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1. Introduction 

In  database systems, the a m o u n t  and  structure of  the stored data are decided by 

the database administrator .  However ,  individual users often want  to deal with only 

part  o f  the informat ion  in the database, and  moreover  they m a y  want  to restructure 

it in a way suitable to their needs. For  this reason, database systems often provide 

the view facility. A view is defined by  giving a query on  the whole database. At any  

point,  the contents  o f  the view are just  the ou tcome  o f  this query. The  user queries 

and  updates  the view as though it were a database in itself, with no reference to 

the underlying database. The view idea spares the user f rom the conceptual  

complexit ies o f  the whole database, makes  queries easier by "factoring out"  a 
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common subexpression, and can serve as a protection mechanism by restricting 
access only to insensitive information. A view facility is an important part of  many 
relational database systems, for example, PRTV [34], QBE [42], System R [2], and 
INGRES [33] (as well as of database systems designed along the lines of the network 
data model, like DBTG [14], or the hierarchical data model, like IMS [16, 22]). 

In relational database systems, a view is generally implemented by naming and 
storing its definition, which is just a query definition in the query language of the 
system. Queries on the view arc translated into database queries by composing 
them with the view definition. Thus, querying a view presents no serious conceptual 
problems. 

What is much more complex is the subject of updating a flew. A simple update 
operation, such as inserting a tuple in the view, may create formidable problems. 
The underlying database update may be ambiguous or ill-defined, create inconsist- 
encies in the database, or have side effects on the view. This problem is related to 
such fundamental issues as null values [13, 41] and update anomalies [5, 10, 12] 
in relational databases. Most existing systems do not allow updates of views (e.g., 
PRTV, QBE), or allow them only in the trivial case in which the view consists of 
one of the database relations. This omission apparently reflects our poor under- 
standing of the subject. 

In one of the first works dealing with view updates, Dayal and Bernstein [17] 
stipulated a notion of correct translation of a view update and gave some straight- 
forward conditions for the existence of such translations. From this and subsequent 
works, for example, [8, 20, 29], it has become apparent that we need a method for 
assigning semantics to view updates. This method should be formal (resolving the 
delicate ambiguities involved) and simple (so the users would be able to define the 
semantics themselves, perhaps with the aid of the database system). 

An excellent solution to this problem was suggested in the work of Bancilhon 
and Spyratos [3, 31 ]. They developed an elegant theory (quite independent of the 
relational model) of database mappings, that is, functions from database states to 
database states. A view v is such a mapping, and so is an update u on the view. 
How can we translate u? The translation, Tu, must be' such that the updated 
database maps via v into the updated view. As may be suspected, there are typically 
many Tu's, so the problem remains. Bancilhon and Spyratos resolve this ambiguity 
by the notion of the complement of a view. A complement ofv is another view v', 
such that the mapping s ~ {v(s), v'(s)) (denoted by v x v' - s is the database state) 
is one to one. In other words, any information lost by v can be recovered by v'. A 
view has many complements (e.g., the identity mapping is a complement of all 

views). Choosing a complement that must remain constant assigns unambiguous 

semantics to a view update. The scenario is the following: A user defines a view. 
Before updating the view, the user must define (probably with the assistance of the 
system) another view (a complement of the first), which must be held constant 
during updating (this corresponds to the "rectangle rule" of [9] and the "absence 
of side effects" of [ 17]). Using this information, the system translates (or rejects as 
untranslatable) the user's updates. 

Translating under constant complement amounts to finding a database state s '  
such that v(s') = uv(s) and v'(s') -~ v'(s). By the definition of a view complement, 
s' is unique, if it exists at all. Thus, if such an s' can be found for any s (in which 
case we say that u is v'-translatable), we can translate u as the database update Tu 
= (v x v') -~ (uv x v'). The soundness of the overall approach is demonstrated by 
the following facts [3]: 
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(i) Tu is consistent: that is, the updated database always maps, under the view 
definition v, on the updated view (formally vT~ = uv); also T~ is acceptable, 
meaning that if u does not change the view, no change is made on the database 
either (i.e., for all s, uv(s) = v(s) implies Tu(s) = s). 

(ii) Suppose U is a set of  view updates, which is reasonable in the sense that it 
satisfies minimal user requirements; that is, it is closed under composition and 
there is a means of canceling the effect of every allowed update on the view 
(formally, if u, w E U, then uw E U, and if s is a database state and u E U, there 
is an update w E U such that wuv(s) ~- v(s)). If v" is a view complement such that 
any update in U is v'-translatable, then the mapping that associates to an update 
u in Uthe  database update T,, is a morphism; that is, Tuw = TuTw for all u, w ~ U. 
(Clearly, any reasonable way to translate a set of updates should have this property; 
i.e., the result of  the translation shouM be the same whether the user applies two 
updates from the set one after the other or their composite update.) On the other 
hand, the converse also holds: If T is a mapping off U such that, for every u E U, 
T(u) is a consistent and acceptable database update, and also T is a morphism (i.e., 
T is a reasonable way to translate view updates into database updates), then there 
is a view complement v' such that, for every u E U, u is v'-translatable and 
T(u) = 7/',. 

However, as was pointed out earlier, this approach is essentially independent of  
any particular data model. In this paper we investigate some of the issues and 
problems that arise when one attempts to apply this methodology in the context 
of the relational model [11, 12], with a view toward rendering it realizable in 
practice. We discover that very interesting theoretical questions already arise at 
very simple eases of the application. In particular, we concentrate on database 
schemas consisting of a single relation, with integrity constraints that are (for the 
most part) just functional dependencies (FDs) [ 1, 10]. The views we consider are 
simply projections of the relation. Working with a single relation corresponds to 
some unrealistic universal relation assumption [36], but it yields a simplified 
problem that must  be conquered first. Functional dependencies constitute a simple 
and practical class of constraints. Projective views are, again, the simplest imagi- 
nable, and they are also important from a practical point of view. 

In Section 2 we characterize when two projections are complements of  each 
other. There is an interesting parallel between this characterization and the notion 
of independence of Rissanen [27]. Our necessary and sufficient condition (which 
can be generalized to include the presence of join dependencies) states that the 
common  part of  the projections must  be a superkey of one of  the projections. As 
a consequence, it is easy to test whether two given projections are complementary 
in a schema. It is also possible to construct a nonredundant (minimal) complement 
of a given projection in polynomial time. Unfortunately, finding a smallest com- 
plement of a given projection (i.e., the complement with the fewest attributes) is 
shown to be NP-complete. 

In Section 3 we study how to implement the insertion ofa  tuple into a projection, 
keeping a given complementary projection unchanged. We show that this can be 
done in a unique way, and so the problem reduces to testing whether the resulting 
database is consistent. We show that this test can be carried out in time cubic in 
the number of  tuples o f  the view. Since this is likely to be impractical, we also 
develop two alternative stronger tests that can be executed more efficiently. 

Ideally, we would like the time complexity of our update algorithms to depend 
on the number of attributes, functional dependencies, and other parameters of the 
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schema, not of the instance. When the time must depend on the number oftuples, 
we would at least like this dependence to be logarithmic, since this number is 
expected to be very large. However, complexities like those described in the previous 
paragraph resemble, in a practical sense, exponential complexities. We show some 
negative complexity results which suggest that this "exponential" behavior is 
inherent: The translatability problem becomes II~-hard [32] if the view is repre- 
sented in some exponentially succinct way (e.g., as the union of two Cartesian 
products). Even one of the simpler, stronger tests mentioned above becomes co- 
NP-hard. 

Finally, we examine the complexity of finding a complement that renders a 
given insertion translatable. We show that this problem is polynomial in the 
number of tuples of the view, but inherently exponential in the size of the schema 
(and the logarithm of the number of tuples of the view). Similar results can be 
obtained for the two stronger tests. 

In Section 4 we extend these results to the case of deletions and replacements of 
tuples. We find that, for the most part, the extension is rather straightforward. 
Finally, in Section 5 we define and examine a new kind of functional dependency 
that is important in the context of complements, the explicit functional dependency. 
We extend our characterization of complementary projections to allow also for the 
presence of explicit functional dependencies. Section 6 concludes this work by 
pointing out some directions for further research. 

2. Defining a Complement 

Let S be a database schema (U, Z), where U is a universal set of attributes and 
is a finite set of dependencies. (For the fundamental notions and notations of the 
relational model, see [35].) A relation R over U (an instance of U) is called legal if 
it satisfies all the dependencies in 2; (notation: R ~ Z). A view of S is for us a 
projection defined by a subset X of U. For each instance R, the corresponding 
instance of the view is 7rx(R). We disambiguate updates on a view by defining a 
second view, Y, the complement of X. Two views X and Yare called complementary 
if 7rx(R) = lrx(R') and Try(R) - -  lrr(R') imply R = R' ,  whenever R and R '  are both 
legal instances. In other words, the two views together contain enough information 
to reconstruct the whole database. 

When are two views X and Y complementary? Clearly, a sufficient condition is 
that the multivalued dependency (MVD) [18, 28, 40] *[X, Y] holds in every legal 
instance; that is, Z implies the MVD *[X, Y]. If this is the case, the database can 
be reconstructed from its projections on X and Y by join. Recently, it has been 
shown [37] that the condition is not necessary; that is, if Z consists of general first- 
order sentences, then ~rx and a-r can be complementary without the reconstruction 
operator being the join. However, we show that this cannot happen in the special 
case of interest in which Z consists of functional and join dependencies (also 
proved independently by Beeri and Vardi [7]): 

THEOREM 1. Let ~ consist of  functional dependencies and join dependencies. 
Then X, Y are complementary iff Z ~ *IX, Y]. 

PROOF. The/fdireetion is immediate: If X implies the MVD *IX, Y], then for 
every legal instance R we have ~rx(R)*~ry(R) = R. Consequently, if for two legal 
instances, R, R '  we have Irx(R) = 7rx(R') and ~rr(R) = rr(R') ,  we get lrx(R)%rr(R) 
= rx(R')*~rr(R') and from this R = R' ;  that is, X, Yare complementary. 
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For the only/fdirection, assume that Z does not imply the MVD *[X, Y]; we 
show that X, Y are not complementary, by exhibiting two distinct legal instances 
R, R'  for which 7rx(R) = ~rx(R') and lry(R) = ~'y(R'). 

Let ~ be a join dependency *[Rt, . . . ,  Rq]; define M(~) to be the set of  MVDs 

{*[U,~sjR~, UiEs~Ri], S,, $2 a partition of{l,  . . . .  q}l (see also [26]). I f Z '  is the set 
we obtain if we replace each join dependency ~ in ~ by the multivalued depend- 
encies in M(~), then, since ~ implies each MVD in M(~), Z implies Z'; but by our 
hypothesis Z does not imply *[X, Y], so Z' does not imply *IX, Y] either. Now 
since Z' consists of FDs and MVDs only, there is a two-tuple counterexample to 
this implication [30]; that is, there is a relation R consisting of two tuples ~ and v 
that satisfies all the dependencies in Z' but does not satisfy *[X, Y]. 

From the relation R construct another relation R '  as follows: Since R does not 
satisfy *[X, Y], it must be that #[X f3 I:] = u[X N Y], and also ~[Y - X] 
~[ Y - X] and ~[X - Y] # u[X - Y]. Let R '  consist of  a tuple ~' that agrees with ~t 
on X a n d  with ~ on Y - X, and o fa  tuple ~' that agrees with ~, on X a n d  with/z on 
Y - X. Clearly, R ~ R' ,  R '  satisfies all the dependencies in Z' (it defines the same 
special truth assignment [30] as R), and also ~rx(R) -- ~rx(R') and ~rr(R) = ~rr(R'). 
Thus, we only need to show that R and R '  are both legal; that is, they both satisfy 

all the JDs in Z. (They obviously satisfy the FDs in Z, since these are included in 
23' and R, R '  satisfy Z'.) 

Let *[R~, . . .  , Rq] be a JD in 2;; to show that it holds in R, it suffices to 
show that, i fa  tuple ~ is obtained by joining ~[Rd,  . . . .  ~q[Rq], where ~ . . . . .  ~q are 
tuples of  R, then either ~ -- ~ or ~ = ~,. This is certainly true if~l -- . . .  -- ~q =/~ or 
if ~ = . . .  = ~q = ~; else, let S~ = [i:~ = ~}, $2 --- [i:~i = u}. Since the MVD 

*[Ui~siR,, Lli~s2Rd is in 2;', it holds in R, and thus either ~ --/~ or ~ = ~,. Thus R 
satisfies all dependencies in Z, and so does R '  (by the same argument). This 
completes the proof. [] 

Notice that our condition (though not the proof) parallels the result of  Rissanen 
on independence [27]. Intuitively, independence (in the sense of [27]) is stronger 
than complementarity, and thus our theorem contains only the first condition of 
[27]. To see why, consider the classical Employee-Department-Manager schema. 
The decomposition into X = El), Y = EM is not independent, although X and Y 
are complementary. 

Theorem I has some algorithmic consequences: 

COROLLAR~ 1. Given (U, 23), X, Y C U, whether X, Y are complementary can 
be tested in polynomial time. 

PROOf. By Theorem 1, testing for complementarity amounts to inferring 
an MVD from a set of  FDs and JDs. The latter can be done in polynomial time 

[26, 381. [] 

COROLLARY 2. Given (U, 23) and X C_ U, we can find in polynomial time a 
minimal (nonredundant) complement of X. 

PROOF. Simply start with the trivial complement U and repeatedly take out 
any attribute in X that can be taken out without affecting complementarity 
(examine the attributes in some arbitrary order). [] 

Thus we can program in a database system some guidance to the user toward 
the definition of a complement. Unfortunately, as so often happens, finding the 
minimum is much harder. 
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THEOREM 2. Given (U, ~), X C_ U, and k > O, determining whether there is a 

complement Y o f  X with ] Y] = k is NP-complete. 

PROOF. Membership in NP is obvious;just guess a subset Yof  Uwith [ Y[ = k 

and verify (Corollary l) that X, Y are complementary. 

To prove the hardness part, we will make a redfiction from the 3-satisfiability 

problem (3-SAT), which is known to be NP-complete [15, 21, 24]. Let ~ be a 
Boolean formula in 3-conjunctive normal form (3-CNF); let xi, i - 1, . . . .  n, be 

the variables occurring in ~, and letj~, j = 1 . . . .  , m, be the clauses o f~ .  We con- 

struct the following schema &, = (U, ~): U is F~ . . .  F,~X~Xf . . .  X~X'A and 

contains the functional dependencies F~ . . .  F,,X, --~ X', F~ . . .  FmX" ~ X,, i -- 

1 . . . . .  n; also for each clause fj = l~ + I~2 + I~3, j = 1 . . . .  , m, the functional 

dependencies L~I --~ Fj, Lj2 --~ F~, Lj3 --* Fj (if lj~ = x~, Lj, = 7(,; if/~ = ~x~, Lji -- X~). 
Now let X be F~ . . .  FmX~X[ . . .  X~X~; we claim that X has a complement Y 

with [ Y[ = 1 + n iff ~ is satisfiable. To see this, first assume that ~ is satisfiable, 

and let h be a satisfying assignment. Take Y to be L~ . . .  L,M, where L ~- Xi if 

h(x,) is true, L, = X" if h(x,) is false. To show that X, Y are complementary, it 

suffices to show (by Theorem l) that $ ~ *IX, Y]; to do that, we use the chase 

method for inferring dependencies [25]: If we consider the tableau consisting of  a 

row with distinguished variables in the X columns and a row with distinguished 

variables in the Y columns, then we can convert the second row into a row of 

distinguished variables by using the FD-rules corresponding to the FDs in ~ as 

follows: First, since h satisfies fj, at least one of the FDs {Lit --* Fj, Lj: ~ F ,  
t j 3  ~ Fj} can be used to flU in Fj, and this can be done for all j. Then the FDs 

Ft . . .  FmX, ~ X', F~ . . .  F,,,X" ~ X, can be used to fill in the remaining X,'s 
and X/'s. 

For the converse, suppose there is a complement Y of X with [ YI = 1 + n. 
Clearly Y has to contain at least one of {X,, X;} (else there is no way to fill in both 

X, and X~, and thus Y contains exactly one of IX,, X;} for each i (also A E IT). 

Consider now the assignment h, where h(x,) is true if X~ E Y and false if X,' ~ Y: 
Since F~ is filled in, at least one of  {Lj~, Lj~, L~31 must be contained in Y, and thus 

h satisfiesfj. This is true for all j, so h satisfies ~P and the claim is established. 

Finally, it is easy to see that S,, and X can be constructed in time polynomial in 
the length of  ~o. This completes the proof. [] 

Observe that in our reduction we only used FDs, so Theorem 2 is true even if 

is constrained to contain only FDs. Now if ~ '  - {Z ~ , B[ Z ~ B is an FD in 
~}, then, if a is a JD, $ ~ a iff ~ '  ~ ~ [6]. Thus, we might as well replace ~ by ~ '  

in our proof, which means that Theorem 2 is true even if ~ is constrained to consist 
of  MVDs only. 

3. The Translation o f  Insertions 

3.1 TESTING TRANSLATABILITY. ~ is now a set of functional dependencies; 
we furthermore assume that each FD in ~; is of the form X ~ A, where A is a single 
attribute. (This is easy to enforce, by replacing each FD X ~ Y in ~ by the 
equivalent set o fFDs  {X---~A :A  E I1}.) 

Suppose that the view X and its complement Y are given, and so is the current 
instance Vof the  view. We wish to translate the update u on the view consisting of  
the insertion of a tuple t, while keeping the complement ~'r(R) constant. How can 
we design an update on R, Tu, which achieves this? 
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The translation T,, should have certain obvious properties: 

(A) It should implement the view update, that is ~,x(T.[R]) ffi VU t. 
(B) It should keep the complement constant, according to the prescribed seman- 

tics; that  is,  = 

(C) It shouM yield a consistent database; that is, if R is a "possible" instance, 

T,[R] ~ 2. The meaning of"possible" is the subject of  property D below. 
(D) A more subtle but important assumption is that the proposed update is based 

on the user's knowledge of the view and on no other information concerning 
the database. Thus, the translation should produce a legal database for all legal 
instances of the overall database, given the instance of the view. 

It is quite interesting that these properties determine precisely when the insertion 
of a tuple t in an instance V of the view is translatable, and, if it is, the translation 
Tu is unique. 

First, suppose that t 6~ V(otherwise Tu is the identity). Since a'r(R) must be kept 
constant (Property B) we must assume that t[X N I1] E ~rxny(R) = ~rxnv(V); 
otherwise, the only way to insert t in ~rx(R) (Property A) would be to insert 
something in ,rv(R). By Theorem 1, X n Y is a superkey of either X or Y. If it is a 
superkey of X, then the update is clearly untranslatable, because V O t is not the 
projection of a legal instance (Property C). So X N Y---> Y. It follows that the only 
T~ satisfying A-C is the insertion of the tuple t*~r~(R) in the database R: Tu[R] = 
R U t*~rv(R) (* denotes the natural join). 

It remains to determine under which conditions Tu[R] is legal (Property C). The 
insertion of t into V is translatable iff T.[R] ~ 2 for all R such that R ~ ~, ~rx(R) 
= V. (Property D was used here.) 

Suppose that the insertion is not translatable. This means that there is a functional 
dependency, say Z ---> A, which is violated by Tu[R] for some R for which R ~ 2~ 
and ~rx(R) = V. Since R satisfies Z ~ A, the inserted tuple must be the culprit. 
Thus, there must be a tuple r of  V that agrees with t on Z N X and, if A E X, 
disagrees with t on A. Now let us construct a relation R(V, t, r, Z ---> A) by 
filling the rows of V with new symbols in the columns of Y - X, only with r[Z N 
(Y - X)] = #[Z A (Y - X)] (where ~ is a tuple agreeing with t on X N I0; if we 
perform the chase [25] wrt 2~ on this relation, no two distinct elements of  V nor 
the elements corresponding to r[A], ~[A] (irA E Y -  X) are ever equated (otherwise, 
we say this chase succeeds). It turns out that this is a necessary and sufficient 
condition for untranslatability. 

THEOREM 3. The insertion of t into V (t q~ lO is translatable as R ,-- R U 
t*lrr(R) if  and only if 

(a) tIX n YI ~ ~rx, r(V). 
(b) F~ implies X f3 Y---+ Y and does not imply X 0 Y--+ X. 
(c) Chasez[R(V, t, r, f ) ]  succeeds for all functional dependencies f E • and tuples 

r of V (where r satisfies the restrictions described above). 

PROOF. By the preceding discussion, all we need to notice is that, if Chasez 
JR(V, t, r,f)] does not succeed for some F D f ~  ~ and some tuple r of  V, then it 
actually provides us with a counterexample; that is, it constructs a relation R such 
that R ~ 2, 7rx(R) - V, and T,[R] violatesf In the opposite case, the chase actually 
provides us with a proof that there can be no relation R such that R ~ ~, ~rx(R) = 
V, and T:[R] violates s o m e f E  2; that is, T:[R] ~ ~ for all R such that R ~ 2~, 

= v .  [ ]  
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COROLLARY Whether an insertion is translatable can be tested in time 

O(I Vlalogl VI 12;121Y-XI). 

PROOF. Clearly, condition (a) can be tested in time O(I VI), and condition (b) 
can be tesled in time O(1 2; I) (using the linear-time algorithm [4] for inferring an 
FD from a set of  FDs). Since condition (c) can be tested by doing O(I ~1 I VI) 
chases, it suffices to show that the chase of R(V, t, r, f )  can be computed in time 
O(I VI 210gl VII ~ I I Y -  XI). Recall that the chase procedure consists in repeatedly 
locating a pair of tuples ~, v such that ~[Z] ~- v[Z] and ~[A] # viA] for some FD 
Z ---, A in 2;, and replacing the element t,[A] with viA] throughout the A column. 
This can be done by the following straightforward algorithm: 

Initialize R* to be R(V, t, r,f). 
Repeat until no new change is made on R*: 

For each FD Z---, A in Y~ do: 
Sort R* lexicographically according to the elements of the Z columns. 
Find the first pair of consecutive tuples u, ~ such that/~[Z] ffi u[Z], ~[A] ~ u[A]. 
Replace triAl by v[A] throughout the A column. 

It is clear that each execution of the body of the for loop takes time O(I V llogl V I), 
so each execution of the for loop takes time O(I Vllogl V[ 12; I). Since each time 
the for loop is executed the number of distinct symbols in the Y -  X columns is 

reduced by at least one (if the chase ever attempts to equate two different elements 
in one of the X columns, we stop immediately), and initially we have I Y - XI I VI 

such symbols, the for loop will be executed at most I Y - XI I VI times, and so the 
total time is at most O(I Vl:logl V[ I ~1 I Y -  XI). [] 

The algorithm described above can be speeded up by taking the following 
straightforward shortcut: To construct R(V, t, r, Z ~ A), first fdl the rows of V 
with new symbols in the columns of Y -  X, then do a chase (and store the resulting 
relation to be reused for other members of %), and then set r[Z I"1 ( Y  - X)] -. t~[Z 
N ( Y -  X)], for some ~ agreeing with t on X 63 Y. However, since we are still 
unable to provide a better guarantee for its worst-case performance than 
O(I VI 310gl VI), its applicability in practice is dubious, in view of the fact that I VI 
is normally very large. For this reason, we will now present two alternative tests 
for which we can show better upper bounds to their worst-case performance. 
However, our tests will be stronger than necessary; that is, in addition to rejecting 
all untranslatable insertions, they may also reject some translatable ones. 

Test 1. Our first alternative test consists in simply avoiding to do a full chase 
on R(V, t, r, Z ----> A); instead, for each tuple # agreeing with t on X N Y, we do a 
chase on the two-tuple relation consisting of r and/~, and we report success if any 
of these chases equates r[A],/~[A] (if A E Y - X; notice that in this case t~[A] = 
t[A], since X 63 Y ---> Y), or attempts to equate two distinct elements of V. Thus, 
what we are actually doing is imposing the extra requirement that Chasez[R(V, t, 

r, f ) ]  succeeds fast, if it succeeds at all. Intuitively, this does not seem to be very 
restrictive, and one may hope that Test I will actually accept most of the translatable 
insertions that will occur in practice. 

The test can obviously be implemented in time O(I VI 2 I Z I). However, we can 
do better (in terms of the dependence of the time complexity on I VI), as follows: 

(1) Fill the rows of V with new symbols in the Y -  X columns. Then determine 
the set of  tuples T = {/, : ~[X 63 Y] = t[X f) Is]}. This can be done in time 

o(I Vl). 
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(2) For each S _.C U, construct a copy of the relation T (call it Ts), and sort it 
according to the contents of  the S columns. This can be done in time O(2 t vl 

I Vllogl Vl). 
(3) For each S C_ U, compute the closure of  S under 2;; that is, the set S + = {A : 2~ 

S ---> A}. This can be done in time 0(21Vl ] 2~ ]) (using the algorithm of [4] 
for computing closures). 

(4) For each FD Z ---> A in 2; do: 

For each tuple r for which r[Z N X] = t[Z N X] and r[A] # t[A] (ifA E X), do: 
Make r agree with # on Z n ( Y -  X), where t~ is a tuple in T. 
For each S C U do: 

Insert r in Ts. 
If r[S] = v[A], where v is either the tuple next to r or the tuple before r in Ts, 

then make r agree with v on S +. 

This can be done in time O(] Z I [ VI 2lVllogl VI). 
Thus, the overall time expended is O([ VI logl VI 2 lul I Z I). Of course, there are 

various optimizations and shortcuts one may employ in an actual implementation 
(e.g., to handle the potential problem of having too many sorted tables--say, by 
actually having for each S a sequence o f  pointers to the tuples of T). Observe that 
the running time of this algorithm will be better than our worst-case upper bound 

for the exact translatability test (and also better than the obvious O([ V[ 2 {Z [) 
algorithm) if ] VI/logl VI > 21% which is definitely going to be the case in practical 

situations. 

Test 2. Our second alternative test has a somewhat different flavor. Notice that 
Test 1 saves time by doing only part of the computation necessary for each 

particular chase. Test 2, instead, will only do one full chase, if this is possible. 
More specifically, recall that the essential part of the translatability test (in terms 

of time requirements) is checking if for all R such that R ~ 2~, ~rx(R) = V, we have 
T,[R] ~ ~,. Suppose now that Y actually has the following property: 

Property. For all R~, RE such that R~ ~ ~,, RE ~ ~, lrx(RO = ~rx(Rz), t[X N Y] 

~rxn Y(RO = ~rxn v(R2), we have that Tu[Ri] ~ Z iff T.[R2] ~ Z. 

We call such a Y a good complement of X. Our interest in good complements 
lies in the fact that, if Y happens to be a good complement of X, then clearly all 
we need to do to test if the insertion u is translatable is construct some relation Ro 
such that Ro ~ 2;, ~rx(Ro) = V, and test whether T,[Ro] ~ ~. We can construct such 
an Ro by filling the rows of V with new symbols in the Y - X columns and then 
doing a chase; this can be done in time O(] V]Elog] V] I]~] ]Y - Xl). Testing 
whether T,[Ro] -- Ro U t*~rv(Ro) satisfies ~ amounts to testing whether for each 
tuple ~ of  Ro, the two-tuple relation consisting of # and t*Trv(Ro) satisfies all the 
FDs in Z; this can be done in time O(] V] ] Z [). 

Thus, all we need to do is show how one can test if a given complement Y of X 
is actually a good complement. Observe that this property is independent of the 
tuple t to be inserted; that is, it is a property of the schema only (X, Y, and Z). 

Suppose, then, that Y is not a good complement of X. This means that there are 
two relations R~, Rz such that RI ~ 2;, R2 ~ 2~, ~rx(Rl) -- wx(Rz), t[X n I7] E 

lrxn y(RI) = 7rxn I,(Rz), Tu [R2] ~ ]~, and Tu[RI] = Rl tO t*~rr(RO violates some 
FD in Z, say Z - - . A .  Since Rt ~ Z, there must be a tuple el in Rt such that ut[Z] 
= ~.z[t*~r~.(Rl)], #~[A] # ~ra[t*~r~-(R0]. Also there must be a tuple v~ in R~ such that 
, , , [xn  YI = t [ x n  Yl. 
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Since ~rx(RO = ~rx(R2), we can then find two tuples m, ~,2 of R2 such that t~2[X] 
-- re[X], v2[X] -- u~[X]. Now consider the relations R~, R~, consisting of m, u~ and 
of/~2, p2, respectively. Clearly, Ri ~ ~, R~ ~ • (since ~ only contained FDs), xx(RI) 
= xx(R~), t[X n I"] E ~rxnr(Ri) -- ~rxnr(R~), T,[R~] ~ ~,, and Tu[Ri] violates 

Z--~ A. 
Thus, Yis not a good complement of Xiff there  are two relations R[, R~ with at 

most two tuples each that witness this fact. 
From the above observation, we can easily see that we can test whether Y is a 

good complement of X by doing the following for each FD Z ~ A in Z: 

Initialize TI to be a relation with three tuples m, ~, t~ as follows: 

h[W] = ao for each W in U, 

~ao for Win Y, 
pl[W] [ al for W i n X -  Y, 

Jao for Win Z, 
#I[W] 

t a2 for W i n U - Z .  

nitialize T2 to be a relation with three tuples #2, p2, h as follows: 

t2 = h, u2 ---- ut, #2[ W] = a2 for each W in U. 

Repeat until no new change is made on either T~ or Tz. 
Compute the chase wrt Z of ~,  p~ (in this and all subsequent chases, to equate a, and 
aj, i <A replace aj by a,). 

Compute the chase wrt Z of/~2, p2, of p:, h, and of/~2, h. 

When the above procedure terminates, we check if re[A] = h[A]. If not, then Ti, 
T2 constitule a counterexample to the goodness of Y; if it turns out that/~[A] = 
h[A] for each FD Z --~ A in ~, then we have actually proved that no such 
counterexample with at most two tuples in each relation can exist, and so Y is a 
good complement of X. 

Since each execution of the repeat loop can be done in time O([ Z [), and each 
time we lose at least one out ofO(I U[) symbols, the running time of  the algorithm 
is O([ ~ [ 2 [ U [) (the procedure is repeated at most [ ~ [ times). 

Notice that, if Y happens to be a good complement of X, then actually Test 2 
accepts precisely the translatable insertions, whereas in the opposite case it rejects 
all insertions. However, testing whether Y is a good complement of X can be done 
once and for all at the time Y is declared as the complement to use, and, if it is 
found to fail, then the database system can simply disregard Test 2. 

3.2. COMPLEXITY OF TESTING TRANSLATABILITY. So far, we have shown how 
one can test whether a proposed insertion of a tuple into a view is translatable, and 
if so, how to do the translation (Theorem 3). We have presented an O([ V[ 3log[ V[) 
algorithm for testing translatability. Since this algorithm is likely to be inefficient 
in practice, we also developed two alternative stronger tests, which can be executed 
faster. 

In the sequel, we prove a result that has some negative implications regarding 
the extent to which one can hope to improve the running time required to test 
translatability. Specifically, we show that, if the view is presented in an exponentially 
succinct way (i.e., as a union of Cartesian products), then testing translatability 
becomes l-I ~-hard [32]. This result provides strong evidence against the possibility 
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of having an algorithm that runs in time less than O([ V[); that is, it indicates that 
the whole view has to be examined in order to test translatability. 

Moreover, we believe that this result also casts some doubt on the possibility of 
substantially improving the running time of our algorithm. Loosely speaking, 
1-[~-hardness seems to indicate that the problem lacks a "nice" combinatorial 

structure, which could be exploited to yield an algorithm considerably more 
efficient than the one resulting from our exhaustive approach. 

We now prove the result. 

TI~FOR~M 4. D e t e r m i n i n g  i f  an insertion is translatable is r ig -hard  i f  the  v iew 

V is g iven implic i t ly  as the  union o f  two Cartes ian products ,  o f  total s i ze  O(I UI). 

PROOF. Let G be a Boolean formula in 3-CNF, containing the variables x,, i -- 

1 . . . .  , n, and consisting of dausesfj, j = 1 . . . .  , m, and let X = {x~ . . . .  , xk}, Y ----- 
{Xk÷l . . . .  , Xnl be a given partition of the set of variables of G. It is known [32, 39] 

that determining if for all possible assignments of  truth values to the variables in 
X, G is satisfiable, that is, if V X  3 Y G(X,  Y) = 1 (where VAT means Vx~ . . .  Vxk 

etc) is I]~-complete. In what follows we give a polynomial-time reduction from 
this problem to the problem of testing translatability of an insertion to a succinctly 
presented view. 

Let  U be BX~X~ . . .  XnX~AF~ . . .  FmC, and let • consist of  the FDs X~X~ . . .  

XkXJ: ~ A ,  F~ . . .  F , ,  ---> C, B A  ~ C, and, for each dausef~ =/ j l  + lj2 + lj3 of G, 
the FDs Lj~A ~ Fj, Lj2A ----> Fj, Lj3A ---> Fj (where Lj, is Xr if/~i is x, and Lj, is X; if 
Ij, is ~xr). Let the view be BX~X~ . . .  XnX~, and let the complementary view be 
X~X~ . . .  X,~X~AF~ . . .  F , ,C.  Finally, let the instance V of the view be 
s~ x Sx, x,, x . . .  x Sx, x,, tO s, where Sx, x; is a relation over X,X"  consisting of two 
tuples ~,, v, with u,[X,] = 0, u,[X,'] = 1, ~,,[X,] = 1, ~,~[X,'] = 0, ss is a single tuple 
over B with sB[B] = b, and s is a single tuple over B X ~ X ; . . .  XnX"  with s[B] = a, 

s[X,] = 1, siX,'] = 1. Observe that V is essentially just a list of all possible truth 
assignments: Each tuple t~ of  V, with the exception of s, defines an assignment h: 
{x~, •. •, x~} ---> 10, 1} by taking h(x~) = t~[X,] (~[X~ = ~[X,]) ;  also, u[B] --- b. 

Suppose now we want to insert in V the tuple t, where t[B] = b, t[X~X~ . . .  

X n X ' ]  ---- s[X~X~ . . .  X~X'] .  We show that this insertion is translatable iff VX 3 Y 
G(X,  Y) = 1. First, it is obvious that conditions (a) and (b) of  Theorem 3 are 
satisfied. Furthermore, observing that the only tuple agreeing with t on X~X~ . . .  

X , X "  (the common part of the view and the complement) is s, it is easy to see that 
condition (c) is satisfied if the F D f i s  taken to be X~X~ . . .  XkX~ ---> A (because the 

only tuple agreeing with t on X~X~ . . .  XkX~ is s), or if f is F~ . . .  Fm "> C (since 
no attribute of f is in the view), or if f is L~,A ---> Fj (since s agrees with t on all 
possible Lfs). 

Thus, all we have to show is that, for all tuples r with r # s (the tuples agreeing 
with t on B), ~2haser[R(V, t, r, B A  --~ C)] succeeds (i.e., starting with r[A] -- s[A], 

we eventually equate r[C], s[C]) iff there is a satisfying assignment h for G that 
agrees with the one defined by r on [x~ . . . .  , x~}. 

First, suppose there is such an assignment h, and let r~ be the tuple corresponding 
to it. Since rh[X~X~ . . .  XkX~] = r[X~X~ . . .  XkX~], rh[A] = r[A], so rh[A] = s[A]. 

Since h satisfies f~, r~[L~,] = 1 for some i, so r~[L~,] = s[L~,]; that is, rh[L~,A] = 

s[Lj,A], and s o  rh[F A ---- s [ F j ] ,  for j = 1, . . . ,  m. Thus, rh[F~ . . .  Fro] = s[F~ . . .  

F,,], so rn[C] = s[C]. But since r~[BA] = r[BA],  r~[C] = r[C], and thus r[C] = siC]; 
that is, Chasez[R(V, t, r, B A  ---> C)] succeeds. Conversely, it is not difficult to see 
(by essentially tracing the previous argument backwards) that r[C], siC] can only 
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be equated if there is a tuple corresponding to a satisfying assignment and agreeing 
with r on X~X~ . . .  XkXL 

Thus, we have established that the insertion of t into Vis translatable iff VX 3 Y 
GO(, I1) = 1. Since U, Z, t and the description of V as a Cartesian product can 
obviously be constructed from G, X, Y in polynomial time, we are done. [] 

It certainly is not surprising that by using a similar (only simpler) construction 
we can show an analogous result for Test 1. 

THEOREM 5. Determining i f  Test 1 accepts an insertion is co-NP-complete i f  

the view V is given implicitly as the union o f  two Cartesian products o f  total size 

o(I uI). 

PROOF. We first show membership in co-NP. If X denotes the view and Y the 
complement, then the following is a noncleterministic polynomial time algorithm 
to determine if Test 1 does not accept the insertion of the tuple t into If." Guess an 
FD Z ~ A in Z and two tuples r, u over X, and verify that r ~ V, tt ~ V, r[Z n X] 

= tIZ m X] (and r[A] # t[A], ifA ~ AT), ~[X m Y] = t[X m Y]; construct a relation 
R consisting of two tuples r',  ~', with r'[X] = r, u'[X] = ~, and with new symbols 
in the Y -  X columns, only with r ' [Z  A ( Y -  X)] = u ' [Z  tq ( Y -  X)]; compute the 

chase wrt Z of R, and verify that it does not attempt to equate two distinct dements 
of r, #, and, ifA E Y - X, it does not equate r[A], #[A]. 

To prove the hardness part, we will make a reduction from unsatisfiability of 
Boolean formulas in 3-CNF. Let G be such a formula, with variables x,, i = 1, . . . .  

n, and clauses fj, j = 1, . . . ,  m. Let U be BX~Xi . . .  X,X~C, and let Z consist of  
the FDs B --~ C, and, for each clausefj = Ijl + Ij2 + lj3 of G, the FD LjILjzLjs ---> C; 

let the view be BX~Xf . . .  X , X ' ,  the complement be XtX[ . . .  XnXAC, and the 
instance V of the view be sn x Sx, x,, x . . .  x Sx~x,~ U s, where sn, Sx~r,, are as in the 
Proof of Theorem 4, and s[B] = a, s[X~] = O, siX[] = O. 

Suppose now we want to insert in V the tuple t, where riB] = b, t[XIX~ . . .  

X ,X ' ]  = s[X~X~ . . .  XnX']; we claim that this insertion is accepted by Test 1 iff G 
is unsatisfiable. To see this, observe that the only tuple of V agreeing with t on 
XtXi . . .  X , ~ "  (the common part of the view and the complement) is s; by a 
reasoning similar to that in the Proof of Theorem 4, we see that the only FD that 
needs to be checked is B ---> C. Now if r # s, the chase on r, s will equate r[C], s[C] 
iff for some j, r[Lj~Lj2Lj3] = s[Lj~Lj2Lj3]; that is, rILj,] = 0, which means that the 
assignment corresponding to r does not satisfy fj. Since this should happen for all 
tuples r, the claim is established. 

Since U, Z, t and the description of V as a Cartesian product can be constructed 
from G in polynomial time, the proof is complete. [] 

3.3. FINDING A COMPLEMENT. So far, we have assumed the following see- 
nario for translating view updates: When the user updates a view, he also specifies 
unambiguously the semantics of the update by defining a complement that should 
be kept constant during the translation. We studied in detail the problem of  
checking whether a proposed insertion of a tuple into a projective view is translat- 
able when the complement is another projection and the database consists of  a 
single relation satisfying a given set of  functional dependencies. 

However, a real database system should also be able to provide the user with 
some assistance concerning the task of defining a complement. We already gave a 
glimpse of  this problem in Section 2, where, after we characterized complementary 
views, we examined the problems of finding a nonredundan: complement and a 
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minimum complement. Now that we have also gained some understanding of  
testing translatability, we can pose the following question: Suppose the user wishes 

to have the update translatable, imposing only partial restriction (or none at all) 
on the complement to be used. How can one determine whether such a complement 

exists and, if so, find it? 
Let the view be X, and suppose that Y is a complement of X such that the 

insertion of the tuple t into the instance Vof the view is translatable under constant 
Y. Clearly, Y =  W U  (U - X), where W_C X. Since t[W] E 7rw(V) (condition (a) 

of Theorem 3), there is a tuple r of  V such that r[ W] = t[ IV]. Consider now the set 
of  attributes W~ = {A : A E X, r [A]  = t[A]l. I t  is immediate that t[Wr] E ~rw,(V), 
7, I:= Wr "'> Y (since 2; ~ W ---> Y by condition (b) of  Theorem 3, and Wr D W), 

and 2; does not imply Wr --* X (if 2; ~ Wr ~ X, then the insertion of t into V is 
not translatable since t[ IV,] = r[ Wr], t # r); moreover, if  R is a database such that 
R ~ ~, ~rx(R) ffi V, then t*~rw,(R) = t**rw(R), and thus, since R O t*~rw(R) ~ 2;, it 

follows that also R U t*~rw,(R) ~ 2;, for all such R. Therefore, the insertion of t 
into V is also translatable under constant Y~ = Wr O (U - X). 

From the above discussion, it is easy to see the following: 

THEOREM 6. Given 2;, X, V, and t, we can f ind a complement Y o f  X such that 

the insertion of t  into V is translatable under constant Y within min(I VI, 2 Ixl) tests 

o f  translatability. 

PROOF. One can compute, for each tuple r of  V, the set W~ = {.4 : .4 E X, r[A] 

= t[A]}, and, after eliminating duplications, test, for each such W~, if the insertion 
of t into V is translatable under constant Y~ = Wr O (U - X). If no such Wr is 

found, then, by the preceding discussion, there is no complement Y of X such that 

the insertion of t into V is translatable under constant Y. [] 

Thus, we can determine if there is a complement that renders a given insertion 
translatable in polynomial time (see the Corollary to Theorem 3). Observe, how- 
ever, that the polynomial complexity depends strongly on the fact that we are 
allowing the whole view V as part of  the problem instance. The following result 

indicates that there is an inherent exponential dependence on I UI + logl VI; in 
other words, we may nevertheless have to check all possible subsets of  X in order 

to find a complement. 

THEOREM 7. Determining i f  there is a complement Y o f  X such that the insertion 

o f  t into V is translatable under constant Y is NP-hard i f  the view V is presented 

succinctly (as in Theorem 4). 

PROOV. Let G be a Boolean formula in 3-CNF, containing the variables x ,  i = 
l, . . . ,  n, and consisting of  dausesj~, j = 1, . . . .  m; assume furthermore with no 
loss of generality that the variables appearing in each clause are distinct. Let U be 
XtXf  . . .  X,X~Ft . . .  Fm, and, for each clausefj =Ijt  +/j2 +/j3 of G, let 2; contain 
the FDs Ljj --~ F~, L~2 --~ Fj, L~3 --~ Fy. Let the view X be X~X~ . . .  X,,X;,, and the 
instance V of the view be SXlX,, x . . .  x sx,,x,~, where Sx, r: is as in the Proof of 
Theor6m 4. 

Suppose now we want to insert in V the tuple t, where t[X,] ffi t[X,'] = 1. We 
show that there is a complement Y = W U FI . . .  Fm(W C X) such that the 
insertion of t into V is translatable under constant Y, iff G is satisfiable. First, it is 
eaSy to see that, since t[W] should be in 7rw(V), W should contain at most one of 
the attributes X,, X;, for each i; furthermore, since we should have that • ~ W--) 
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Ft . . .  F,, (clearly Z does not imply W---> X), it is not difficult to see that Wshould 
define a satisfying assignment for G. 

To complete the proof, observe that, if R is a database such that R ~ ~, ~'x(R) 
= V, then for any two tuples ~, v of R, ~[Fj] = v[Fj]. This happens because, if 
u[L A ~ u[Lj~] and u[Lj2] # v[L~2] (in the opposite case obviously t~[F~] = v[F~]), 
then there is a tuple ~ in R such that ~[Lj~] = u[Lj~], ~[Lj~] = ~,[L~] (because the 
variables in f~ are distinct); thus, ~[F~] = #[F~], ~[F~] = ~[F~], and therefore t~[Fj] -- 
u[F~]. It follows that, for the insertion of t into V to be translatable under constant 
Y, it suffices to have t[W] ~ ~rw(V) and ~ ~ W-- .  F~ . . .  Fro. 

Finally, U, Z, X, t and the description of V as a Cartesian product can be 

constructed from G in polynomial time, and we are done. [] 

We remark that, by following a similar line of reasoning, one can see 
that Theorem 6 remains true if we interpret "translatable" as "accepted by Test 1 
(Test 2)", and "test of translatability" as "Test 1 (Test 2)". The same holds for 

Theorem 7. 

4. The Translation of  Deletions and Replacements 

In this section we briefly show how the ideas developed previously for the ease of 
translating the insertion of a tuple to a view can be adapted in a straightforward 
manner to handle the case of deleting a tuple and of replacing a tuple with another. 
We continue to assume that Z is a set of  FDs satisfied by the database R, and that 
we are given the view X, the complement IT, and the current instance V of the 
view. 

4.1. DELETIONS. Suppose we wish to translate the update u on the view 
consisting of the deletion of a tuple t, t ~ V, while keeping the complement ~rr(R) 
constant. Tile update Tu on R that achieves this should satisfy ~rx(T,[R]) -- V -  t, 
~rr(T,,[R]) = ~rr(R), and also Tu[R] ~ • for all R such that R ~ ~, ~rx(R) --- Is'. 
(Compare with Properties A-D given for the case of an insertion.) 

Now since ~rr(R) must be kept constant, we must have that t[X A ]1] 

E ~rxn r(V - t); in other words, there is a tuple r ~ V such that r ~ t, r[X ¢'1 Y] = 

t[X O II]. From this we now see that X A Y cannot be a superkey of X (since Visa  
projection of a legal instance), so by Theorem 1, X n Y ~ Y. It follows that the 
only possible candidate for Tu is the deletion of the tuple t*~rr(R) from the database 

R : T~[R] = R - t*~rr(R). 

But now observe that, since T,[R] C_ R and Z only contains FDs, T,,[R] ~ • if  
R ~ ~. Thus, our last requirement that T,[R] ~ 7~ for all R such that R ~ ~, ~rx(R) 
= V, is satisfied trivially. 

We have thus shown the following: 

THEOREM 8. The deletion of  t from V is translatable as R ~ R - t*~rr(R) i f  

and only i f  

(a) t[X n Y] E ~rxnr(V-  t). 

(b) ~, implies X n Y ~ Y, and Y~ does not imply X O Y ~ X. 17 

Hence, determining whether a deletion is translatable can be done in time 

O(I Vl + I ZI). 

4.2. REPLACEMENTS. Suppose now the update we wish to translate under 
constant complement Y is the replacement of a tuple fi, t~ E V, by a tuple t2, 
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t2 ~ V. The update T, on R should satisfy xx(Tu[R]) = V -  t, O t2, and again 
~rr(T,[R]) = ~rr(R) and T,[R] ~ Z for all R such that R ~ ~, ~rx(R) = V. We 
distinguish two cases: 

Case 1: t l[XN Y] # t2[XCl 11]. This case exhibits a behavior similar to the one 
we are already familiar with: Specifically, since ~rr(R) must  be kept constant, we 
must have h[X t3 Y] E r x n r ( V -  h), t2[X t3 Y] ~ rxor(lO. From this it follows 
that X N Y cannot be a superkey of X, and thus it is a superkey of Y by Theorem 
I. Hence, the only possible candidate for T,  is the replacement of the tuple t%rr(R) 

by the tuple t~rr(R). 
To check now if the last condition is satisfied, that is, if Tu[R] ~ ~ for all R such 

that R ~ ~, a-x(R) = V, it is not difficult to see (by a reasoning exactly analogous 
to that given for insertion) that all we have to do is check whether Chases[R(11, t2, 
r,f)] succeeds for all F D s f i n  2; and for all tuples r in Vthat are different from h. 

Case 2: h[XN Y] = t2[Xt3 I1]. In this case we see that the first two conditions 
can be satisfied with no further restrictions on V, t, X, or Y, and moreover the only 
possible candidate for Tu is replacing the set oftuples t%rr(R) by the set oftuples 
t~rr(R) (we can no longer assert as before that either set will consist of a single 
tuple, since this has depended on X N Y being a superkey of Y, which is no longer 

necessary). 
Checking whether the last condition is satisfied, that is, whether TdR] ~ ~ for 

all R such that R ~ ~, ~rx(R) ffi V, can still be done by checking whether Chasez[R(V, 
t2, r,J)] succeeds for all f i n  I~ and for all r in V, r ~ h (one can see that the fact 
that t%rr(R) and t*rr(R) may consist of more than one tuple does not affect 

anything). 
Thus, we have the following: 

TH~OREta 9. The replacement o f t  by t2 in V (h E V, t2 q~ V) is translatable as 
R .-- R - t*~rr(R) td t~rr(R) if  and only i f  

(a) h[X n I1] E ~rx n r( V - h) and te[X N Y] E ~xn r( V), or h[X t3 Y] = te[X t'l Y]. 
(b) ~, implies X Cl Y ~ Y and does not imply X Cl Y ~ X, or h[X Cl Y] = 

t2IX f) Y]. 
(c) Chase~[R(V, t2, r,f)] succeeds for all f i n  ~ and for all r in V, r ~ h. [] 

From Theorem 9 it should be clear that one can develop results analogous to 
the ones given for the case of insertion in a straightforward way. Thus, we do not 
pursue this direction any further. 

5. Explicit Functtonal Dependencies 

Functional dependencies assert that a certain relation is actually a many-one 
mapping, for example, a mapping from employee-project pairs to managers, or 
from cost-price pairs to rates of profit. However, there is a difference; certain such 
mappings (as in the first example above) are essential information stored by the 
database, whereas others (as in the second example) are redundant information, 
mappings that could be computed explicitly. We call the latter case of FDs explicit 
functional dependencies (EFDs). 

Explicit functional dependencies are important in the context of  views and view 
complements, because they can seriously affect the information content of database 
mappings. We thus felt that we should study their behavior as it pertains to the 
other known classes of dependencies. We first define formally what an EFD is: 
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Definition. A set of  attributes X explicitly determines a set of  attributes Y 
(notation: X "~e Y) if there is an instance-independent function f(cai led a witness 

of X---,e Y) such that ~rxr(R) = f(~rx(R)), for any legal instance R of  the database. 

Examples. Cost-Profitrate "*e Price, Course-Student-Grade --*e Average-Grade. 

We remark that, in our definition of an EFD, no special property of  the witness 
functionfis assumed. This leads naturally to the following extension of the meaning 
of implication of an EFD a from a set of dependencies l~, where oi, i = 1, . . . .  k, 
are the EFDs in ~,: for all functions f ,  i = 1, . . . ,  k, there is a function f sueh that, 
if a database R satisfies all dependencies in 2~ (where fl is taken as the witness of 
a,), then it also satisfies a (wherefis  taken as the witness of o). In ease o is not an 
EFD, then one just omits the requirement of the existence off.  

As we see shortly, with this approach EFDs behave very much like FDs (in the 

sense of Propositions 1 and 2). It would be interesting to see what happens if one 
imposes natural restrictions on the witness function f, such as invertibility, 0-1- 
valuedness, etc. 

In the following, if ~ is a set of  dependencies, we denote by l~r the set of  FDs 

{X---~ Y: A''--)e Yis in ~}. 

PROPOSITION 1. Let ~ be a set o f  EFDs; then ~ ~ X"+e Y i f f~ ,e¢  X---* Y. 

PROOF. Consider the following chase procedure for computing X+: initialize 
X ÷ to X; repeatedly locate a member Z --9 B of 2~F such that Z C X ÷ and B is not 
contained in X +, and set X + to X + to B. As is well known [25], this procedure 
terminates with a unique X ÷, and furthermore I~F ~ X-- ,  Y iff Y C X +. 

We now argue that also ~ ~ X "-*e Y iff Y C_ X +. First, if Y C X +, then it 
is clear that ~ ¢ X "-)e Y by the construction of X +. (Observe that, if X ---,~ Y and 
Y---~e Z, then X--'~e Z.) Conversely, if Y is not contained in X ÷, we shall show that 
2~ does not imply X---~e Y. For each EFD Z --+~ B in ~, pick as its witness a function 

f z - ,B such thatfz_.,B(tz) = tzB, where tz is a tuple over Z with tz[W] = a for all IV, 
and tzB is a tuple over ZB with tzn[ IV] --- a for all W. Now if g is a purported 
witness of X -+~ Y, then consider the database R consisting of a single tuple t with 
t[W] = a for W ~  X +, and t[W] = y otherwise, where y ~ ¢ra(g(t[X])), for some A 
in Y - X. It is clear that R satisfies each EFD Z --+e B in ~ (with witness fz- ,  ~), 
but R does not satisfy X--+e Y with witness g. [] 

PROPOSmON 2. Let ~ be a set o f  EFDs, and let ~'  be a set o f  FDs and JDs. 

Suppose that ~ o ~,' ~ a: 

(a) I f  a is an FD or JD or embedded JD, then Zp to ~'  ~ a. 

(b) I f  o is an EFD, then ~ ~ a. 

PROOF. (a) If ~F tO I~' does not imply or, then there is a relation R that satisfies 
2;e U I~' but violates o. Now since R ~ ZF, clearly we can pick a function f 
for each EFD a, in I~ such that R also satisfies a, with witness f .  Thus, R satisfies 

to Z', and therefore Z t0 27 does not imply o. 
(b) Assume that Z does not imply a, and observe that the one-tuple relation R 

constructed in the Proof of Proposition 1 also satisfies I~' (since it satisfies any FD, 
JD, or embedded JD). Thus, R satisfies 1~ U Z' and violates a, and so I~ IJ ~ '  does 
not imply a. [] 

Thus, we can easily augment any of the known axiom systems for FDs [1], FDs 
and MVDs, and so on, to include EFDs. Moreover, our characterization of 
complementary views (Theorem 1) can be extended to include EFDs as follows: 
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THEOREM 10. Let ~ be a set o f  FDs, JDs, and EFDs. Then X, Y are comple- 

mentary iff  

(a) They are complementary when considered as views of  ~xv r(R) (i.e., ~ implies 

the embedded MVD X N Y : - X - Y [ Y - X); and 

(b) Y, ~ X u  Y ~  U. 

PROOF. The/ fd i rec t ion  is immediate: From (a) lrx(R)*~r(R) = 7rxur(R) for 
every legal database R, and then from (b) R = f(*rxu r(R)) = f(*rx(R)*~r(R)), where 
f i s  an instance-independent function. Thus, if  for two legal instances R, R '  we 
have lrx(R) = lrx(R') and Irr(R) = Irr(R'), we get R = f(,rx(R)*Try(R)) = 

fOrx(R')*~rr(R')) = R'; that is, X, Y are complementary. 
For the only i f  direction, assume first that (a) is false; that is, ~ does not imply 

the embedded MVD X N Y ~ , X -  Y[ Y -  X. We first remark that the 
Equivalence Theorem of [30] is also true i f ,  is an embedded MVD (using the 
partial extension of the equivalence between dependencies and formulas to include 
embedded MVDs described in Section 7; the two-tuple Subrelation Lemma can be 
extended to the case in which ~ is an embedded MVD, by an argument analogous 
to the one given for the case in which a is an MVD). Using the same construction 

as in the Proof of Theorem 1 (combined with Proposition 2 (a) and the above 
observation), we obtain two distinct two-tuple relations R, R '  such that ~rx(R) = 
~x(R'), ~rr(R) = ~rr(R'), and R, R '  satisfy all the FDs and JDs in Z and all the 
FDs in ~F. Then it is easy to see that we can pick, for each EFD a in Z, a function 
f s u c h  that both R and R '  satisfy a with witnessf. This shows that X, Y are not 

complementary. 
If(b) is false, then (XU Y)+ # U, where (XU ]1) ÷ is the closure o f X U  Ywrt Zr. 

Let R, R '  be two one-tuple relations such that R[tV] = R'[W] = a for IV in 
(XO Y)+, and R[W] # R'[W], otherwise. Clearly, R # R' ,  ,rx(R) = ~rx(R'), ~rr(R) 
= ~rr(R'), R, R '  satisfy all FDs and JDs in ~, and moreover by picking as the 
witness of an EFD Z --~ B in Z a function f z - . s  as in the Proof of Proposition 1, 
we see that R, R '  also satisfy the EFDs in Z. This shows that X, Y are. not 

complementary, and the proof is complete. [] 

Intuitively, Theorem 1 states that, if the only dependencies present are FDs and 
JDs, then the only way to reconstruct a database from two projections is by join. 
Theorem l0 states that, if EFDs are also present, then the only way is to join the 
two projections and then explicitly compute the information that is still missing. 

6. Conclusions and Directions for Further Research 

We have studied some of the computational problems arising when one considers 
applying, in the context of the relational model, the methodology proposed by 
Bancilhon and Spyratos [3] for translating view updates. We discovered that certain 
important problems such as testing translatability and determining a complement 
that renders an update translatable, although solvable in polynomial time (Theo- 
rems 3, 6, 8, 9), exhibit an interesting kind of inherent complexity (Theorems 4, 5, 
7), which indicates the existence of limitations on how efficiently they can be 
solved. However, we have only concentrated on a very simple case of the applica- 
tion; we feel that much remains to be done before a reasonable account of the 
applicability of the methodology can be attempted. In particular, the following 
possibilities seem to be worthy of further investigation: 

(1) Allowing more general dependencies: In particular, it would be interesting 
to see to what extent can Theorem 1 be generalized, especially in view of the 
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negative result of [37]; a first result in the direction of ailowing unary inclusion 
dependencies appears in [23]. More important, though, one should study the 
problem of testing translatability and designing a translation. (RecaU that we found 
the translation of deletions to be trivial just because we only considered functional 
dependencies.) It is conceivable that our basic idea of a chase-type algorithm will 
be useful, although it is not clear to what extent. 

(2) Considering views that are a restriction of a projection (i.e., of the form 
ae~rx, where P is a predicate on tuples): It should be noted that most of the views 
occurring in practice are actually of the above form. The complement here can be 

a pair of views, for example, (a-,e, aeTrr) or (a-,rtrx, ~rr), where ~rr is a complement 
of ~rx. We believe that, in the case of only functional dependencies (which is still 
very important from a practical viewpoint), our basic approach can be used with 
only simple modifications (at least for certain Ps). 

(3) Considering multirelation databases with views that are projections of joins 
of relations: This is most important, given that the universal relation assumption 
is being criticized as unrealistic. We also believe that this is likely to be the 
theoretically most interesting direction. 

(4) Studying the explicit functional dependencies: It seems to us that EFDs are 
a step in the right direction, if one wants a model capable of capturing the 
information content of database mappings. We have already examined their 
influence on complementarity of views (Theorem 10). Their effect on issues such 
as testing translatability or designing a translation (perhaps in conjunction with 
refining our definition to capture more semantics) is a question that we feel deserves 
further research. 
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