exhibiting two distinct legal instances
R, R' for which 7rx(R) = ~rx(R') and lry(R) = ~'y(R').

Let ~ be a join dependency *[Rt, . . . , Rq]; define M(~) to be the set of MVDs

{*[U,~sjR~, UiEs~Ri], S,, $2 a partition of{l, q}l (see also [26]). I f Z ' is the set
we obtain if we replace each join dependency ~ in ~ by the multivalued depend-
encies in M(~), then, since ~ implies each MVD in M(~), Z implies Z'; but by our
hypothesis Z does not imply *[X, Y], so Z' does not imply *IX, Y] either. Now
since Z' consists of FDs and MVDs only, there is a two-tuple counterexample to
this implication [30]; that is, there is a relation R consisting of two tuples ~ and v
that satisfies all the dependencies in Z' but does not satisfy *[X, Y].

From the relation R construct another relation R ' as follows: Since R does not
satisfy *[X, Y], it must be that #[X f3 I:] = u[X N Y], and also ~[Y - X]
~[Y - X] and ~[X - Y] # u[X - Y]. Let R ' consist of a tuple ~' that agrees with ~t
on X a n d with ~ on Y - X, and o fa tuple ~' that agrees with ~, on X a n d with/z on
Y - X. Clearly, R ~ R' , R ' satisfies all the dependencies in Z' (it defines the same
special truth assignment [30] as R), and also ~rx(R) -- ~rx(R') and ~rr(R) = ~rr(R').
Thus, we only need to show that R and R ' are both legal; that is, they both satisfy

all the JDs in Z. (They obviously satisfy the FDs in Z, since these are included in
23' and R, R ' satisfy Z'.)

Let *[R~, . . . , Rq] be a JD in 2;; to show that it holds in R, it suffices to
show that, i fa tuple ~ is obtained by joining ~[Rd, ~q[Rq], where ~ ~q are
tuples of R, then either ~ -- ~ or ~ = ~,. This is certainly true if~l -- . . . -- ~q =/~ or
if ~ = . . . = ~q = ~; else, let S~ = [i:~ = ~}, $2 --- [i:~i = u}. Since the MVD

*[Ui~siR,, Lli~s2Rd is in 2;', it holds in R, and thus either ~ --/~ or ~ = ~,. Thus R
satisfies all dependencies in Z, and so does R ' (by the same argument). This
completes the proof. []

Notice that our condition (though not the proof) parallels the result of Rissanen
on independence [27]. Intuitively, independence (in the sense of [27]) is stronger
than complementarity, and thus our theorem contains only the first condition of
[27]. To see why, consider the classical Employee-Department-Manager schema.
The decomposition into X = El), Y = EM is not independent, although X and Y
are complementary.

Theorem I has some algorithmic consequences:

COROLLAR~ 1. Given (U, 23), X, Y C U, whether X, Y are complementary can
be tested in polynomial time.

PROOf. By Theorem 1, testing for complementarity amounts to inferring
an MVD from a set of FDs and JDs. The latter can be done in polynomial time

[26, 381. []

COROLLARY 2. Given (U, 23) and X C_ U, we can find in polynomial time a
minimal (nonredundant) complement of X.

PROOF. Simply start with the trivial complement U and repeatedly take out
any attribute in X that can be taken out without affecting complementarity
(examine the attributes in some arbitrary order). []

Thus we can program in a database system some guidance to the user toward
the definition of a complement. Unfortunately, as so often happens, finding the
minimum is much harder.

Updates o f Relational Views 747

THEOREM 2. Given (U, ~), X C_ U, and k > O, determining whether there is a

complement Y o f X with] Y] = k is NP-complete.

PROOF. Membership in NP is obvious;just guess a subset Yof Uwith [Y[= k

and verify (Corollary l) that X, Y are complementary.

To prove the hardness part, we will make a redfiction from the 3-satisfiability

problem (3-SAT), which is known to be NP-complete [15, 21, 24]. Let ~ be a
Boolean formula in 3-conjunctive normal form (3-CNF); let xi, i - 1, n, be

the variables occurring in ~, and letj~, j = 1 , m, be the clauses o f~ . We con-

struct the following schema &, = (U, ~): U is F~ . . . F,~X~Xf . . . X~X'A and

contains the functional dependencies F~ . . . F,,X, --~ X', F~ . . . FmX" ~ X,, i --

1 n; also for each clause fj = l~ + I~2 + I~3, j = 1 , m, the functional

dependencies L~I --~ Fj, Lj2 --~ F~, Lj3 --* Fj (if lj~ = x~, Lj, = 7(,; if/~ = ~x~, Lji -- X~).
Now let X be F~ . . . FmX~X[. . . X~X~; we claim that X has a complement Y

with [Y[= 1 + n iff ~ is satisfiable. To see this, first assume that ~ is satisfiable,

and let h be a satisfying assignment. Take Y to be L~ . . . L,M, where L ~- Xi if

h(x,) is true, L, = X" if h(x,) is false. To show that X, Y are complementary, it

suffices to show (by Theorem l) that $ ~ *IX, Y]; to do that, we use the chase

method for inferring dependencies [25]: If we consider the tableau consisting of a

row with distinguished variables in the X columns and a row with distinguished

variables in the Y columns, then we can convert the second row into a row of

distinguished variables by using the FD-rules corresponding to the FDs in ~ as

follows: First, since h satisfies fj, at least one of the FDs {Lit --* Fj, Lj: ~ F ,
t j 3 ~ Fj} can be used to flU in Fj, and this can be done for all j. Then the FDs

Ft . . . FmX, ~ X', F~ . . . F,,,X" ~ X, can be used to fill in the remaining X,'s
and X/'s.

For the converse, suppose there is a complement Y of X with [YI = 1 + n.
Clearly Y has to contain at least one of {X,, X;} (else there is no way to fill in both

X, and X~, and thus Y contains exactly one of IX,, X;} for each i (also A E IT).

Consider now the assignment h, where h(x,) is true if X~ E Y and false if X,' ~ Y:
Since F~ is filled in, at least one of {Lj~, Lj~, L~31 must be contained in Y, and thus

h satisfiesfj. This is true for all j, so h satisfies ~P and the claim is established.

Finally, it is easy to see that S,, and X can be constructed in time polynomial in
the length of ~o. This completes the proof. []

Observe that in our reduction we only used FDs, so Theorem 2 is true even if

is constrained to contain only FDs. Now if ~ ' - {Z ~ , B[Z ~ B is an FD in
~}, then, if a is a JD, $ ~ a iff ~ ' ~ ~ [6]. Thus, we might as well replace ~ by ~ '

in our proof, which means that Theorem 2 is true even if ~ is constrained to consist
of MVDs only.

3. The Translation o f Insertions

3.1 TESTING TRANSLATABILITY. ~ is now a set of functional dependencies;
we furthermore assume that each FD in ~; is of the form X ~ A, where A is a single
attribute. (This is easy to enforce, by replacing each FD X ~ Y in ~ by the
equivalent set o fFDs {X---~A :A E I1}.)

Suppose that the view X and its complement Y are given, and so is the current
instance Vof the view. We wish to translate the update u on the view consisting of
the insertion of a tuple t, while keeping the complement ~'r(R) constant. How can
we design an update on R, Tu, which achieves this?

748 s . s . COSMADAKIS AND C. H. PAPADIMITRIOU

The translation T,, should have certain obvious properties:

(A) It should implement the view update, that is ~,x(T.[R]) ffi VU t.
(B) It should keep the complement constant, according to the prescribed seman-

tics; that is, =

(C) It shouM yield a consistent database; that is, if R is a "possible" instance,

T,[R] ~ 2. The meaning of"possible" is the subject of property D below.
(D) A more subtle but important assumption is that the proposed update is based

on the user's knowledge of the view and on no other information concerning
the database. Thus, the translation should produce a legal database for all legal
instances of the overall database, given the instance of the view.

It is quite interesting that these properties determine precisely when the insertion
of a tuple t in an instance V of the view is translatable, and, if it is, the translation
Tu is unique.

First, suppose that t 6~ V(otherwise Tu is the identity). Since a'r(R) must be kept
constant (Property B) we must assume that t[X N I1] E ~rxny(R) = ~rxnv(V);
otherwise, the only way to insert t in ~rx(R) (Property A) would be to insert
something in ,rv(R). By Theorem 1, X n Y is a superkey of either X or Y. If it is a
superkey of X, then the update is clearly untranslatable, because V O t is not the
projection of a legal instance (Property C). So X N Y---> Y. It follows that the only
T~ satisfying A-C is the insertion of the tuple t*~r~(R) in the database R: Tu[R] =
R U t*~rv(R) (* denotes the natural join).

It remains to determine under which conditions Tu[R] is legal (Property C). The
insertion of t into V is translatable iff T.[R] ~ 2 for all R such that R ~ ~, ~rx(R)
= V. (Property D was used here.)

Suppose that the insertion is not translatable. This means that there is a functional
dependency, say Z ---> A, which is violated by Tu[R] for some R for which R ~ 2~
and ~rx(R) = V. Since R satisfies Z ~ A, the inserted tuple must be the culprit.
Thus, there must be a tuple r of V that agrees with t on Z N X and, if A E X,
disagrees with t on A. Now let us construct a relation R(V, t, r, Z ---> A) by
filling the rows of V with new symbols in the columns of Y - X, only with r[Z N
(Y - X)] = #[Z A (Y - X)] (where ~ is a tuple agreeing with t on X N I0; if we
perform the chase [25] wrt 2~ on this relation, no two distinct elements of V nor
the elements corresponding to r[A], ~[A] (irA E Y - X) are ever equated (otherwise,
we say this chase succeeds). It turns out that this is a necessary and sufficient
condition for untranslatability.

THEOREM 3. The insertion of t into V (t q~ lO is translatable as R ,-- R U
t*lrr(R) if and only if

(a) tIX n YI ~ ~rx, r(V).
(b) F~ implies X f3 Y---+ Y and does not imply X 0 Y--+ X.
(c) Chasez[R(V, t, r, f)] succeeds for all functional dependencies f E • and tuples

r of V (where r satisfies the restrictions described above).

PROOF. By the preceding discussion, all we need to notice is that, if Chasez
JR(V, t, r,f)] does not succeed for some F D f ~ ~ and some tuple r of V, then it
actually provides us with a counterexample; that is, it constructs a relation R such
that R ~ 2, 7rx(R) - V, and T,[R] violatesf In the opposite case, the chase actually
provides us with a proof that there can be no relation R such that R ~ ~, ~rx(R) =
V, and T:[R] violates s o m e f E 2; that is, T:[R] ~ ~ for all R such that R ~ 2~,

= v . []

Updates o f Relational Views 749

COROLLARY Whether an insertion is translatable can be tested in time

O(I Vlalogl VI 12;121Y-XI).

PROOF. Clearly, condition (a) can be tested in time O(I VI), and condition (b)
can be tesled in time O(1 2; I) (using the linear-time algorithm [4] for inferring an
FD from a set of FDs). Since condition (c) can be tested by doing O(I ~1 I VI)
chases, it suffices to show that the chase of R(V, t, r, f) can be computed in time
O(I VI 210gl VII ~ I I Y - XI). Recall that the chase procedure consists in repeatedly
locating a pair of tuples ~, v such that ~[Z] ~- v[Z] and ~[A] # viA] for some FD
Z ---, A in 2;, and replacing the element t,[A] with viA] throughout the A column.
This can be done by the following straightforward algorithm:

Initialize R* to be R(V, t, r,f).
Repeat until no new change is made on R*:

For each FD Z---, A in Y~ do:
Sort R* lexicographically according to the elements of the Z columns.
Find the first pair of consecutive tuples u, ~ such that/~[Z] ffi u[Z], ~[A] ~ u[A].
Replace triAl by v[A] throughout the A column.

It is clear that each execution of the body of the for loop takes time O(I V llogl V I),
so each execution of the for loop takes time O(I Vllogl V[12; I). Since each time
the for loop is executed the number of distinct symbols in the Y - X columns is

reduced by at least one (if the chase ever attempts to equate two different elements
in one of the X columns, we stop immediately), and initially we have I Y - XI I VI

such symbols, the for loop will be executed at most I Y - XI I VI times, and so the
total time is at most O(I Vl:logl V[I ~1 I Y - XI). []

The algorithm described above can be speeded up by taking the following
straightforward shortcut: To construct R(V, t, r, Z ~ A), first fdl the rows of V
with new symbols in the columns of Y - X, then do a chase (and store the resulting
relation to be reused for other members of %), and then set r[Z I"1 (Y - X)] -. t~[Z
N (Y - X)], for some ~ agreeing with t on X 63 Y. However, since we are still
unable to provide a better guarantee for its worst-case performance than
O(I VI 310gl VI), its applicability in practice is dubious, in view of the fact that I VI
is normally very large. For this reason, we will now present two alternative tests
for which we can show better upper bounds to their worst-case performance.
However, our tests will be stronger than necessary; that is, in addition to rejecting
all untranslatable insertions, they may also reject some translatable ones.

Test 1. Our first alternative test consists in simply avoiding to do a full chase
on R(V, t, r, Z ----> A); instead, for each tuple # agreeing with t on X N Y, we do a
chase on the two-tuple relation consisting of r and/~, and we report success if any
of these chases equates r[A],/~[A] (if A E Y - X; notice that in this case t~[A] =
t[A], since X 63 Y ---> Y), or attempts to equate two distinct elements of V. Thus,
what we are actually doing is imposing the extra requirement that Chasez[R(V, t,

r, f)] succeeds fast, if it succeeds at all. Intuitively, this does not seem to be very
restrictive, and one may hope that Test I will actually accept most of the translatable
insertions that will occur in practice.

The test can obviously be implemented in time O(I VI 2 I Z I). However, we can
do better (in terms of the dependence of the time complexity on I VI), as follows:

(1) Fill the rows of V with new symbols in the Y - X columns. Then determine
the set of tuples T = {/, : ~[X 63 Y] = t[X f) Is]}. This can be done in time

o(I Vl).

750 s . s . COSMADAKIS AND C. H. PAPADIM1TRIOU

(2) For each S _.C U, construct a copy of the relation T (call it Ts), and sort it
according to the contents of the S columns. This can be done in time O(2 t vl

I Vllogl Vl).
(3) For each S C_ U, compute the closure of S under 2;; that is, the set S + = {A : 2~

S ---> A}. This can be done in time 0(21Vl] 2~]) (using the algorithm of [4]
for computing closures).

(4) For each FD Z ---> A in 2; do:

For each tuple r for which r[Z N X] = t[Z N X] and r[A] # t[A] (ifA E X), do:
Make r agree with # on Z n (Y - X), where t~ is a tuple in T.
For each S C U do:

Insert r in Ts.
If r[S] = v[A], where v is either the tuple next to r or the tuple before r in Ts,

then make r agree with v on S +.

This can be done in time O(] Z I [VI 2lVllogl VI).
Thus, the overall time expended is O([VI logl VI 2 lul I Z I). Of course, there are

various optimizations and shortcuts one may employ in an actual implementation
(e.g., to handle the potential problem of having too many sorted tables--say, by
actually having for each S a sequence o f pointers to the tuples of T). Observe that
the running time of this algorithm will be better than our worst-case upper bound

for the exact translatability test (and also better than the obvious O([V[2 {Z [)
algorithm) if] VI/logl VI > 21% which is definitely going to be the case in practical

situations.

Test 2. Our second alternative test has a somewhat different flavor. Notice that
Test 1 saves time by doing only part of the computation necessary for each

particular chase. Test 2, instead, will only do one full chase, if this is possible.
More specifically, recall that the essential part of the translatability test (in terms

of time requirements) is checking if for all R such that R ~ 2~, ~rx(R) = V, we have
T,[R] ~ ~,. Suppose now that Y actually has the following property:

Property. For all R~, RE such that R~ ~ ~,, RE ~ ~, lrx(RO = ~rx(Rz), t[X N Y]

~rxn Y(RO = ~rxn v(R2), we have that Tu[Ri] ~ Z iff T.[R2] ~ Z.

We call such a Y a good complement of X. Our interest in good complements
lies in the fact that, if Y happens to be a good complement of X, then clearly all
we need to do to test if the insertion u is translatable is construct some relation Ro
such that Ro ~ 2;, ~rx(Ro) = V, and test whether T,[Ro] ~ ~. We can construct such
an Ro by filling the rows of V with new symbols in the Y - X columns and then
doing a chase; this can be done in time O(] V]Elog] V] I]~]]Y - Xl). Testing
whether T,[Ro] -- Ro U t*~rv(Ro) satisfies ~ amounts to testing whether for each
tuple ~ of Ro, the two-tuple relation consisting of # and t*Trv(Ro) satisfies all the
FDs in Z; this can be done in time O(] V]] Z [).

Thus, all we need to do is show how one can test if a given complement Y of X
is actually a good complement. Observe that this property is independent of the
tuple t to be inserted; that is, it is a property of the schema only (X, Y, and Z).

Suppose, then, that Y is not a good complement of X. This means that there are
two relations R~, Rz such that RI ~ 2;, R2 ~ 2~, ~rx(Rl) -- wx(Rz), t[X n I7] E

lrxn y(RI) = 7rxn I,(Rz), Tu [R2] ~]~, and Tu[RI] = Rl tO t*~rr(RO violates some
FD in Z, say Z - - . A . Since Rt ~ Z, there must be a tuple el in Rt such that ut[Z]
= ~.z[t*~r~.(Rl)], #~[A] # ~ra[t*~r~-(R0]. Also there must be a tuple v~ in R~ such that
, , , [xn YI = t [x n Yl.

Updates of Relational Views 751

Since ~rx(RO = ~rx(R2), we can then find two tuples m, ~,2 of R2 such that t~2[X]
-- re[X], v2[X] -- u~[X]. Now consider the relations R~, R~, consisting of m, u~ and
of/~2, p2, respectively. Clearly, Ri ~ ~, R~ ~ • (since ~ only contained FDs), xx(RI)
= xx(R~), t[X n I"] E ~rxnr(Ri) -- ~rxnr(R~), T,[R~] ~ ~,, and Tu[Ri] violates

Z--~ A.
Thus, Yis not a good complement of Xiff there are two relations R[, R~ with at

most two tuples each that witness this fact.
From the above observation, we can easily see that we can test whether Y is a

good complement of X by doing the following for each FD Z ~ A in Z:

Initialize TI to be a relation with three tuples m, ~, t~ as follows:

h[W] = ao for each W in U,

~ao for Win Y,
pl[W] [al for W i n X - Y,

Jao for Win Z,
#I[W]

t a2 for W i n U - Z .

nitialize T2 to be a relation with three tuples #2, p2, h as follows:

t2 = h, u2 ---- ut, #2[W] = a2 for each W in U.

Repeat until no new change is made on either T~ or Tz.
Compute the chase wrt Z of ~, p~ (in this and all subsequent chases, to equate a, and
aj, i <A replace aj by a,).

Compute the chase wrt Z of/~2, p2, of p:, h, and of/~2, h.

When the above procedure terminates, we check if re[A] = h[A]. If not, then Ti,
T2 constitule a counterexample to the goodness of Y; if it turns out that/~[A] =
h[A] for each FD Z --~ A in ~, then we have actually proved that no such
counterexample with at most two tuples in each relation can exist, and so Y is a
good complement of X.

Since each execution of the repeat loop can be done in time O([Z [), and each
time we lose at least one out ofO(I U[) symbols, the running time of the algorithm
is O([~ [2 [U [) (the procedure is repeated at most [~ [times).

Notice that, if Y happens to be a good complement of X, then actually Test 2
accepts precisely the translatable insertions, whereas in the opposite case it rejects
all insertions. However, testing whether Y is a good complement of X can be done
once and for all at the time Y is declared as the complement to use, and, if it is
found to fail, then the database system can simply disregard Test 2.

3.2. COMPLEXITY OF TESTING TRANSLATABILITY. So far, we have shown how
one can test whether a proposed insertion of a tuple into a view is translatable, and
if so, how to do the translation (Theorem 3). We have presented an O([V[3log[V[)
algorithm for testing translatability. Since this algorithm is likely to be inefficient
in practice, we also developed two alternative stronger tests, which can be executed
faster.

In the sequel, we prove a result that has some negative implications regarding
the extent to which one can hope to improve the running time required to test
translatability. Specifically, we show that, if the view is presented in an exponentially
succinct way (i.e., as a union of Cartesian products), then testing translatability
becomes l-I ~-hard [32]. This result provides strong evidence against the possibility

752 s . s . COSMADAKIS AND C. H. PAPAD1MITRIOU

of having an algorithm that runs in time less than O([V[); that is, it indicates that
the whole view has to be examined in order to test translatability.

Moreover, we believe that this result also casts some doubt on the possibility of
substantially improving the running time of our algorithm. Loosely speaking,
1-[~-hardness seems to indicate that the problem lacks a "nice" combinatorial

structure, which could be exploited to yield an algorithm considerably more
efficient than the one resulting from our exhaustive approach.

We now prove the result.

TI~FOR~M 4. D e t e r m i n i n g i f an insertion is translatable is r ig -hard i f the v iew

V is g iven implic i t ly as the union o f two Cartes ian products , o f total s i ze O(I UI).

PROOF. Let G be a Boolean formula in 3-CNF, containing the variables x,, i --

1 , n, and consisting of dausesfj, j = 1 , m, and let X = {x~ , xk}, Y -----
{Xk÷l , Xnl be a given partition of the set of variables of G. It is known [32, 39]

that determining if for all possible assignments of truth values to the variables in
X, G is satisfiable, that is, if V X 3 Y G(X, Y) = 1 (where VAT means Vx~ . . . Vxk

etc) is I]~-complete. In what follows we give a polynomial-time reduction from
this problem to the problem of testing translatability of an insertion to a succinctly
presented view.

Let U be BX~X~ . . . XnX~AF~ . . . FmC, and let • consist of the FDs X~X~ . . .

XkXJ: ~ A , F~ . . . F , , ---> C, B A ~ C, and, for each dausef~ =/ j l + lj2 + lj3 of G,
the FDs Lj~A ~ Fj, Lj2A ----> Fj, Lj3A ---> Fj (where Lj, is Xr if/~i is x, and Lj, is X; if
Ij, is ~xr). Let the view be BX~X~ . . . XnX~, and let the complementary view be
X~X~ . . . X,~X~AF~ . . . F , ,C. Finally, let the instance V of the view be
s~ x Sx, x,, x . . . x Sx, x,, tO s, where Sx, x; is a relation over X,X" consisting of two
tuples ~,, v, with u,[X,] = 0, u,[X,'] = 1, ~,,[X,] = 1, ~,~[X,'] = 0, ss is a single tuple
over B with sB[B] = b, and s is a single tuple over B X ~ X ; . . . XnX" with s[B] = a,

s[X,] = 1, siX,'] = 1. Observe that V is essentially just a list of all possible truth
assignments: Each tuple t~ of V, with the exception of s, defines an assignment h:
{x~, •. •, x~} ---> 10, 1} by taking h(x~) = t~[X,] (~[X~ = ~[X,]) ; also, u[B] --- b.

Suppose now we want to insert in V the tuple t, where t[B] = b, t[X~X~ . . .

X n X '] ---- s[X~X~ . . . X~X'] . We show that this insertion is translatable iff VX 3 Y
G(X, Y) = 1. First, it is obvious that conditions (a) and (b) of Theorem 3 are
satisfied. Furthermore, observing that the only tuple agreeing with t on X~X~ . . .

X , X " (the common part of the view and the complement) is s, it is easy to see that
condition (c) is satisfied if the F D f i s taken to be X~X~ . . . XkX~ ---> A (because the

only tuple agreeing with t on X~X~ . . . XkX~ is s), or if f is F~ . . . Fm "> C (since
no attribute of f is in the view), or if f is L~,A ---> Fj (since s agrees with t on all
possible Lfs).

Thus, all we have to show is that, for all tuples r with r # s (the tuples agreeing
with t on B), ~2haser[R(V, t, r, B A --~ C)] succeeds (i.e., starting with r[A] -- s[A],

we eventually equate r[C], s[C]) iff there is a satisfying assignment h for G that
agrees with the one defined by r on [x~ , x~}.

First, suppose there is such an assignment h, and let r~ be the tuple corresponding
to it. Since rh[X~X~ . . . XkX~] = r[X~X~ . . . XkX~], rh[A] = r[A], so rh[A] = s[A].

Since h satisfies f~, r~[L~,] = 1 for some i, so r~[L~,] = s[L~,]; that is, rh[L~,A] =

s[Lj,A], and s o rh[F A ---- s [F j] , for j = 1, . . . , m. Thus, rh[F~ . . . Fro] = s[F~ . . .

F,,], so rn[C] = s[C]. But since r~[BA] = r[BA], r~[C] = r[C], and thus r[C] = siC];
that is, Chasez[R(V, t, r, B A ---> C)] succeeds. Conversely, it is not difficult to see
(by essentially tracing the previous argument backwards) that r[C], siC] can only

Updates o f Relational Views 753

be equated if there is a tuple corresponding to a satisfying assignment and agreeing
with r on X~X~ . . . XkXL

Thus, we have established that the insertion of t into Vis translatable iff VX 3 Y
GO(, I1) = 1. Since U, Z, t and the description of V as a Cartesian product can
obviously be constructed from G, X, Y in polynomial time, we are done. []

It certainly is not surprising that by using a similar (only simpler) construction
we can show an analogous result for Test 1.

THEOREM 5. Determining i f Test 1 accepts an insertion is co-NP-complete i f

the view V is given implicitly as the union o f two Cartesian products o f total size

o(I uI).

PROOF. We first show membership in co-NP. If X denotes the view and Y the
complement, then the following is a noncleterministic polynomial time algorithm
to determine if Test 1 does not accept the insertion of the tuple t into If." Guess an
FD Z ~ A in Z and two tuples r, u over X, and verify that r ~ V, tt ~ V, r[Z n X]

= tIZ m X] (and r[A] # t[A], ifA ~ AT), ~[X m Y] = t[X m Y]; construct a relation
R consisting of two tuples r', ~', with r'[X] = r, u'[X] = ~, and with new symbols
in the Y - X columns, only with r ' [Z A (Y - X)] = u ' [Z tq (Y - X)]; compute the

chase wrt Z of R, and verify that it does not attempt to equate two distinct dements
of r, #, and, ifA E Y - X, it does not equate r[A], #[A].

To prove the hardness part, we will make a reduction from unsatisfiability of
Boolean formulas in 3-CNF. Let G be such a formula, with variables x,, i = 1,

n, and clauses fj, j = 1, . . . , m. Let U be BX~Xi . . . X,X~C, and let Z consist of
the FDs B --~ C, and, for each clausefj = Ijl + Ij2 + lj3 of G, the FD LjILjzLjs ---> C;

let the view be BX~Xf . . . X , X ' , the complement be XtX[. . . XnXAC, and the
instance V of the view be sn x Sx, x,, x . . . x Sx~x,~ U s, where sn, Sx~r,, are as in the
Proof of Theorem 4, and s[B] = a, s[X~] = O, siX[] = O.

Suppose now we want to insert in V the tuple t, where riB] = b, t[XIX~ . . .

X ,X '] = s[X~X~ . . . XnX']; we claim that this insertion is accepted by Test 1 iff G
is unsatisfiable. To see this, observe that the only tuple of V agreeing with t on
XtXi . . . X , ~ " (the common part of the view and the complement) is s; by a
reasoning similar to that in the Proof of Theorem 4, we see that the only FD that
needs to be checked is B ---> C. Now if r # s, the chase on r, s will equate r[C], s[C]
iff for some j, r[Lj~Lj2Lj3] = s[Lj~Lj2Lj3]; that is, rILj,] = 0, which means that the
assignment corresponding to r does not satisfy fj. Since this should happen for all
tuples r, the claim is established.

Since U, Z, t and the description of V as a Cartesian product can be constructed
from G in polynomial time, the proof is complete. []

3.3. FINDING A COMPLEMENT. So far, we have assumed the following see-
nario for translating view updates: When the user updates a view, he also specifies
unambiguously the semantics of the update by defining a complement that should
be kept constant during the translation. We studied in detail the problem of
checking whether a proposed insertion of a tuple into a projective view is translat-
able when the complement is another projection and the database consists of a
single relation satisfying a given set of functional dependencies.

However, a real database system should also be able to provide the user with
some assistance concerning the task of defining a complement. We already gave a
glimpse of this problem in Section 2, where, after we characterized complementary
views, we examined the problems of finding a nonredundan: complement and a

754 S. S. COSMADAKIS AND C. H. PAPAD1MITRIOU

minimum complement. Now that we have also gained some understanding of
testing translatability, we can pose the following question: Suppose the user wishes

to have the update translatable, imposing only partial restriction (or none at all)
on the complement to be used. How can one determine whether such a complement

exists and, if so, find it?
Let the view be X, and suppose that Y is a complement of X such that the

insertion of the tuple t into the instance Vof the view is translatable under constant
Y. Clearly, Y = W U (U - X), where W_C X. Since t[W] E 7rw(V) (condition (a)

of Theorem 3), there is a tuple r of V such that r[W] = t[IV]. Consider now the set
of attributes W~ = {A : A E X, r [A] = t[A]l. I t is immediate that t[Wr] E ~rw,(V),
7, I:= Wr "'> Y (since 2; ~ W ---> Y by condition (b) of Theorem 3, and Wr D W),

and 2; does not imply Wr --* X (if 2; ~ Wr ~ X, then the insertion of t into V is
not translatable since t[IV,] = r[Wr], t # r); moreover, if R is a database such that
R ~ ~, ~rx(R) ffi V, then t*~rw,(R) = t**rw(R), and thus, since R O t*~rw(R) ~ 2;, it

follows that also R U t*~rw,(R) ~ 2;, for all such R. Therefore, the insertion of t
into V is also translatable under constant Y~ = Wr O (U - X).

From the above discussion, it is easy to see the following:

THEOREM 6. Given 2;, X, V, and t, we can f ind a complement Y o f X such that

the insertion of t into V is translatable under constant Y within min(I VI, 2 Ixl) tests

o f translatability.

PROOF. One can compute, for each tuple r of V, the set W~ = {.4 : .4 E X, r[A]

= t[A]}, and, after eliminating duplications, test, for each such W~, if the insertion
of t into V is translatable under constant Y~ = Wr O (U - X). If no such Wr is

found, then, by the preceding discussion, there is no complement Y of X such that

the insertion of t into V is translatable under constant Y. []

Thus, we can determine if there is a complement that renders a given insertion
translatable in polynomial time (see the Corollary to Theorem 3). Observe, how-
ever, that the polynomial complexity depends strongly on the fact that we are
allowing the whole view V as part of the problem instance. The following result

indicates that there is an inherent exponential dependence on I UI + logl VI; in
other words, we may nevertheless have to check all possible subsets of X in order

to find a complement.

THEOREM 7. Determining i f there is a complement Y o f X such that the insertion

o f t into V is translatable under constant Y is NP-hard i f the view V is presented

succinctly (as in Theorem 4).

PROOV. Let G be a Boolean formula in 3-CNF, containing the variables x , i =
l, . . . , n, and consisting of dausesj~, j = 1, m; assume furthermore with no
loss of generality that the variables appearing in each clause are distinct. Let U be
XtXf . . . X,X~Ft . . . Fm, and, for each clausefj =Ijt +/j2 +/j3 of G, let 2; contain
the FDs Ljj --~ F~, L~2 --~ Fj, L~3 --~ Fy. Let the view X be X~X~ . . . X,,X;,, and the
instance V of the view be SXlX,, x . . . x sx,,x,~, where Sx, r: is as in the Proof of
Theor6m 4.

Suppose now we want to insert in V the tuple t, where t[X,] ffi t[X,'] = 1. We
show that there is a complement Y = W U FI . . . Fm(W C X) such that the
insertion of t into V is translatable under constant Y, iff G is satisfiable. First, it is
eaSy to see that, since t[W] should be in 7rw(V), W should contain at most one of
the attributes X,, X;, for each i; furthermore, since we should have that • ~ W--)

Updates of Relational Views 755

Ft . . . F,, (clearly Z does not imply W---> X), it is not difficult to see that Wshould
define a satisfying assignment for G.

To complete the proof, observe that, if R is a database such that R ~ ~, ~'x(R)
= V, then for any two tuples ~, v of R, ~[Fj] = v[Fj]. This happens because, if
u[L A ~ u[Lj~] and u[Lj2] # v[L~2] (in the opposite case obviously t~[F~] = v[F~]),
then there is a tuple ~ in R such that ~[Lj~] = u[Lj~], ~[Lj~] = ~,[L~] (because the
variables in f~ are distinct); thus, ~[F~] = #[F~], ~[F~] = ~[F~], and therefore t~[Fj] --
u[F~]. It follows that, for the insertion of t into V to be translatable under constant
Y, it suffices to have t[W] ~ ~rw(V) and ~ ~ W-- . F~ . . . Fro.

Finally, U, Z, X, t and the description of V as a Cartesian product can be

constructed from G in polynomial time, and we are done. []

We remark that, by following a similar line of reasoning, one can see
that Theorem 6 remains true if we interpret "translatable" as "accepted by Test 1
(Test 2)", and "test of translatability" as "Test 1 (Test 2)". The same holds for

Theorem 7.

4. The Translation of Deletions and Replacements

In this section we briefly show how the ideas developed previously for the ease of
translating the insertion of a tuple to a view can be adapted in a straightforward
manner to handle the case of deleting a tuple and of replacing a tuple with another.
We continue to assume that Z is a set of FDs satisfied by the database R, and that
we are given the view X, the complement IT, and the current instance V of the
view.

4.1. DELETIONS. Suppose we wish to translate the update u on the view
consisting of the deletion of a tuple t, t ~ V, while keeping the complement ~rr(R)
constant. Tile update Tu on R that achieves this should satisfy ~rx(T,[R]) -- V - t,
~rr(T,,[R]) = ~rr(R), and also Tu[R] ~ • for all R such that R ~ ~, ~rx(R) --- Is'.
(Compare with Properties A-D given for the case of an insertion.)

Now since ~rr(R) must be kept constant, we must have that t[X A]1]

E ~rxn r(V - t); in other words, there is a tuple r ~ V such that r ~ t, r[X ¢'1 Y] =

t[X O II]. From this we now see that X A Y cannot be a superkey of X (since Visa
projection of a legal instance), so by Theorem 1, X n Y ~ Y. It follows that the
only possible candidate for Tu is the deletion of the tuple t*~rr(R) from the database

R : T~[R] = R - t*~rr(R).

But now observe that, since T,[R] C_ R and Z only contains FDs, T,,[R] ~ • if
R ~ ~. Thus, our last requirement that T,[R] ~ 7~ for all R such that R ~ ~, ~rx(R)
= V, is satisfied trivially.

We have thus shown the following:

THEOREM 8. The deletion of t from V is translatable as R ~ R - t*~rr(R) i f

and only i f

(a) t[X n Y] E ~rxnr(V- t).

(b) ~, implies X n Y ~ Y, and Y~ does not imply X O Y ~ X. 17

Hence, determining whether a deletion is translatable can be done in time

O(I Vl + I ZI).

4.2. REPLACEMENTS. Suppose now the update we wish to translate under
constant complement Y is the replacement of a tuple fi, t~ E V, by a tuple t2,

756 s . s . COSMADAKIS AND C. H. PAPADIMITRIOU

t2 ~ V. The update T, on R should satisfy xx(Tu[R]) = V - t, O t2, and again
~rr(T,[R]) = ~rr(R) and T,[R] ~ Z for all R such that R ~ ~, ~rx(R) = V. We
distinguish two cases:

Case 1: t l[XN Y] # t2[XCl 11]. This case exhibits a behavior similar to the one
we are already familiar with: Specifically, since ~rr(R) must be kept constant, we
must have h[X t3 Y] E r x n r (V - h), t2[X t3 Y] ~ rxor(lO. From this it follows
that X N Y cannot be a superkey of X, and thus it is a superkey of Y by Theorem
I. Hence, the only possible candidate for T, is the replacement of the tuple t%rr(R)

by the tuple t~rr(R).
To check now if the last condition is satisfied, that is, if Tu[R] ~ ~ for all R such

that R ~ ~, a-x(R) = V, it is not difficult to see (by a reasoning exactly analogous
to that given for insertion) that all we have to do is check whether Chases[R(11, t2,
r,f)] succeeds for all F D s f i n 2; and for all tuples r in Vthat are different from h.

Case 2: h[XN Y] = t2[Xt3 I1]. In this case we see that the first two conditions
can be satisfied with no further restrictions on V, t, X, or Y, and moreover the only
possible candidate for Tu is replacing the set oftuples t%rr(R) by the set oftuples
t~rr(R) (we can no longer assert as before that either set will consist of a single
tuple, since this has depended on X N Y being a superkey of Y, which is no longer

necessary).
Checking whether the last condition is satisfied, that is, whether TdR] ~ ~ for

all R such that R ~ ~, ~rx(R) ffi V, can still be done by checking whether Chasez[R(V,
t2, r,J)] succeeds for all f i n I~ and for all r in V, r ~ h (one can see that the fact
that t%rr(R) and t*rr(R) may consist of more than one tuple does not affect

anything).
Thus, we have the following:

TH~OREta 9. The replacement o f t by t2 in V (h E V, t2 q~ V) is translatable as
R .-- R - t*~rr(R) td t~rr(R) if and only i f

(a) h[X n I1] E ~rx n r(V - h) and te[X N Y] E ~xn r(V), or h[X t3 Y] = te[X t'l Y].
(b) ~, implies X Cl Y ~ Y and does not imply X Cl Y ~ X, or h[X Cl Y] =

t2IX f) Y].
(c) Chase~[R(V, t2, r,f)] succeeds for all f i n ~ and for all r in V, r ~ h. []

From Theorem 9 it should be clear that one can develop results analogous to
the ones given for the case of insertion in a straightforward way. Thus, we do not
pursue this direction any further.

5. Explicit Functtonal Dependencies

Functional dependencies assert that a certain relation is actually a many-one
mapping, for example, a mapping from employee-project pairs to managers, or
from cost-price pairs to rates of profit. However, there is a difference; certain such
mappings (as in the first example above) are essential information stored by the
database, whereas others (as in the second example) are redundant information,
mappings that could be computed explicitly. We call the latter case of FDs explicit
functional dependencies (EFDs).

Explicit functional dependencies are important in the context of views and view
complements, because they can seriously affect the information content of database
mappings. We thus felt that we should study their behavior as it pertains to the
other known classes of dependencies. We first define formally what an EFD is:

Updates of Relational Views 757

Definition. A set of attributes X explicitly determines a set of attributes Y
(notation: X "~e Y) if there is an instance-independent function f(cai led a witness

of X---,e Y) such that ~rxr(R) = f(~rx(R)), for any legal instance R of the database.

Examples. Cost-Profitrate "*e Price, Course-Student-Grade --*e Average-Grade.

We remark that, in our definition of an EFD, no special property of the witness
functionfis assumed. This leads naturally to the following extension of the meaning
of implication of an EFD a from a set of dependencies l~, where oi, i = 1, k,
are the EFDs in ~,: for all functions f , i = 1, . . . , k, there is a function f sueh that,
if a database R satisfies all dependencies in 2~ (where fl is taken as the witness of
a,), then it also satisfies a (wherefis taken as the witness of o). In ease o is not an
EFD, then one just omits the requirement of the existence off.

As we see shortly, with this approach EFDs behave very much like FDs (in the

sense of Propositions 1 and 2). It would be interesting to see what happens if one
imposes natural restrictions on the witness function f, such as invertibility, 0-1-
valuedness, etc.

In the following, if ~ is a set of dependencies, we denote by l~r the set of FDs

{X---~ Y: A''--)e Yis in ~}.

PROPOSITION 1. Let ~ be a set o f EFDs; then ~ ~ X"+e Y i f f~ ,e¢ X---* Y.

PROOF. Consider the following chase procedure for computing X+: initialize
X ÷ to X; repeatedly locate a member Z --9 B of 2~F such that Z C X ÷ and B is not
contained in X +, and set X + to X + to B. As is well known [25], this procedure
terminates with a unique X ÷, and furthermore I~F ~ X-- , Y iff Y C X +.

We now argue that also ~ ~ X "-*e Y iff Y C_ X +. First, if Y C X +, then it
is clear that ~ ¢ X "-)e Y by the construction of X +. (Observe that, if X ---,~ Y and
Y---~e Z, then X--'~e Z.) Conversely, if Y is not contained in X ÷, we shall show that
2~ does not imply X---~e Y. For each EFD Z --+~ B in ~, pick as its witness a function

f z - ,B such thatfz_.,B(tz) = tzB, where tz is a tuple over Z with tz[W] = a for all IV,
and tzB is a tuple over ZB with tzn[IV] --- a for all W. Now if g is a purported
witness of X -+~ Y, then consider the database R consisting of a single tuple t with
t[W] = a for W ~ X +, and t[W] = y otherwise, where y ~ ¢ra(g(t[X])), for some A
in Y - X. It is clear that R satisfies each EFD Z --+e B in ~ (with witness fz- , ~),
but R does not satisfy X--+e Y with witness g. []

PROPOSmON 2. Let ~ be a set o f EFDs, and let ~' be a set o f FDs and JDs.

Suppose that ~ o ~,' ~ a:

(a) I f a is an FD or JD or embedded JD, then Zp to ~' ~ a.

(b) I f o is an EFD, then ~ ~ a.

PROOF. (a) If ~F tO I~' does not imply or, then there is a relation R that satisfies
2;e U I~' but violates o. Now since R ~ ZF, clearly we can pick a function f
for each EFD a, in I~ such that R also satisfies a, with witness f . Thus, R satisfies

to Z', and therefore Z t0 27 does not imply o.
(b) Assume that Z does not imply a, and observe that the one-tuple relation R

constructed in the Proof of Proposition 1 also satisfies I~' (since it satisfies any FD,
JD, or embedded JD). Thus, R satisfies 1~ U Z' and violates a, and so I~ IJ ~ ' does
not imply a. []

Thus, we can easily augment any of the known axiom systems for FDs [1], FDs
and MVDs, and so on, to include EFDs. Moreover, our characterization of
complementary views (Theorem 1) can be extended to include EFDs as follows:

758 s . s . COSMADAKIS AND C. H. PAPADIMITRIOU

THEOREM 10. Let ~ be a set o f FDs, JDs, and EFDs. Then X, Y are comple-

mentary iff

(a) They are complementary when considered as views of ~xv r(R) (i.e., ~ implies

the embedded MVD X N Y : - X - Y [Y - X); and

(b) Y, ~ X u Y ~ U.

PROOF. The/ fd i rec t ion is immediate: From (a) lrx(R)*~r(R) = 7rxur(R) for
every legal database R, and then from (b) R = f(*rxu r(R)) = f(*rx(R)*~r(R)), where
f i s an instance-independent function. Thus, if for two legal instances R, R ' we
have lrx(R) = lrx(R') and Irr(R) = Irr(R'), we get R = f(,rx(R)*Try(R)) =

fOrx(R')*~rr(R')) = R'; that is, X, Y are complementary.
For the only i f direction, assume first that (a) is false; that is, ~ does not imply

the embedded MVD X N Y ~ , X - Y[Y - X. We first remark that the
Equivalence Theorem of [30] is also true i f , is an embedded MVD (using the
partial extension of the equivalence between dependencies and formulas to include
embedded MVDs described in Section 7; the two-tuple Subrelation Lemma can be
extended to the case in which ~ is an embedded MVD, by an argument analogous
to the one given for the case in which a is an MVD). Using the same construction

as in the Proof of Theorem 1 (combined with Proposition 2 (a) and the above
observation), we obtain two distinct two-tuple relations R, R ' such that ~rx(R) =
~x(R'), ~rr(R) = ~rr(R'), and R, R ' satisfy all the FDs and JDs in Z and all the
FDs in ~F. Then it is easy to see that we can pick, for each EFD a in Z, a function
f s u c h that both R and R ' satisfy a with witnessf. This shows that X, Y are not

complementary.
If(b) is false, then (XU Y)+ # U, where (XU]1) ÷ is the closure o f X U Ywrt Zr.

Let R, R ' be two one-tuple relations such that R[tV] = R'[W] = a for IV in
(XO Y)+, and R[W] # R'[W], otherwise. Clearly, R # R' , ,rx(R) = ~rx(R'), ~rr(R)
= ~rr(R'), R, R ' satisfy all FDs and JDs in ~, and moreover by picking as the
witness of an EFD Z --~ B in Z a function f z - . s as in the Proof of Proposition 1,
we see that R, R ' also satisfy the EFDs in Z. This shows that X, Y are. not

complementary, and the proof is complete. []

Intuitively, Theorem 1 states that, if the only dependencies present are FDs and
JDs, then the only way to reconstruct a database from two projections is by join.
Theorem l0 states that, if EFDs are also present, then the only way is to join the
two projections and then explicitly compute the information that is still missing.

6. Conclusions and Directions for Further Research

We have studied some of the computational problems arising when one considers
applying, in the context of the relational model, the methodology proposed by
Bancilhon and Spyratos [3] for translating view updates. We discovered that certain
important problems such as testing translatability and determining a complement
that renders an update translatable, although solvable in polynomial time (Theo-
rems 3, 6, 8, 9), exhibit an interesting kind of inherent complexity (Theorems 4, 5,
7), which indicates the existence of limitations on how efficiently they can be
solved. However, we have only concentrated on a very simple case of the applica-
tion; we feel that much remains to be done before a reasonable account of the
applicability of the methodology can be attempted. In particular, the following
possibilities seem to be worthy of further investigation:

(1) Allowing more general dependencies: In particular, it would be interesting
to see to what extent can Theorem 1 be generalized, especially in view of the

Updates of Relational Views 759

negative result of [37]; a first result in the direction of ailowing unary inclusion
dependencies appears in [23]. More important, though, one should study the
problem of testing translatability and designing a translation. (RecaU that we found
the translation of deletions to be trivial just because we only considered functional
dependencies.) It is conceivable that our basic idea of a chase-type algorithm will
be useful, although it is not clear to what extent.

(2) Considering views that are a restriction of a projection (i.e., of the form
ae~rx, where P is a predicate on tuples): It should be noted that most of the views
occurring in practice are actually of the above form. The complement here can be

a pair of views, for example, (a-,e, aeTrr) or (a-,rtrx, ~rr), where ~rr is a complement
of ~rx. We believe that, in the case of only functional dependencies (which is still
very important from a practical viewpoint), our basic approach can be used with
only simple modifications (at least for certain Ps).

(3) Considering multirelation databases with views that are projections of joins
of relations: This is most important, given that the universal relation assumption
is being criticized as unrealistic. We also believe that this is likely to be the
theoretically most interesting direction.

(4) Studying the explicit functional dependencies: It seems to us that EFDs are
a step in the right direction, if one wants a model capable of capturing the
information content of database mappings. We have already examined their
influence on complementarity of views (Theorem 10). Their effect on issues such
as testing translatability or designing a translation (perhaps in conjunction with
refining our definition to capture more semantics) is a question that we feel deserves
further research.

REFERENCES

1. ARMSTRONG, W.W. Dependency structures of database relationships. In Proceedings oflFIP 74.
North-Holland, Amsterdam, 1974, pp. 580-583.

2. ASTRAHAN, M. M., BLASGEN, M. W., CHAMBERLIN, D. D., ESWAREN, K. P., GRAY, J. N., GRIFFITHS,
P.P., KING, W. F., LORIE, R. A., MCJONES, P. R., MEHL, J. W., PUTZOLU, G. R., TRAIGER, L L.,
WADE, B. W., AND WArSON, V. System R: Relational approach to database management. ACM
Trans. Database Syst. 1, 2 (June 1976), 97-137.

3. BANCIL~ON, F., AND SPYRArOS, N. Update semantics of relational views. ACM Trans. Database
Syst 6, 4 (Dec. 1981), 557-575.

4. BEERI, C., AND BERNSTEIN, P.A. Computational problems related to the design of normal form
relational ~hemas. ACM Trans Database Syst. 4, 1 (Mar. 1979), 30-59.

5. BEER1, C., BERNSTEIN, P.A.) AND GOODMAN, N. A sophisticate's introduction to database nor-
malization theory. In Proceedings of the 4th VLDB Conference (West Berlin, Germany, Sept. 13-
15). ACM, New York, 1978, pp. 113-124.

6. BEERI, C., AND VARDI, M.Y. On the complexity of testing implications of data dependencies.
Res. Rep., Dept. of Computer Science, Hebrew Univ. of Jerusalem, Jerusalem, Israel, Dec. 1980.

7. BEERi, C., AND VARD1, M.Y. On acycfic database decompositions. Inf. Control, to be pubfished.
8. CARLSON, C.R., AND ARORA, A.K. The updatability of relational views based on functional

dependencies. In 3rd International Computer Software and Applications Conference (Nov.). IEEE
Computer Society, Chicago, II1., 1979.

9. CHAMBERLIN, D.D., GRAY, J. N., AND TRAIGER, I. L. Views, autho6zation and larking in a
relational data base system. In Proceedings of 1975 Nattona! Computer Conference. AHPS Press,
Reston, Va., 1975, pp. 425-430.

10. CODD, E. F. A relational model for large shared data banks. Commun. ACM 13, 6 (June 1970)
377-387.

11. CODD, E.F. Relational completeness of database sublanguages. In Data Base Systems, R. Rustin,
Ed. Prentice Hall, Englewood Cliffs, N.J., 1972, pp. 65-98.

12. CODD, E .F . Further normalization of the database relational model. In Data Base Systems,
R. Rustin, IN. Prentice Hall, Englewood Cliffs, N.J., 1972, pp. 33-64.

13. CODD, E. F. Extending the database relational model to capture more meaning. ACM Trans.
Database S),st. 4, 4 (Dec. 1979), 397-434.

760 S. S. COSMADAKIS AND C. H. PAPADIMITRIOU

14. CODASYL Data Base Task Group, Aprd 71 Report. ACM, New York, 1971.
15. COOK, S.A. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual

ACMSymposium on the Theory of Computing(Shaker Heights, Ohio, May 3-5). ACM, New York,
1971, pp. 151-158.

16. DATE, C.J. An Introduction to Database Systems. Addison Wesley, Reading, Mass., 1977.
17. DAYAL, U., AND BERNSTEIN, P.A. On the updatability of relational views. In Proceedings of the

4th VLDB Conference (West Berlin, Germany, Sept. 13-15). ACM, New York, 1978, 368-377.
18. FAO1N, R. Multivalued dependencies and a new normal form for relational databases. ACM Trans.

Database Syst. 2, 3 (Sept. 1977), 262-278.
19. FAGIN, R., ULLMAN, J.D., AND VARDI, M.Y. On the semantics of updates in databases. In

Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
1983.

20. FURTAVO, A. L., SEVCIK, K. C., AND DOS SANTOS, C.S. Permitting updates through views of data
bases. Inform. Syst. 4, 4 (1979), 269-283.

21. GAREY, M. R. AND JOHNSON, D.S. Computers and Intractabdity: A Guide to the Theory of NP.
Completeness. Freeman, San Francisco, Calif. 1979.

22. IMS/VS publications GH20-1260, SH20-9025, SH20-9026, SH20-9027. IBM, White Pitons, New
York, 1978.

23. KANELLAKIS, P. C., COSMADAK]S, S.S., AND VARDI, M.Y. Unary inclusion dependencies have
polynomial time inference problems. In Proceedings of the 15th ACM Symposium on Theory of
Computing (Boston, Mass., Apr. 25-27). ACM, New York, 1983, pp. 264-277.

24. KARP, R.M. Reducibihty among combinatorial problems. In Complexity of Computer Compu-
tations, R. E. Miller and J. W. Thatcher, Eds. Plenum Press, New York, 1972, pp. 85-104.

25. MA1ER, D., MENDELZON, A. O., AND SAGIV, Y. Testing implications of data dependencies. ACM
Trans. Database Syst. 4, 4 (Dec. 1979), 455-469.

26. MAIER, D., SAG]V, Y., AND YANNAKAKIS, M. On the complexity of testing implicanons of
functional and join dependencies. J. ACM 28, 4 (Oct. 1981), 680-695.

27. RlSSANEN, J. Independent components of relations. ACM Trans. Database Syst. 2, 4 (Dec. 1977),
317-325.

28. RlSSANEN, J. Theory of relations for databases--A tutorial survey. In Proceedings of the 7th
Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science, vol. 64. Spnnger-Verlag, New York, 1978, pp. 536-551.

29. ROWE, L., AND STONESRAKER, M. Manuscript. Univ. Cal., Berkeley, Berkeley, Calif., 1979.
30. SAGIV, Y., DELOBEL, C., STO~r PARKER, D., JR, AND FAGIN, R. An equivalence between relational

database dependencies and a fragment of propositional logic. J. ACM28, 3 (July 1981), 435--453.
31. SPYRATOS, N. Translation structures of relational views. In Proceedings of the 6th VLDB Confer-

ence (Montreal, Canada, Oct. 1-3). ACM, New York, 1980, pp. 411--416.
32. STOCKMEYER, L.J. The polynomial time hierarchy. Theor. Comput. Sei. 3, 1 (1976), 1-22.
33. STONEBRAKER, M., WONG, E., KREPS, P., AND HELD, G. The design and implementation of

INGRES. ACM Trans. Database Syst. 1, 3 (Sept. 1976), 189-222.
34. TODD, S. J.P. The Peterlee relational test vehicle--A system overview. IBMSyst. d. 15, 4 (1976),

285-308.
35. ULLMAN, J.D. Prinoples of Database Systems. Computer Science Press, Rockville, Md., 1980.
36. ULLMAN, J.D. The U.R. strikes back. In Proceedings of the ACM Symposium on Principles of

Database Systems, (Los Angeles, Calif. Mar. 29-30). ACM, New York, 1982, pp. 10-22.
37. VARDL M.Y. On decomposition of relational databases. In Proceedings of the 23rd Symposium

on Foundations of Computer Science (Chicago, Ill., Nov.), IEEE, New York, 1982.
38. VARDI, M.Y. Inferring multlValued dependencies from functional and join dependencies. Res.

Pep., Dept. of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, March 1980.
39. WRATHALL, C. Complete sets and the polynomial-time hierarchy. Theor. Comput. Sci. 3, 1 (1976),

23-33.
40. ZANIOLO, C. Analysis and design of relational schemata for database systems. Tech. Rep. UCLA-

ENG-7669, Dept. of Computer Science, Univ. of California, Los Angeles, Calif., July 1976.
41. ZANIOLO, C. Database relations with null values. In Proceedings of the ACM Symposium on

Principles of Database Systems (Los Angeles, Calif., Mar. 29-31). ACM, New York, 1982, pp. 27-
33.

42. ZLOOF, M.M. Query-by-Example: A data base language. IBMSyst. J. 16, 4 (1977), 324-343.

RECEIVED MARCH 1983, REVISED MARCH 1984; ACCEPTED MARCH 1984

Journal ofthe Assooauon for Computmg Machinery, Vol 31, No 4, October 1984

