Updates of Relational Views

STAVROS S. COSMADAKIS
Massachusetts Institute of Technology, Cambridge, Massachusetts
AND
CHRISTOS H. PAPADIMITRIOU
Massachusetts Institute of Technology, Cambridge Massachusetts and National Technical Universty of Athens, Athens, Greece

Abstract

The problem of translating updates of database views is studied. View updates are disambiguated by requiring that a specified view complement (i.e., a second view that contains all the information omitted from the given view) remain constant during the translation. Some of the computational problems related to the application of this general methodology in the context of relational databases are studied. Projective views of databases that consist of a single relation and satisfy functonal dependencies are emphasized. After characterizing complementary views, the authors show that finding a minimum complement of a given view is NP-complete. The problem of translating the insertion of a tuple into a view is then studied in detail, and the results are extended to the cases of deletion and replacement of a tuple. Finally, the explicit functional dependencies, a new kind of dependency that intuitively states that some part of the database information can be computed from the rest, are defined and studied.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design-data models, schema and subschema
General Terms: Algorithms, Theory
Additional Key Words and Phrases: Translation of view update, view complement, relational database, projections, functional dependencies, join dependencies, polynomial-time hierarchy, explicit functional dependencies

1. Introduction

In database systems, the amount and structure of the stored data are decided by the database administrator. However, individual users often want to deal with only part of the information in the database, and moreover they may want to restructure it in a way suitable to their needs. For this reason, database systems often provide the view facility. A view is defined by giving a query on the whole database. At any point, the contents of the view are just the outcome of this query. The user queries and updates the view as though it were a database in itself, with no reference to the underlying database. The view idea spares the user from the conceptual complexities of the whole database, makes queries easier by "factoring out" a

Authors' present addresses: S. S. Cosmadakis, M.I.T. Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139; C. H. Papadimitriou, Department of Computer Science, Stanford University, Stanford, CA 94305.
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requres a fee and/or specific permission.
common subexpression, and can serve as a protection mechanism by restricting access only to insensitive information. A view facility is an important part of many relational database systems, for example, PRTV [34], QBE [42], System R [2], and INGRES [33] (as well as of database systems designed along the lines of the network data model, like DBTG [14], or the hierarchical data model, like IMS [16, 22]).

In relational database systems, a view is generally implemented by naming and storing its definition, which is just a query definition in the query language of the system. Queries on the view are translated into database queries by composing them with the view definition. Thus, querying a view presents no serious conceptual problems.

What is much more complex is the subject of updating a view. A simple update operation, such as inserting a tuple in the view, may create formidable problems. The underlying database update may be ambiguous or ill-defined, create inconsistencies in the database, or have side effects on the view. This problem is related to such fundamental issues as null values [13, 41] and update anomalies [5, 10, 12] in relational databases. Most existing systems do not allow updates of views (e.g., PRTV, QBE), or allow them only in the trivial case in which the view consists of one of the database relations. This omission apparently reflects our poor understanding of the subject.

In one of the first works dealing with view updates, Dayal and Bernstein [17] stipulated a notion of correct translation of a view update and gave some straightforward conditions for the existence of such translations. From this and subsequent works, for example, [8, 20,29], it has become apparent that we need a method for assigning semantics to view updates. This method should be formal (resolving the delicate ambiguities involved) and simple (so the users would be able to define the semantics themselves, perhaps with the aid of the database system).

An excellent solution to this problem was suggested in the work of Bancilhon and Spyratos [3, 31]. They developed an elegant theory (quite independent of the relational model) of database mappings, that is, functions from database states to database states. A view v is such a mapping, and so is an update u on the view. How can we translate u ? The translation, T_{k}, must be such that the updated database maps via v into the updated view. As may be suspected, there are typically many T_{u} 's, so the problem remains. Bancilhon and Spyratos resolve this ambiguity by the notion of the complement of a view. A complement of v is another view v^{\prime}, such that the mapping $s \rightarrow\left(v(s), v^{\prime}(s)\right)$ (denoted by $v \times v^{\prime}-s$ is the database state) is one to one. In other words, any information lost by v can be recovered by v^{\prime}. A view has many complements (e.g., the identity mapping is a complement of all views). Choosing a complement that must remain constant assigns unambiguous semantics to a view update. The scenario is the following: A user defines a view. Before updating the view, the user must define (probably with the assistance of the system) another view (a complement of the first), which must be held constant during updating (this corresponds to the "rectangle rule" of [9] and the "absence of side effects" of [17]). Using this information, the system translates (or rejects as untranslatable) the user's updates.

Translating under constant complement amounts to finding a database state s^{\prime} such that $v\left(s^{\prime}\right)=u v(s)$ and $v^{\prime}\left(s^{\prime}\right)=v^{\prime}(s)$. By the definition of a view complement, s^{\prime} is unique, if it exists at all. Thus, if such an s^{\prime} can be found for any s (in which case we say that u is v^{\prime}-translatable), we can translate u as the database update T_{u} $=\left(v \times v^{\prime}\right)^{-1}\left(u v \times v^{\prime}\right)$. The soundness of the overall approach is demonstrated by the following facts [3]:
(i) T_{u} is consistent: that is, the updated database always maps, under the view definition v, on the updated view (formally $v T_{u}=u v$); also T_{u} is acceptable, meaning that if u does not change the view, no change is made on the database either (i.e., for all $s, u v(s)=v(s)$ implies $\left.T_{u}(s)=s\right)$.
(ii) Suppose U is a set of view updates, which is reasonable in the sense that it satisfies minimal user requirements; that is, it is closed under composition and there is a means of canceling the effect of every allowed update on the view (formally, if $u, w \in U$, then $u w \in U$, and if s is a database state and $u \in U$, there is an update $w \in U$ such that $w u v(s)=v(s)$). If v^{\prime} is a view complement such that any update in U is v^{\prime}-translatable, then the mapping that associates to an update u in U the database update T_{u} is a morphism; that is, $T_{u w}=T_{u} T_{w}$ for all $u, w \in U$. (Clearly, any reasonable way to translate a set of updates should have this property; i.e., the result of the translation should be the same whether the user applies two updates from the set one after the other or their composite update.) On the other hand, the converse also holds: If T is a mapping on U such that, for every $u \in U$, $T(u)$ is a consistent and acceptable database update, and also T is a morphism (i.e., T is a reasonable way to translate view updates into database updates), then there is a view complement v^{\prime} such that, for every $u \in U, u$ is v^{\prime}-translatable and $T(u)=T_{u}$.

However, as was pointed out earlier, this approach is essentially independent of any particular data model. In this paper we investigate some of the issues and problems that arise when one attempts to apply this methodology in the context of the relational model $[11,12]$, with a view toward rendering it realizable in practice. We discover that very interesting theoretical questions already arise at very simple cases of the application. In particular, we concentrate on database schemas consisting of a single relation, with integrity constraints that are (for the most part) just functional dependencies (FDs) [1, 10]. The views we consider are simply projections of the relation. Working with a single relation corresponds to some unrealistic universal relation assumption [36], but it yields a simplified problem that must be conquered first. Functional dependencies constitute a simple and practical class of constraints. Projective views are, again, the simplest imaginable, and they are also important from a practical point of view.

In Section 2 we characterize when two projections are complements of each other. There is an interesting parallel between this characterization and the notion of independence of Rissanen [27]. Our necessary and sufficient condition (which can be generalized to include the presence of join dependencies) states that the common part of the projections must be a superkey of one of the projections. As a consequence, it is easy to test whether two given projections are complementary in a schema. It is also possible to construct a nonredundant (minimal) complement of a given projection in polynomial time. Unfortunately, finding a smallest complement of a given projection (i.e., the complement with the fewest attributes) is shown to be NP-complete.

In Section 3 we study how to implement the insertion of a tuple into a projection, keeping a given complementary projection unchanged. We show that this can be done in a unique way, and so the problem reduces to testing whether the resulting database is consistent. We show that this test can be carried out in time cubic in the number of tuples of the view. Since this is likely to be impractical, we also develop two alternative stronger tests that can be executed more efficiently.

Ideally, we would like the time complexity of our update algorithms to depend on the number of attributes, functional dependencies, and other parameters of the
schema, not of the instance. When the time must depend on the number of tuples, we would at least like this dependence to be logarithmic, since this number is expected to be very large. However, complexities like those described in the previous paragraph resemble, in a practical sense, exponential complexities. We show some negative complexity results which suggest that this "exponential" behavior is inherent: The translatability problem becomes \prod_{2}^{p}-hard [32] if the view is represented in some exponentially succinct way (e.g., as the union of two Cartesian products). Even one of the simpler, stronger tests mentioned above becomes co-NP-hard.

Finally, we examine the complexity of finding a complement that renders a given insertion translatable. We show that this problem is polynomial in the number of tuples of the view, but inherently exponential in the size of the schema (and the logarithm of the number of tuples of the view). Similar results can be obtained for the two stronger tests.

In Section 4 we extend these results to the case of deletions and replacements of tuples. We find that, for the most part, the extension is rather straightforward. Finally, in Section 5 we define and examine a new kind of functional dependency that is important in the context of complements, the explicit functional dependency. We extend our characterization of complementary projections to allow also for the presence of explicit functional dependencies. Section 6 concludes this work by pointing out some directions for further research.

2. Defining a Complement

Let S be a database schema (U, Σ), where U is a universal set of attributes and Σ is a finite set of dependencies. (For the fundamental notions and notations of the relational model, see [35].) A relation R over U (an instance of U) is called legal if it satisfies all the dependencies in Σ (notation: $R \vDash \Sigma$). A view of S is for us a projection defined by a subset X of U. For each instance R, the corresponding instance of the view is $\pi_{X}(R)$. We disambiguate updates on a view by defining a second view, Y, the complement of X. Two views X and Y are called complementary if $\pi_{X}(R)=\pi_{X}\left(R^{\prime}\right)$ and $\pi_{Y}(R)=\pi_{Y}\left(R^{\prime}\right)$ imply $R=R^{\prime}$, whenever R and R^{\prime} are both legal instances. In other words, the two views together contain enough information to reconstruct the whole database.
When are two views X and Y complementary? Clearly, a sufficient condition is that the multivalued dependency (MVD) $[18,28,40] *[X, Y]$ holds in every legal instance; that is, Σ implies the MVD ${ }^{*}[X, Y]$. If this is the case, the database can be reconstructed from its projections on X and Y by join. Recently, it has been shown [37] that the condition is not necessary; that is, if Σ consists of general firstorder sentences, then π_{X} and π_{Y} can be complementary without the reconstruction operator being the join. However, we show that this cannot happen in the special case of interest in which Σ consists of functional and join dependencies (also proved independently by Beeri and Vardi [7]):
Theorem 1. Let Σ consist of functional dependencies and join dependencies. Then X, Y are complementary iff $\Sigma \vDash^{*}[X, Y]$.
Proof. The if direction is immediate: If Σ implies the MVD $*[X, Y]$, then for every legal instance R we have $\pi_{x}(R)^{*} \pi_{Y}(R)=R$. Consequently, if for two legal instances, R, R^{\prime} we have $\pi_{X}(R)=\pi_{X}\left(R^{\prime}\right)$ and $\pi_{Y}(R)=\pi_{Y}\left(R^{\prime}\right)$, we get $\pi_{X}(R)^{*} \pi_{Y}(R)$ $=\pi_{X}\left(R^{\prime}\right)^{*} \pi_{Y}\left(R^{\prime}\right)$ and from this $R=R^{\prime}$; that is, X, Y are complementary.

For the only if direction, assume that Σ does not imply the MVD ${ }^{*}[X, Y]$; we show that X, Y are not complementary, by exhibiting two distinct legal instances R, R^{\prime} for which $\pi_{X}(R)=\pi_{X}\left(R^{\prime}\right)$ and $\pi_{Y}(R)=\pi_{Y}\left(R^{\prime}\right)$.

Let σ be a join dependency ${ }^{*}\left[R_{1}, \ldots, R_{q}\right]$; define $M(\sigma)$ to be the set of MVDs $\left\{{ }^{*}\left[\cup_{i \in S_{1}} R_{i}, \cup_{i \in S_{2}} R_{i}\right], S_{1}, S_{2}\right.$ a partition of $\left.\{1, \ldots, q\}\right\}$ (see also [26]). If Σ^{\prime} is the set we obtain if we replace each join dependency σ in Σ by the multivalued dependencies in $M(\sigma)$, then, since σ implies each MVD in $M(\sigma), \Sigma$ implies Σ^{\prime}; but by our hypothesis Σ does not imply ${ }^{*}[X, Y]$, so Σ^{\prime} does not imply ${ }^{*}[X, Y]$ either. Now since Σ^{\prime} consists of FDs and MVDs only, there is a two-tuple counterexample to this implication [30]; that is, there is a relation R consisting of two tuples μ and ν that satisfies all the dependencies in Σ^{\prime} but does not satisfy ${ }^{*}[X, Y]$.
From the relation R construct another relation R^{\prime} as follows: Since R does not satisfy ${ }^{*}[X, Y]$, it must be that $\mu[X \cap Y]=\nu[X \cap Y]$, and also $\mu[Y-X] \neq$ $\nu[Y-X]$ and $\mu[X-Y] \neq \nu[X-Y]$. Let R^{\prime} consist of a tuple μ^{\prime} that agrees with μ on X and with ν on $Y-X$, and of a tuple ν^{\prime} that agrees with ν on X and with μ on $Y-X$. Clearly, $R \neq R^{\prime}, R^{\prime}$ satisfies all the dependencies in Σ^{\prime} (it defines the same special truth assignment [30] as R), and also $\pi_{X}(R)=\pi_{X}\left(R^{\prime}\right)$ and $\pi_{Y}(R)=\pi_{Y}\left(R^{\prime}\right)$. Thus, we only need to show that R and R^{\prime} are both legal; that is, they both satisfy all the JDs in Σ. (They obviously satisfy the FDs in Σ, since these are included in Σ^{\prime} and R, R^{\prime} satisfy Σ^{\prime}.)

Let ${ }^{*}\left[R_{1}, \ldots, R_{q}\right]$ be a JD in Σ; to show that it holds in R, it suffices to show that, if a tuple ξ is obtained by joining $\xi_{[}\left[R_{1}\right], \ldots, \xi_{q}\left[R_{q}\right]$, where ξ_{1}, \ldots, ξ_{q} are tuples of R, then either $\xi=\mu$ or $\xi=\nu$. This is certainly true if $\xi_{1}=\ldots=\xi_{q}=\mu$ or if $\xi_{1}=\cdots=\xi_{q}=\nu$; else, let $S_{1}=\left\{i: \xi_{1}=\mu\right\}, S_{2}=\left\{i: \xi_{i}=\nu\right\}$. Since the MVD ${ }^{*}\left[\mathrm{U}_{i \in S_{1}} R_{t}, \mathrm{U}_{i \in \mathcal{S}_{2}} R_{i}\right]$ is in Σ^{\prime}, it holds in R, and thus either $\xi=\mu$ or $\xi=\nu$. Thus R satisfies all dependencies in Σ, and so does R^{\prime} (by the same argument). This completes the proof.

Notice that our condition (though not the proof) parallels the result of Rissanen on independence [27]. Intuitively, independence (in the sense of [27]) is stronger than complementarity, and thus our theorem contains only the first condition of [27]. To see why, consider the classical Employee-Department-Manager schema. The decomposition into $X=E D, Y=E M$ is not independent, although X and Y are complementary.

Theorem I has some algorithmic consequences:
Corollary 1. Given $(U, \Sigma), X, Y \subseteq U$, whether X, Y are complementary can be tested in polynomial time.

Proof. By Theorem 1, testing for complementarity amounts to inferring an MVD from a set of FDs and JDs. The latter can be done in polynomial time [26, 38].

Corollary 2. Given (U, Σ) and $X \subseteq U$, we can find in polynomial time a minimal (nonredundant) complement of X.

Proof. Simply start with the trivial complement U and repeatedly take out any attribute in X that can be taken out without affecting complementarity (examine the attributes in some arbitrary order).
Thus we can program in a database system some guidance to the user toward the definition of a complement. Unfortunately, as so often happens, finding the minimum is much harder.

Theorem 2. Given (U, Σ), $X \subseteq U$, and $k>0$, determining whether there is a complement Y of X with $|Y|=k$ is NP-complete.

Proof. Membership in NP is obvious; just guess a subset Y of U with $|Y|=k$ and verify (Corollary 1) that X, Y are complementary.
To prove the hardness part, we will make a reduction from the 3-satisfiability problem (3-SAT), which is known to be NP-complete [15, 21, 24]. Let φ be a Boolean formula in 3-conjunctive normal form (3-CNF); let $x_{i}, i=1, \ldots, n$, be the variables occurring in φ, and let $f_{j}, j=1, \ldots, m$, be the clauses of φ. We construct the following schema $S_{\varphi}=(U, \Sigma): U$ is $F_{1} \ldots F_{m} X_{1} X_{1}^{\prime} \ldots X_{n} X_{n}^{\prime} A$ and Σ contains the functional dependencies $F_{1} \ldots F_{m} X_{t} \rightarrow X_{t}^{\prime}, F_{1} \ldots F_{m} X_{i}^{\prime} \rightarrow X_{t}, i=$ $1, \ldots, n$; also for each clause $f_{j}=l_{11}+l_{j 2}+l_{\beta_{3}}, j=1, \ldots, m$, the functional dependencies $L_{ر 1} \rightarrow F_{j}, L_{j 2} \rightarrow F_{j}, L_{\beta 3} \rightarrow F$, (if $l_{\mu l}=x_{r}, L_{\mu}=X_{r}$; if $l_{j i}=\neg x_{r}, L_{j i}=X_{r}^{\prime}$).
Now let X be $F_{1} \cdots F_{m} X_{1} X_{1}^{\prime} \cdots X_{n} X_{n}^{\prime}$; we claim that X has a complement Y with $|Y|=1+n$ iff φ is satisfiable. To see this, first assume that φ is satisfiable, and let h be a satisfying assignment. Take Y to be $L_{1} \cdots L_{n} A$, where $L_{t}=X_{i}$ if $h\left(x_{i}\right)$ is true, $L_{i}=X_{l}^{\prime}$ if $h\left(x_{i}\right)$ is false. To show that X, Y are complementary, it suffices to show (by Theorem 1) that $\Sigma \mathfrak{F}^{*}[X, Y]$; to do that, we use the chase method for inferring dependencies [25]: If we consider the tableau consisting of a row with distinguished variables in the X columns and a row with distinguished variables in the Y columns, then we can convert the second row into a row of distinguished variables by using the FD-rules corresponding to the FDs in Σ as follows: First, since h satisfies f_{j}, at least one of the FDs $\left\{L_{j 1} \rightarrow F_{j}, L_{j 2} \rightarrow F_{j}\right.$, $L_{\beta 3} \rightarrow F_{j}$) can be used to fill in F_{j}, and this can be done for all j. Then the FDs $F_{1} \cdots F_{m} X_{i} \rightarrow X_{i}^{\prime}, F_{1} \cdots F_{m} X_{i}^{\prime} \rightarrow X_{i}$ can be used to fill in the remaining X_{i} 's and X_{l} 's.

For the converse, suppose there is a complement Y of X with $|Y|=1+n$. Clearly Y has to contain at least one of $\left\{X_{t}, X_{t}^{\prime}\right\}$ (else there is no way to fill in both X_{i} and X_{i}^{\prime}), and thus Y contains exactly one of $\left\{X_{i}, X_{i}^{\prime}\right\}$ for each i (also $A \in Y$). Consider now the assignment h, where $h\left(x_{i}\right)$ is true if $X_{i} \in Y$ and false if $X_{i}^{\prime} \in Y$: Since $F_{\text {j }}$ is filled in, at least one of $\left\{L_{j 1}, L_{j 2}, L_{j 3}\right\}$ must be contained in Y, and thus h satisfies f_{j}. This is true for all j, so h satisfies φ and the claim is established.

Finally, it is easy to see that S_{φ} and X can be constructed in time polynomial in the length of φ. This completes the proof.

Observe that in our reduction we only used FDs, so Theorem 2 is true even if Σ is constrained to contain only FDs. Now if $\Sigma^{\prime}=\{Z \rightarrow B \mid Z \rightarrow B$ is an FD in $\Sigma\}$, then, if σ is a JD, $\Sigma \vDash \sigma$ iff $\Sigma^{\prime} \vDash \sigma[6]$. Thus, we might as well replace Σ by Σ^{\prime} in our proof, which means that Theorem 2 is true even if Σ is constrained to consist of MVDs only.

3. The Translation of Insertions

3.1 Testing Translatability. Σ is now a set of functional dependencies; we furthermore assume that each FD in Σ is of the form $X \rightarrow A$, where A is a single attribute. (This is easy to enforce, by replacing each FD $X \rightarrow Y$ in Σ by the equivalent set of FDs $\{X \rightarrow A: A \in Y\}$.)

Suppose that the view X and its complement Y are given, and so is the current instance V of the view. We wish to translate the update u on the view consisting of the insertion of a tuple t, while keeping the complement $\pi_{Y}(R)$ constant. How can we design an update on R, T_{u}, which achieves this?

The translation T_{u} should have certain obvious properties:
(A) It should implement the view update, that is $\pi_{X}\left(T_{u}[R]\right)=V \cup t$.
(B) It should keep the complement constant, according to the prescribed semantics; that is, $\pi_{Y}\left(T_{u}[R]\right)=\pi_{Y}(R)$.
(C) It should yield a consistent database; that is, if R is a "possible" instance, $T_{u}[R]=\Sigma$. The meaning of "possible" is the subject of property D below.
(D) A more subtle but important assumption is that the proposed update is based on the user's knowledge of the view and on no other information concerning the database. Thus, the translation should produce a legal database for all legal instances of the overall database, given the instance of the view.

It is quite interesting that these properties determine precisely when the insertion of a tuple t in an instance V of the view is translatable, and, if it is, the translation T_{u} is unique.
First, suppose that $t \notin V$ (otherwise T_{u} is the identity). Since $\pi_{Y}(R)$ must be kept constant (Property B) we must assume that $t[X \cap Y] \in \pi_{X \cap Y}(R)=\pi_{X \cap Y}(V)$; otherwise, the only way to insert t in $\pi_{x}(R)$ (Property A) would be to insert something in $\pi_{Y}(R)$. By Theorem 1, $X \cap Y$ is a superkey of either X or Y. If it is a superkey of X, then the update is clearly untranslatable, because $V \cup t$ is not the projection of a legal instance (Property C). So $X \cap Y \rightarrow Y$. It follows that the only T_{u} satisfying A-C is the insertion of the tuple $t^{*} \pi_{r}(R)$ in the database $R: T_{u}[R]=$ $R \cup t^{*} \pi_{Y}(R)$ (* denotes the natural join).

It remains to determine under which conditions $T_{u}[R]$ is legal (Property C). The insertion of t into V is translatable iff $T_{u}[R] \vDash \Sigma$ for all R such that $R \vDash \Sigma, \pi_{X}(R)$ $=V$. (Property D was used here.)
Suppose that the insertion is not translatable. This means that there is a functional dependency, say $Z \rightarrow A$, which is violated by $T_{u}[R]$ for some R for which $R \vDash \Sigma$ and $\pi_{X}(R)=V$. Since R satisfies $Z \rightarrow A$, the inserted tuple must be the culprit. Thus, there must be a tuple r of V that agrees with t on $Z \cap X$ and, if $A \in X$, disagrees with t on A. Now let us construct a relation $R(V, t, r, Z \rightarrow A)$ by filling the rows of V with new symbols in the columns of $Y-X$, only with $r[Z \cap$ $(Y-X)]=\mu[Z \cap(Y-X)]$ (where μ is a tuple agreeing with t on $X \cap Y$); if we perform the chase [25] wrt Σ on this relation, no two distinct elements of V nor the elements corresponding to $r[A], \mu[A]$ (if $A \in Y-X)$ are ever equated (otherwise, we say this chase succeeds). It turns out that this is a necessary and sufficient condition for untranslatability.

Theorem 3. The insertion of t into $V(t \notin V)$ is translatable as $R \leftarrow R \cup$ $t^{*} \pi_{r}(R)$ if and only if
(a) $t[X \cap Y] \in \pi_{X \cap Y}(V)$.
(b) Σ implies $X \cap Y \rightarrow Y$ and does not imply $X \cap Y \rightarrow X$.
(c) Chase ${ }_{2}[R(V, t, r, f)]$ succeeds for all functional dependencies $f \in \Sigma$ and tuples r of V (where r satisfies the restrictions described above).
Proof. By the preceding discussion, all we need to notice is that, if Chase ${ }_{\Sigma}$ [$R(V, t, r, f)$] does not succeed for some $\operatorname{FD} f \in \Sigma$ and some tuple r of V, then it actually provides us with a counterexample; that is, it constructs a relation R such that $R \vDash \Sigma, \pi_{X}(R)=V$, and $T_{u}[R]$ violates f. In the opposite case, the chase actually provides us with a proof that there can be no relation R such that $R=\Sigma, \pi_{X}(R)=$ V, and $T_{u}[R]$ violates some $f \in \Sigma$; that is, $T_{u}[R] \vDash \Sigma$ for all R such that $R \vDash \Sigma$, $\pi_{X}(R)=V$.

Corollary Whether an insertion is translatable can be tested in time $O\left(|V|^{3} \log |V||\Sigma|^{2}|Y-X|\right)$.
Proof. Clearly, condition (a) can be tested in time $O(|V|)$, and condition (b) can be tested in time $O(|\Sigma|)$ (using the linear-time algorithm [4] for inferring an FD from a set of FDs). Since condition (c) can be tested by doing $O(|\Sigma||V|)$ chases, it suffices to show that the chase of $R(V, t, r, f)$ can be computed in time $O\left(|V|^{2} \log |V||\Sigma||Y-X|\right)$. Recall that the chase procedure consists in repeatedly locating a pair of tuples μ, ν such that $\mu[Z]=\nu[Z]$ and $\mu[A] \neq \nu[A]$ for some FD $Z \rightarrow A$ in Σ, and replacing the element $\mu[A]$ with $\nu[A]$ throughout the A column. This can be done by the following straightforward algorithm:
Initialize R^{*} to be $R(V, t, r, f)$.
Repeat until no new change is made on R^{*} :
For each $\mathrm{FD} Z \rightarrow A$ in Σ do:
Sort R^{*} lexicographically according to the elements of the Z columns.
Find the first pair of consecutive tuples μ, ν such that $\mu[Z]=\nu[Z], \mu[A] \neq \nu[A]$.
Replace $\mu[A]$ by $\nu[A]$ throughout the A column.
It is clear that each execution of the body of the for loop takes time $O(|V| \log |V|)$, so each execution of the for loop takes time $O(|V| \log |V||\Sigma|)$. Since each time the for loop is executed the number of distinct symbols in the $Y-X$ columns is reduced by at least one (if the chase ever attempts to equate two different elements in one of the X columns, we stop immediately), and initially we have $|Y-X||V|$ such symbols, the for loop will be executed at most $|Y-X||V|$ times, and so the total time is at most $O\left(|V|^{2} \log |V||\Sigma||Y-X|\right)$.

The algorithm described above can be speeded up by taking the following straightforward shortcut: To construct $R(V, t, r, Z \rightarrow A)$, first fill the rows of V with new symbols in the columns of $Y-X$, then do a chase (and store the resulting relation to be reused for other members of Σ), and then set $r[Z \cap(Y-X)]=\mu[Z$ $\cap(Y-X)$], for some μ agreeing with t on $X \cap Y$. However, since we are still unable to provide a better guarantee for its worst-case performance than $O\left(|V|^{3} \log |V|\right)$, its applicability in practice is dubious, in view of the fact that $|V|$ is normally very large. For this reason, we will now present two alternative tests for which we can show better upper bounds to their worst-case performance. However, our tests will be stronger than necessary; that is, in addition to rejecting all untranslatable insertions, they may also reject some translatable ones.

Test 1. Our first alternative test consists in simply avoiding to do a full chase on $R(V, t, r, Z \rightarrow A)$; instead, for each tuple μ agreeing with t on $X \cap Y$, we do a chase on the two-tuple relation consisting of r and μ, and we report success if any of these chases equates $r[A], \mu[A]$ (if $A \in Y-X$; notice that in this case $\mu[A]=$ $t[A]$, since $X \cap Y \rightarrow Y$), or attempts to equate two distinct elements of V. Thus, what we are actually doing is imposing the extra requirement that $\operatorname{Chase}_{2}[R(V, t$, $r, f)]$ succeeds fast, if it succeeds at all. Intuitively, this does not seem to be very restrictive, and one may hope that Test 1 will actually accept most of the translatable insertions that will occur in practice.

The test can obviously be implemented in time $O\left(|V|^{2}|\Sigma|\right)$. However, we can do better (in terms of the dependence of the time complexity on $|V|$), as follows:
(1) Fill the rows of V with new symbols in the $Y-X$ columns. Then determine the set of tuples $T=\{\mu: \mu[X \cap Y]=t[X \cap Y]\}$. This can be done in time $O(|V|)$.
(2) For each $S \subseteq U$, construct a copy of the relation T (call it T_{S}), and sort it according to the contents of the S columns. This can be done in time $O\left(2^{\mid U I}\right.$ $|V| \log |V|)$.
(3) For each $S \subseteq U$, compute the closure of S under Σ; that is, the set $S^{+}=\{A: \Sigma$ $\vDash S \rightarrow A\}$. This can be done in time $O\left(2^{|U|}|\Sigma|\right)$ (using the algorithm of [4] for computing closures).
(4) For each FD $Z \rightarrow A$ in Σ do:

For each tuple r for which $r[Z \cap X]=t[Z \cap X]$ and $r[A] \neq t[A]$ (if $A \in X$), do:
Make r agree with μ on $Z \cap(Y-X)$, where μ is a tuple in T.
For each $S \subseteq U$ do:
Insert r in T_{s}.
If $r[S]=\nu[S]$, where ν is either the tuple next to r or the tuple before r in T_{S}, then make r agree with ν on S^{+}.

This can be done in time $O\left(|\Sigma||V| 2^{[U \mid} \log |V|\right)$.
Thus, the overall time expended is $O\left(|V| \log |V| 2^{|U|}|\Sigma|\right)$. Of course, there are various optimizations and shortcuts one may employ in an actual implementation (e.g., to handle the potential problem of having too many sorted tables-say, by actually having for each S a sequence of pointers to the tuples of T). Observe that the running time of this algorithm will be better than our worst-case upper bound for the exact translatability test (and also better than the obvious $O\left(|V|^{2}|\Sigma|\right)$ algorithm) if $|V| / \log |V|>2^{|U|}$, which is definitely going to be the case in practical situations.

Test 2. Our second alternative test has a somewhat different flavor. Notice that Test 1 saves time by doing only part of the computation necessary for each particular chase. Test 2 , instead, will only do one full chase, if this is possible.

More specifically, recall that the essential part of the translatability test (in terms of time requirements) is checking if for all R such that $R \vDash \Sigma, \pi_{x}(R)=V$, we have $T_{u}[R] \vDash \Sigma$. Suppose now that Y actually has the following property:

Property. For all R_{1}, R_{2} such that $R_{1} \vDash \Sigma, R_{2} \vDash \Sigma, \pi_{x}\left(R_{1}\right)=\pi_{X}\left(R_{2}\right), t[X \cap Y]$ $\in \pi_{X \cap Y}\left(R_{1}\right)=\pi_{X \cap \gamma}\left(R_{2}\right)$, we have that $T_{u}\left[R_{1}\right] \vDash \Sigma$ iff $T_{u}\left[R_{2}\right] \vDash \Sigma$.
We call such a Y a good complement of X. Our interest in good complements lies in the fact that, if Y happens to be a good complement of X, then clearly all we need to do to test if the insertion u is translatable is construct some relation R_{0} such that $R_{0} \vDash \Sigma, \pi_{X}\left(R_{0}\right)=V$, and test whether $T_{u}\left[R_{0}\right] \vDash \Sigma$. We can construct such an R_{0} by filling the rows of V with new symbols in the $Y-X$ columns and then doing a chase; this can be done in time $O\left(|V|^{2} \log |V||\Sigma||Y-X|\right)$. Testing whether $T_{u}\left[R_{0}\right]=R_{0} \cup t^{*} \pi_{Y}\left(R_{0}\right)$ satisfies Σ amounts to testing whether for each tuple μ of R_{0}, the two-tuple relation consisting of μ and $t^{*} \pi_{Y}\left(R_{0}\right)$ satisfies all the FDs in Σ; this can be done in time $O(|V||\Sigma|)$.
Thus, all we need to do is show how one can test if a given complement Y of X is actually a good complement. Observe that this property is independent of the tuple t to be inserted; that is, it is a property of the schema only (X, Y, and Σ).
Suppose, then, that Y is not a good complement of X. This means that there are two relations R_{1}, R_{2} such that $R_{1} \vDash \Sigma, R_{2} \vDash \Sigma, \pi_{x}\left(R_{1}\right)=\pi_{X}\left(R_{2}\right), t[X \cap Y] \in$ $\pi_{X \cap Y}\left(R_{1}\right)=\pi_{X} \cap Y\left(R_{2}\right), T_{u}\left[R_{2}\right] \vDash \Sigma$, and $T_{u}\left[R_{1}\right]=R_{1} \cup i^{*} \pi_{Y}\left(R_{1}\right)$ violates some FD in Σ, say $Z \rightarrow A$. Since $R_{1} \vDash \Sigma$, there must be a tuple μ_{1} in R_{1} such that $\mu_{1}[Z]$ $=\pi_{Z}\left[\left[^{*} \pi_{Y}\left(R_{1}\right)\right], \mu_{1}[A] \neq \pi_{A}\left[l^{*} \pi_{Y}\left(R_{1}\right)\right]\right.$. Also there must be a tuple ν_{1} in R_{1} such that $\nu_{1}[X \cap Y]=t[X \cap Y]$.

Since $\pi_{x}\left(R_{1}\right)=\pi_{x}\left(R_{2}\right)$, we can then find two tuples μ_{2}, ν_{2} of R_{2} such that $\mu_{2}[X]$ $=\mu_{1}[X], \nu_{2}[X]=\nu_{1}[X]$. Now consider the relations $R_{1}^{\prime}, R_{2}^{\prime}$, consisting of μ_{1}, ν_{1} and of μ_{2}, ν_{2}, respectively. Clearly, $R_{1}^{\prime}=\Sigma, R_{2}^{\prime} \vDash \Sigma$ (since Σ only contained FD s), $\pi_{x}\left(R_{1}^{\prime}\right)$ $=\pi_{X}\left(R_{2}^{\prime}\right), t[X \cap Y] \in \pi_{X \cap Y}\left(R_{1}^{\prime}\right)=\pi_{X \cap Y}\left(R_{2}^{\prime}\right), T_{u}\left[R_{2}^{\prime}\right] \vDash \Sigma$, and $T_{u}\left[R_{1}^{\prime}\right]$ violates $Z \rightarrow A$.

Thus, Y is not a good complement of X iff there are two relations $R_{1}^{\prime}, R_{2}^{\prime}$ with at most two tuples each that witness this fact.

From the above observation, we can easily see that we can test whether Y is a good complement of X by doing the following for each FD $Z \rightarrow A$ in Σ :

Initialize T_{1} to be a relation with three tuples μ_{1}, ν_{1}, t_{1} as follows:

$$
\begin{aligned}
& t_{1}[W]=a_{0} \text { for each } W \text { in } U, \\
& \nu_{1}[W]= \begin{cases}a_{0} & \text { for } W \text { in } Y, \\
a_{1} & \text { for } W \text { in } X-Y,\end{cases} \\
& \mu_{1}[W]= \begin{cases}a_{0} & \text { for } W \text { in } Z, \\
a_{2} & \text { for } W \text { in } U-Z .\end{cases}
\end{aligned}
$$

nitialize T_{2} to be a relation with three tuples μ_{2}, ν_{2}, t_{2} as follows:

$$
t_{2}=t_{1}, \quad \nu_{2}=\nu_{1}, \quad \mu_{2}[W]=a_{2} \quad \text { for each } \quad W \text { in } U .
$$

Repeat until no new change is made on either T_{1} or T_{2}.
Compute the chase wrt Σ of μ_{1}, ν_{1} (in this and all subsequent chases, to equate a_{1} and $a_{j}, i<j$, replace a_{j} by a_{i}.

$$
\mu_{2}[X] \leftarrow \mu_{1}[X], \quad \nu_{2}[X] \leftarrow \nu_{1}[X] .
$$

Compute the chase wrt Σ of μ_{2}, ν_{2}, of ν_{2}, t_{2}, and of μ_{2}, t_{2}.

$$
\mu_{1}[X] \leftarrow \mu_{2}[X], \quad \nu_{1}[X] \leftarrow \nu_{2}[X] .
$$

When the above procedure terminates, we check if $\mu_{1}[A]=t_{1}[A]$. If not, then T_{1}, T_{2} constitute a counterexample to the goodness of Y; if it turns out that $\mu_{1}[A]=$ $t_{1}[A]$ for each FD $Z \rightarrow A$ in Σ, then we have actually proved that no such counterexample with at most two tuples in each relation can exist, and so Y is a good complement of X.
Since each execution of the repeat loop can be done in time $O(|\Sigma|)$, and each time we lose at least one out of $O(|U|)$ symbols, the running time of the algorithm is $O\left(|\Sigma|^{2}|U|\right.$) (the procedure is repeated at most $|\Sigma|$ times).
Notice that, if Y happens to be a good complement of X, then actually Test 2 accepts precisely the translatable insertions, whereas in the opposite case it rejects all insertions. However, testing whether Y is a good complement of X can be done once and for all at the time Y is declared as the complement to use, and, if it is found to fail, then the database system can simply disregard Test 2.
3.2. Complexity of Testing Translatability. So far, we have shown how one can test whether a proposed insertion of a tuple into a view is translatable, and if so, how to do the translation (Theorem 3). We have presented an $O\left(|V|^{3} \log |V|\right)$ algorithm for testing translatability. Since this algorithm is likely to be inefficient in practice, we also developed two alternative stronger tests, which can be executed faster.
In the sequel, we prove a result that has some negative implications regarding the extent to which one can hope to improve the running time required to test translatability. Specifically, we show that, if the view is presented in an exponentially succinct way (i.e., as a union of Cartesian products), then testing translatability becomes Π^{p}-hard [32]. This result provides strong evidence against the possibility
of having an algorithm that runs in time less than $O(|V|)$; that is, it indicates that the whole view has to be examined in order to test translatability.

Moreover, we believe that this result also casts some doubt on the possibility of substantially improving the running time of our algorithm. Loosely speaking, $\Pi{ }_{2}^{p}$-hardness seems to indicate that the problem lacks a "nice" combinatorial structure, which could be exploited to yield an algorithm considerably more efficient than the one resulting from our exhaustive approach.

We now prove the result.
Theorem 4. Determining if an insertion is translatable is \prod_{2}^{p}-hard if the view V is given implicitly as the union of two Cartesian products, of total size $O(|U|)$.

Proof. Let G be a Boolean formula in 3-CNF, containing the variables $x_{i}, i=$ $1, \ldots, n$, and consisting of clauses $f_{J}, j=1, \ldots, m$, and let $X=\left\{x_{1}, \ldots, x_{k}\right\}, Y=$ $\left\{x_{k+1}, \ldots, x_{n}\right\}$ be a given partition of the set of variables of G. It is known [32, 39] that determining if for all possible assignments of truth values to the variables in X, G is satisfiable, that is, if $\forall X \exists Y G(X, Y)=1$ (where $\forall X$ means $\forall x_{1} \ldots \forall x_{k}$ etc) is \prod_{2}^{p}-complete. In what follows we give a polynomial-time reduction from this problem to the problem of testing translatability of an insertion to a succinctly presented view.

Let U be $B X_{1} X_{1}^{\prime} \cdots X_{n} X_{n}^{\prime} A F_{1} \cdots F_{m} C$, and let Σ consist of the FDs $X_{1} X_{1}^{\prime} \cdots$ $X_{k} X_{k}^{\prime} \rightarrow A, F_{1} \cdots F_{m} \rightarrow C, B A \rightarrow C$, and, for each clause $f_{f}=l_{11}+l_{12}+l_{j 3}$ of G, the FDs $L_{j 1} A \rightarrow F_{j}, L_{j 2} A \rightarrow F_{j}, L_{j 3} A \rightarrow F_{j}$ (where $L_{j n}$ is X_{r} if $l_{j i}$ is x_{r} and $L_{j i}$ is X_{r}^{\prime} if l_{n} is $\neg x_{r}$). Let the view be $B X_{1} X_{1}^{\prime} \cdots X_{n} X_{n}^{\prime}$, and let the complementary view be $X_{1} X_{1}^{\prime} \cdots X_{n} X_{n}^{\prime} A F_{1} \cdots F_{m} C$. Finally, let the instance V of the view be $s_{B} \times s_{X_{1} X_{1}^{\prime}} \times \ldots \times s_{X_{n} X_{n}^{\prime}} \cup s$, where $s_{X_{i} X_{i}^{\prime}}$ is a relation over $X_{t} X_{i}^{\prime}$ consisting of two tuples μ_{t}, ν_{t} with $\mu_{i}\left[X_{i}\right]=0, \mu_{i}\left[X_{z}\right]=1, \nu_{i}\left[X_{i}\right]=1, \nu_{i}\left[X_{t}\right]=0, s_{B}$ is a single tuple over B with $s_{B}[B]=b$, and s is a single tuple over $B X_{1} X_{l}^{\prime} \cdots X_{n} X_{n}^{\prime}$ with $s[B]=a$, $s\left[X_{i}\right]=1, s\left[X_{i}\right]=1$. Observe that V is essentially just a list of all possible truth assignments: Each tuple μ of V, with the exception of s, defines an assignment h : $\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ by taking $h\left(x_{i}\right)=\mu\left[X_{i}\right]\left(\mu\left[X_{i}^{\prime}\right]=\neg \mu\left[X_{t}\right]\right)$; also, $\mu[B]=b$.

Suppose now we want to insert in V the tuple t, where $t[B]=b, t\left[X_{1} X_{1}^{\prime} \ldots\right.$ $\left.X_{n} X_{n}^{\prime}\right]=s\left[X_{1} X_{1}^{\prime} \cdots X_{n} X_{n}^{\prime}\right]$. We show that this insertion is translatable iff $\forall X \exists Y$ $G(X, Y)=1$. First, it is obvious that conditions (a) and (b) of Theorem 3 are satisfied. Furthermore, observing that the only tuple agreeing with t on $X_{1} X_{1}^{\prime} \ldots$ $X_{n} X_{n}^{\prime}$ (the common part of the view and the complement) is s, it is easy to see that condition (c) is satisfied if the FD f is taken to be $X_{1} X_{1}^{\prime} \cdots X_{k} X_{k}^{\prime} \rightarrow A$ (because the only tuple agreeing with t on $X_{1} X_{1}^{\prime} \cdots X_{k} X_{k}^{\prime}$ is s), or if f is $F_{1} \cdots F_{m} \rightarrow C$ (since no attribute of f is in the view), or if f is $L_{y} A \rightarrow F_{\text {, (since } s \text { agrees with } t \text { on all }}$ possible L_{d} 's).

Thus, all we have to show is that, for all tuples r with $r \neq s$ (the tuples agreeing with t on B), Chase ${ }_{\Sigma}[R(V, t, r, B A \rightarrow C)]$ succeeds (i.e., starting with $r[A]=s[A]$, we eventually equate $r[C], s[C]$) iff there is a satisfying assignment h for G that agrees with the one defined by r on $\left\{x_{1}, \ldots, x_{k}\right\}$.

First, suppose there is such an assignment h, and let r_{h} be the tuple corresponding to it. Since $r_{h}\left[X_{1} X_{1}^{\prime} \cdots X_{k} X_{k}^{\prime}\right]=r\left[X_{1} X_{1}^{\prime} \cdots X_{k} X_{k}^{\prime}\right], r_{h}[A]=r[A]$, so $r_{h}[A]=S[A]$. Since h satisfies $f_{J}, r_{h}\left[L_{\mu l}\right]=1$ for some i, so $r_{h}\left[L_{\mu}\right]=s\left[L_{\mu}\right]$; that is, $r_{h}\left[L_{\mu} A\right]=$ $s\left[L_{g} A\right]$, and so $r_{h}[F]=s\left[F_{j}\right]$, for $j=1, \ldots, m$. Thus, $r_{h}\left[F_{1} \cdots F_{m}\right]=s\left[F_{1} \cdots\right.$ $\left.F_{m}\right]$, so $r_{h}[C]=s[C]$. But since $r_{h}[B A]=r[B A], r_{h}[C]=r[C]$, and thus $r[C]=s[C]$; that is, Chase ${ }_{2}[R(V, t, r, B A \rightarrow C)]$ succeeds. Conversely, it is not difficult to see (by essentially tracing the previous argument backwards) that $r[C], s[C]$ can only
be equated if there is a tuple corresponding to a satisfying assignment and agreeing with r on $X_{1} X_{1}^{\prime} \cdots X_{k} X_{k}^{\prime}$.

Thus, we have established that the insertion of t into V is translatable iff $\forall X \exists Y$ $G(X, Y)=1$. Since U, Σ, t and the description of V as a Cartesian product can obviously be constructed from G, X, Y in polynomial time, we are done.

It certainly is not surprising that by using a similar (only simpler) construction we can show an analogous result for Test 1.

TheOrem 5. Determining if Test 1 accepts an insertion is co-NP-complete if the view V is given implicitly as the union of two Cartesian products of total size $O(|U|)$.

Proof. We first show membership in co-NP. If X denotes the view and Y the complement, then the following is a nondeterministic polynomial time algorithm to determine if Test 1 does not accept the insertion of the tuple t into V : Guess an FD $Z \rightarrow A$ in Σ and two tuples r, μ over X, and verify that $r \in V, \mu \in V, r[Z \cap X]$ $=t[Z \cap X]$ (and $r[A] \neq t[A]$, if $A \in X), \mu[X \cap Y]=t[X \cap Y]$; construct a relation R consisting of two tuples r^{\prime}, μ^{\prime}, with $r^{\prime}[X]=r, \mu^{\prime}[X]=\mu$, and with new symbols in the $Y-X$ columns, only with $r^{\prime}[Z \cap(Y-X)]=\mu^{\prime}[Z \cap(Y-X)]$; compute the chase wrt Σ of R, and verify that it does not attempt to equate two distinct elements of r, μ, and, if $A \in Y-X$, it does not equate $r[A], \mu[A]$.

To prove the hardness part, we will make a reduction from unsatisfiability of Boolean formulas in 3-CNF. Let G be such a formula, with variables $x_{i}, i=1, \ldots$, n, and clauses $f_{j}, j=1, \ldots, m$. Let U be $B X_{1} X_{1}^{\prime} \cdots X_{n} X_{n}^{\prime} C$, and let Σ consist of the FDs $B \rightarrow C$, and, for each clause $f_{j}=l_{11}+l_{j 2}+l_{j 3}$ of G, the FD $L_{j 1} L_{j 2} L_{j 3} \rightarrow C$; let the view be $B X_{1} X_{1}^{\prime} \cdots X_{n} X_{n}^{\prime}$, the complement be $X_{1} X_{1}^{\prime} \cdots X_{n} X_{n}^{\prime} C$, and the instance V of the view be $s_{B} \times s_{X_{1} X_{1}^{\prime}} \times \ldots \times s_{X_{n} X_{n}^{\prime}} \cup S$, where $s_{B}, s_{X_{t} X_{2}^{\prime}}$ are as in the Proof of Theorem 4, and $s[B]=a, s\left[X_{i}\right]=0, s\left[X_{i}\right]=0$.

Suppose now we want to insert in V the tuple t, where $t[B]=b, t\left[X_{1} X_{1}^{\prime} \ldots\right.$ $\left.X_{n} X_{n}^{\prime}\right]=s\left[X_{1} X_{1}^{\prime} \cdots X_{n} X_{n}^{\prime}\right]$; we claim that this insertion is accepted by Test 1 iff G is unsatisfiable. To see this, observe that the only tuple of V agreeing with t on $X_{1} X_{1}^{\prime} \cdots X_{n} X_{n}^{\prime}$ (the common part of the view and the complement) is s; by a reasoning similar to that in the Proof of Theorem 4, we see that the only FD that needs to be checked is $B \rightarrow C$. Now if $r \neq s$, the chase on r, s will equate $r[C], s[C]$ iff for some $j, r\left[L_{j 1} L_{j 2} L_{j 3}\right]=s\left[L_{j 1} L_{j 2} L_{j 3}\right]$; that is, $r\left[L_{j l}\right]=0$, which means that the assignment corresponding to r does not satisfy f_{J}. Since this should happen for all tuples r, the claim is established.

Since U, Σ, t and the description of V as a Cartesian product can be constructed from G in polynomial time, the proof is complete.
3.3. Finding a Complement. So far, we have assumed the following scenario for translating view updates: When the user updates a view, he also specifies unambiguously the semantics of the update by defining a complement that should be kept constant during the translation. We studied in detail the problem of checking whether a proposed insertion of a tuple into a projective view is translatable when the complement is another projection and the database consists of a single relation satisfying a given set of functional dependencies.

However, a real database system should also be able to provide the user with some assistance concerning the task of defining a complement. We already gave a glimpse of this problem in Section 2, where, after we characterized complementary views, we examined the problems of finding a nonredundan: complement and a
minimum complement. Now that we have also gained some understanding of testing translatability, we can pose the following question: Suppose the user wishes to have the update translatable, imposing only partial restriction (or none at all) on the complement to be used. How can one determine whether such a complement exists and, if so, find it?

Let the view be X, and suppose that Y is a complement of X such that the insertion of the tuple t into the instance V of the view is translatable under constant Y. Clearly, $Y=W \cup(U-X)$, where $W \subseteq X$. Since $t[W] \in \pi_{W}(V)$ (condition (a) of Theorem 3), there is a tuple r of V such that $r[W]=t[W]$. Consider now the set of attributes $W_{r}=\{A: A \in X, r[A]=t[A]\}$. It is immediate that $t\left[W_{r}\right] \in \pi_{W_{r}}(V)$, $\Sigma \vDash W_{r} \rightarrow Y$ (since $\Sigma \vDash W \rightarrow Y$ by condition (b) of Theorem 3, and $W_{r} \supseteq W$), and Σ does not imply $W_{r} \rightarrow X$ (if $\Sigma \vDash W_{r} \rightarrow X$, then the insertion of t into V is not translatable since $\left.t\left[W_{r}\right]=r\left[W_{r}\right], t \neq r\right)$; moreover, if R is a database such that $R \vDash \Sigma, \pi_{X}(R)=V$, then $t^{*} \pi_{W_{r}}(R)=t^{*} \pi_{w}(R)$, and thus, since $R \cup t^{*} \pi_{m}(R) \vDash \Sigma$, it follows that also $R \cup t^{*} \pi_{W_{r}}(R) \vDash \Sigma$, for all such R. Therefore, the insertion of t into V is also translatable under constant $Y_{r}=W_{r} \cup(U-X)$.

From the above discussion, it is easy to see the following:
Theorem 6. Given Σ, X, V, and t, we can find a complement Y of X such that the insertion of t into V is translatable under constant Y within $\min \left(|V|, 2^{|X|}\right)$ tests of translatability.

Proof. One can compute, for each tuple r of V, the set $W_{r}=\{A: A \in X, r[A]$ $=t[A]]$, and, after eliminating duplications, test, for each such W_{r}, if the insertion of t into V is translatable under constant $Y_{r}=W_{r} \cup(U-X)$. If no such W_{r} is found, then, by the preceding discussion, there is no complement Y of X such that the insertion of t into V is translatable under constant Y.

Thus, we can determine if there is a complement that renders a given insertion translatable in polynomial time (see the Corollary to Theorem 3). Observe, however, that the polynomial complexity depends strongly on the fact that we are allowing the whole view V as part of the problem instance. The following result indicates that there is an inherent exponential dependence on $|U|+\log |V|$; in other words, we may nevertheless have to check all possible subsets of X in order to find a complement.

Theorem 7. Determining if there is a complement Y of X such that the insertion of t into V is translatable under constant Y is $N P$-hard if the view V is presented succinctly (as in Theorem 4).

Proof. Let G be a Beolean formula in 3-CNF, containing the variables $x_{i}, i=$ $1, \ldots, n$, and consisting of clauses $f_{j}, j=1, \ldots, m$; assume furthermore with no loss of generality that the variables appearing in each clause are distinct. Let U be $X_{1} X_{1}^{\prime} \cdots X_{n} X_{n}^{\prime} F_{1} \cdots F_{m}$, and, for each clause $f_{j}=l_{11}+l_{j 2}+l_{j 3}$ of G, let Σ contain the FDs $L_{j 1} \rightarrow F_{j}, L_{j 2} \rightarrow F_{j}, L_{j 3} \rightarrow F_{j}$. Let the view X be $X_{1} X_{j}^{\prime} \cdots X_{n} X_{n}^{\prime}$, and the instance V of the view be $s_{X_{1} X_{1}^{\prime}} \times \ldots \times s_{X_{n} X_{n}^{\prime}}$, where $s_{X_{1} X_{1}^{\prime}}$ is as in the Proof of Theorém 4.

Suppose now we want to insert in V the tuple t, where $t\left[X_{i}\right]=t\left[X_{i}\right]=1$. We show that there is a complement $Y=W \cup F_{1} \ldots F_{m}(W \subseteq X)$ such that the insertion of t into V is translatable under constant Y, iff G is satisfiable. First, it is easy to see that, since $t[W]$ should be in $\pi w(V), W$ should contain at most one of the attributes X_{1}, X_{i}^{\prime}, for each i; furthermore, since we should have that $\Sigma \vDash W \rightarrow$
$F_{1} \cdots F_{m}$ (clearly Σ does not imply $W \rightarrow X$), it is not difficult to see that W should define a satisfying assignment for G.

To complete the proof, observe that, if R is a database such that $R \vDash \Sigma, \pi_{X}(R)$ $=V$, then for any two tuples μ, ν of $R, \mu[F]=\nu\left[F_{]}\right]$. This happens because, if $\mu\left[L_{1}\right] \neq \nu\left[L_{j_{j}}\right]$ and $\mu\left[L_{2}\right] \neq \nu\left[L_{j_{2}}\right]$ (in the opposite case obviously $\mu\left[F_{j}\right]=\nu\left[F_{j}\right]$), then there is a tuple ξ in R such that $\xi\left[L_{j 1}\right]=\mu\left[L_{j 1}\right], \xi\left[L_{L_{2}}\right]=\nu\left[L_{j 2}\right]$ (because the variables in f_{j} are distinct); thus, $\xi\left[F_{j}\right]=\mu\left[F_{j}\right], \xi\left[F_{j}\right]=\nu\left[F_{j}\right]$, and therefore $\mu\left[F_{j}\right]=$ $\nu[F]$]. It follows that, for the insertion of t into V to be translatable under constant Y, it suffices to have $t[W] \in \pi_{m}(V)$ and $\Sigma \vDash W \rightarrow F_{1} \cdots F_{m}$.
Finally, U, Σ, X, t and the description of V as a Cartesian product can be constructed from G in polynomial time, and we are done.

We remark that, by following a similar line of reasoning, one can see that Theorem 6 remains true if we interpret "translatable" as "accepted by Test 1 (Test 2)", and "test of translatability" as "Test 1 (Test 2)". The same holds for Theorem 7.

4. The Translation of Deletions and Replacements

In this section we briefly show how the ideas developed previously for the case of translating the insertion of a tuple to a view can be adapted in a straightforward manner to handle the case of deleting a tuple and of replacing a tuple with another. We continue to assume that Σ is a set of FDs satisfied by the database R, and that we are given the view X, the complement Y, and the current instance V of the view.
4.1. Deletions. Suppose we wish to translate the update u on the view consisting of the deletion of a tuple $t, t \in V$, while keeping the complement $\pi_{\gamma}(R)$ constant. The update T_{u} on R that achieves this should satisfy $\pi_{X}\left(T_{u}[R]\right)=V-t$, $\pi_{y}\left(T_{u}[R]\right)=\pi_{x}(R)$, and also $T_{u}[R] \vDash \Sigma$ for all R such that $R \vDash \Sigma, \pi_{x}(R)=V$. (Compare with Properties A-D given for the case of an insertion.)

Now since $\pi_{Y}(R)$ must be kept constant, we must have that $t\left[\begin{array}{lll}X & \cap\end{array}\right]$ $\in \pi_{X \cap Y}(V-t)$; in other words, there is a tuple $r \in V$ such that $r \neq t, r[X \cap Y]=$ $t[X \cap Y]$. From this we now see that $X \cap Y$ cannot be a superkey of X (since V is a projection of a legal instance), so by Theorem $1, X \cap Y \rightarrow Y$. It follows that the only possible candidate for T_{u} is the deletion of the tuple $t^{*} \pi_{Y}(R)$ from the database $R: T_{x}[R]=R-t^{*} \pi_{Y}(R)$.

But now observe that, since $T_{u}[R] \subseteq R$ and Σ only contains FDs, $T_{u}[R] \vDash \Sigma$ if $R \vDash \Sigma$. Thus, our last requirement that $T_{u}[R] \vDash \Sigma$ for all R such that $R \vDash \Sigma, \pi_{X}(R)$ $=V$, is satisfied trivially.
We have thus shown the following:
Theorem 8. The deletion of t from V is translatable as $R \leftarrow R-t^{*} \pi_{Y}(R)$ if and only if
(a) $t[X \cap Y] \in \pi_{X \cap Y}(V-t)$.
(b) Σ implies $X \cap Y \rightarrow Y$, and Σ does not imply $X \cap Y \rightarrow X$.

Hence, determining whether a deletion is translatable can be done in time $O(|V|+|\Sigma|)$.
4.2. Replacements. Suppose now the update we wish to translate under constant complement Y is the replacement of a tuple $t_{1}, t_{1} \in V$, by a tuple t_{2},
$t_{2} \notin V$. The update T_{u} on R should satisfy $\pi_{x}\left(T_{u}[R]\right)=V-t_{1} \cup t_{2}$, and again $\pi_{Y}\left(T_{u}[R]\right)=\pi_{Y}(R)$ and $T_{u}[R] \vDash \Sigma$ for all R such that $R \vDash \Sigma, \pi_{\mathcal{X}}(R)=V$. We distinguish two cases:

Case $1: t_{1}[X \cap Y] \neq t_{2}[X \cap Y]$. This case exhibits a behavior similar to the one we are already familiar with: Specifically, since $\pi_{Y}(R)$ must be kept constant, we must have $t_{1}[X \cap Y] \in \pi_{X \cap Y}\left(V-t_{1}\right), t_{2}[X \cap Y] \in \pi_{X \cap Y}(V)$. From this it follows that $X \cap Y$ cannot be a superkey of X, and thus it is a superkey of Y by Theorem 1. Hence, the only possible candidate for T_{u} is the replacement of the tuple $t_{i}^{*} \pi_{Y}(R)$ by the tuple $t_{2}^{*} \pi_{\mathrm{r}}(R)$.

To check now if the last condition is satisfied, that is, if $T_{u}[R] \vDash \Sigma$ for all R such that $R \vDash \Sigma, \pi_{X}(R)=V$, it is not difficult to see (by a reasoning exactly analogous to that given for insertion) that all we have to do is check whether Chase ${ }_{2}\left[R\left(V, t_{2}\right.\right.$, $r, f)$] succeeds for all FDs f in Σ and for all tuples r in V that are different from t_{1}.

Case $2: t_{1}[X \cap Y]=t_{2}[X \cap Y]$. In this case we see that the first two conditions can be satisfied with no further restrictions on V, t, X, or Y, and moreover the only possible candidate for T_{u} is replacing the set of tuples $t_{1}^{*} \pi_{Y}(R)$ by the set of tuples $t_{2}^{*} \pi_{r}(R)$ (we can no longer assert as before that either set will consist of a single tuple, since this has depended on $X \cap Y$ being a superkey of Y, which is no longer necessary).

Checking whether the last condition is satisfied, that is, whether $T_{u}[R] \vDash \Sigma$ for all R such that $R \vDash \Sigma, \pi_{X}(R)=V$, can still be done by checking whether Chase ${ }_{\Sigma}[R(V$, $\left.t_{2}, r, f\right)$] succeeds for all f in Σ and for all r in $V, r \neq t_{1}$ (one can see that the fact that $t_{1}^{*} \pi_{Y}(R)$ and $t_{2}^{*} \pi_{Y}(R)$ may consist of more than one tuple does not affect anything).

Thus, we have the following:
THEOREM 9. The replacement of t_{1} by t_{2} in $V\left(t_{1} \in V, t_{2} \notin V\right)$ is translatable as $R \leftarrow R-t_{1}^{*} \pi_{Y}(R) \cup t_{2}^{*} \pi_{Y}(R)$ if and only if
(a) $t_{1}[X \cap Y] \in \pi_{X \cap Y}\left(V-t_{1}\right)$ and $t_{2}[X \cap Y] \in \pi_{X \cap Y}(V)$, or $t_{1}[X \cap Y]=t_{2}[X \cap Y]$.
(b) Σ implies $X \cap Y \rightarrow Y$ and does not imply $X \cap Y \rightarrow X$, or $t_{1}[X \cap Y]=$ $t_{2}[X \cap Y]$.
(c) Chase ${ }_{\Sigma}\left[R\left(V, t_{2}, r, f\right)\right]$ succeeds for all fin Σ and for all r in $V, r \neq t_{1}$.

From Theorem 9 it should be clear that one can develop results analogous to the ones given for the case of insertion in a straightforward way. Thus, we do not pursue this direction any further.

5. Explicit Functonal Dependencies

Functional dependencies assert that a certain relation is actually a many-one mapping, for example, a mapping from employee-project pairs to managers, or from cost-price pairs to rates of profit. However, there is a difference; certain such mappings (as in the first example above) are essential information stored by the database, whereas others (as in the second example) are redundant information, mappings that could be computed explicitly. We call the latter case of FDs explicit functional dependencies (EFDs).

Explicit functional dependencies are important in the context of views and view complements, because they can seriously affect the information content of database mappings. We thus felt that we should study their behavior as it pertains to the other known classes of dependencies. We first define formally what an EFD is:

Definition. A set of attributes X explicitly determines a set of attributes Y (notation: $X \rightarrow_{e} Y$) if there is an instance-independent function f (called a witness of $\left.X \rightarrow_{e} Y\right)$ such that $\pi_{X Y}(R)=f\left(\pi_{X}(R)\right)$, for any legal instance R of the database.

Examples. Cost-Profitrate \rightarrow_{e} Price, Course-Student-Grade \rightarrow_{e} Average-Grade.
We remark that, in our definition of an EFD, no special property of the witness function f is assumed. This leads naturally to the following extension of the meaning of implication of an EFD σ from a set of dependencies Σ, where $\sigma_{i}, i=1, \ldots, k$, are the EFDs in Σ : for all functions $f_{i}, i=1, \ldots, k$, there is a function f such that, if a database R satisfies all dependencies in Σ (where f_{t} is taken as the witness of σ_{1}), then it also satisfies σ (where f is taken as the witness of σ). In case σ is not an EFD, then one just omits the requirement of the existence of f.
As we see shortly, with this approach EFDs behave very much like FDs (in the sense of Propositions 1 and 2). It would be interesting to see what happens if one imposes natural restrictions on the witness function f, such as invertibility, 0-1valuedness, etc.

In the following, if Σ is a set of dependencies, we denote by Σ_{F} the set of FDs $\left\{X \rightarrow Y: X \rightarrow_{e} Y\right.$ is in $\left.\Sigma\right\}$.

Proposition 1. Let Σ be a set of EFDs; then $\Sigma \vDash X \rightarrow{ }_{e} Y$ iff $\Sigma_{F} \vDash X \rightarrow Y$.
Proof. Consider the following chase procedure for computing X^{+}: initialize X^{+}to X; repeatedly locate a member $Z \rightarrow B$ of Σ_{F} such that $Z \subseteq X^{+}$and B is not contained in X^{+}, and set X^{+}to $X^{+} \cup B$. As is well known [25], this procedure terminates with a unique X^{+}, and furthermore $\Sigma_{F} \vDash X \rightarrow Y$ iff $Y \subseteq X^{+}$.
We now argue that also $\Sigma \vDash X \rightarrow_{e} Y$ iff $Y \subseteq X^{+}$. First, if $Y \subseteq X^{+}$, then it is clear that $\Sigma \vDash X \rightarrow_{e} Y$ by the construction of X^{+}. (Observe that, if $X \rightarrow_{e} Y$ and $Y \rightarrow_{e} Z$, then $X \rightarrow_{e} Z$.) Conversely, if Y is not contained in X^{+}, we shall show that Σ does not imply $X \rightarrow_{e} Y$. For each EFD $Z \rightarrow_{e} B$ in Σ, pick as its witness a function $f_{Z \rightarrow B}$ such that $f_{Z \rightarrow B}\left(t_{Z}\right)=t_{Z B}$, where t_{Z} is a tuple over Z with $t_{Z}[W]=a$ for all W, and $t_{Z B}$ is a tuple over $Z B$ with $t_{Z B}[W]=a$ for all W. Now if g is a purported witness of $X \rightarrow_{e} Y$, then consider the database R consisting of a single tuple t with $t[W]=a$ for $W \in X^{+}$, and $t[W]=y$ otherwise, where $y \neq \pi_{A}(g(t[X])$, for some A in $Y-X$. It is clear that R satisfies each EFD $Z \rightarrow_{e} B$ in Σ (with witness $f_{Z \rightarrow B}$), but R does not satisfy $X \rightarrow_{e} Y$ with witness g.

Proposition 2. Let Σ be a set of EFDs, and let Σ^{\prime} be a set of FDs and JDs. Suppose that $\Sigma \cup \Sigma^{\prime} \vDash \sigma$:
(a) If σ is an $F D$ or $J D$ or embedded JD, then $\Sigma_{F} \cup \Sigma^{\prime} \vDash \sigma$.
(b) If σ is an EFD, then Σ に σ.

Proof. (a) If $\Sigma_{F} \cup \Sigma^{\prime}$ does not imply σ, then there is a relation R that satisfies $\Sigma_{F} \cup \Sigma^{\prime}$ but violates σ. Now since $R \vDash \Sigma_{F}$, clearly we can pick a function f_{t} for each EFD σ_{t} in Σ such that R also satisfies σ_{t} with witness f_{i}. Thus, R satisfies $\Sigma \cup \Sigma^{\prime}$, and therefore $\Sigma \cup \Sigma^{\prime}$ does not imply σ.
(b) Assume that Σ does not imply σ, and observe that the one-tuple relation R constructed in the Proof of Proposition 1 also satisfies Σ^{\prime} (since it satisfies any FD, JD, or embedded JD). Thus, R satisfies $\Sigma \cup \Sigma^{\prime}$ and violates σ, and so $\Sigma \cup \Sigma^{\prime}$ does not imply σ.

Thus, we can easily augment any of the known axiom systems for FDs [1], FDs and MVDs, and so on, to include EFDs. Moreover, our characterization of complementary views (Theorem 1) can be extended to include EFDs as follows:

Theorem 10. Let Σ be a set of FDs, JDs, and EFDs. Then X, Y are complementary iff
(a) They are complementary when considered as views of $\pi_{X \cup Y}(R)(i . e ., \Sigma$ implies the embedded MVD $X \cap Y \rightarrow X-Y \mid Y-X$; and
(b) Σ 上 $X \cup Y \rightarrow_{e} U$.

Proof. The if direction is immediate: From (a) $\pi_{X}(R)^{*} \pi_{Y}(R)=\pi_{X \cup Y}(R)$ for every legal database R, and then from (b) $R=f\left(\pi_{X \cup Y}(R)\right)=f\left(\pi_{X}(R)^{*} \pi_{Y}(R)\right.$), where f is an instance-independent function. Thus, if for two legal instances R, R^{\prime} we have $\pi_{X}(R)=\pi_{X}\left(R^{\prime}\right)$ and $\pi_{Y}(R)=\pi_{Y}\left(R^{\prime}\right)$, we get $R=f\left(\pi_{X}(R)^{*} \pi_{Y}(R)\right)=$ $f\left(\pi_{X}\left(R^{\prime}\right)^{*} \pi_{r}\left(R^{\prime}\right)\right)=R^{\prime} ;$ that is, X, Y are complementary.

For the only if direction, assume first that (a) is false; that is, Σ does not imply the embedded MVD $X \cap Y \rightarrow X-Y \mid Y-X$. We first remark that the Equivalence Theorem of [30] is also true if σ is an embedded MVD (using the partial extension of the equivalence between dependencies and formulas to include embedded MVDs described in Section 7; the two-tuple Subrelation Lemma can be extended to the case in which σ is an embedded MVD, by an argument analogous to the one given for the case in which σ is an MVD). Using the same construction as in the Proof of Theorem 1 (combined with Proposition 2 (a) and the above observation), we obtain two distinct two-tuple relations R, R^{\prime} such that $\pi_{X}(R)=$ $\pi_{X}\left(R^{\prime}\right), \pi_{Y}(R)=\pi_{Y}\left(R^{\prime}\right)$, and R, R^{\prime} satisfy all the FDs and JDs in Σ and all the FDs in Σ_{F}. Then it is easy to see that we can pick, for each EFD σ in Σ, a function f such that both R and R^{\prime} satisfy σ with witness f. This shows that X, Y are not complementary.

If (b) is false, then $(X \cup Y)^{+} \neq U$, where $(X \cup Y)^{+}$is the closure of $X \cup Y$ wrt Σ_{F}. Let R, R^{\prime} be two one-tuple relations such that $R[W]=R^{\prime}[W]=a$ for W in $(X \cup Y)^{+}$, and $R[W] \neq R^{\prime}[W]$, otherwise. Clearly, $R \neq R^{\prime}, \pi_{X}(R)=\pi_{X}\left(R^{\prime}\right), \pi_{Y}(R)$ $=\pi_{\mathrm{r}}\left(R^{\prime}\right), R, R^{\prime}$ satisfy all FDs and JDs in Σ, and moreover by picking as the witness of an EFD $Z \rightarrow B$ in Σ a function $f_{Z \rightarrow B}$ as in the Proof of Proposition 1, we see that R, R^{\prime} also satisfy the EFDs in Σ. This shows that X, Y are not complementary, and the proof is complete.

Intuitively, Theorem 1 states that, if the only dependencies present are FDs and JDs, then the only way to reconstruct a database from two projections is by join. Theorem 10 states that, if EFDs are also present, then the only way is to join the two projections and then explicitly compute the information that is still missing.

6. Conclusions and Directions for Further Research

We have studied some of the computational problems arising when one considers applying, in the context of the relational model, the methodology proposed by Bancilhon and Spyratos [3] for translating view updates. We discovered that certain important problems such as testing translatability and determining a complement that renders an update translatable, although solvable in polynomial time (Theorems $3,6,8,9$), exhibit an interesting kind of inherent complexity (Theorems 4,5 , 7), which indicates the existence of limitations on how efficiently they can be solved. However, we have only concentrated on a very simple case of the application; we feel that much remains to be done before a reasonable account of the applicability of the methodology can be attempted. In particular, the following possibilities seem to be worthy of further investigation:
(1) Allowing more general dependencies: In particular, it would be interesting to see to what extent can Theorem 1 be generalized, especially in view of the
negative result of [37]; a first result in the direction of allowing unary inclusion dependencies appears in [23]. More important, though, one should study the problem of testing translatability and designing a translation. (Recall that we found the translation of deletions to be trivial just because we only considered functional dependencies.) It is conceivable that our basic idea of a chase-type algorithm will be useful, although it is not clear to what extent.
(2) Considering views that are a restriction of a projection (i.e., of the form $\sigma_{P} \pi_{X}$, where P is a predicate on tuples): It should be noted that most of the views occurring in practice are actually of the above form. The complement here can be a pair of views, for example, $\left(\sigma_{\neg P}, \sigma_{P} \pi_{Y}\right)$ or $\left(\sigma_{\neg P} \pi_{X}, \pi_{Y}\right)$, where π_{Y} is a complement of π_{X}. We believe that, in the case of only functional dependencies (which is still very important from a practical viewpoint), our basic approach can be used with only simple modifications (at least for certain P_{S}).
(3) Considering multirelation databases with views that are projections of joins of relations: This is most important, given that the universal relation assumption is being criticized as unrealistic. We also believe that this is likely to be the theoretically most interesting direction.
(4) Studying the explicit functional dependencies: It seems to us that EFDs are a step in the right direction, if one wants a model capable of capturing the information content of database mappings. We have already examined their influence on complementarity of views (Theorem 10). Their effect on issues such as testing translatability or designing a translation (perhaps in conjunction with refining our definition to capture more semantics) is a question that we feel deserves further research.

REFERENCES

1. Armstrong, W. W. Dependency structures of database relationships. In Proceedings of IFIP 74. North-Holland, Amsterdam, 1974, pp. 580-583.
2. Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaren, K. P., Gray, J. N., Griffiths, P. P., King, W. F., Lorie, R. A., McJones, P. R., Mehl, J. W., Putzolu, G. R., Traiger, I. L., Wade, B. W., AND WATSON, V. System R: Relational approach to database management. $A C M$ Trans. Database Syst. 1, 2 (June 1976), 97-137.
3. Bancllhon, F., and Spyratos, N. Update semantics of relational views. ACM Trans. Database Syst 6, 4 (Dec. 1981), 557-575.
4. Beeri, C., and Bernstein, P. A. Computational problems related to the design of normal form relational schemas. ACM Trans Database Syst. 4, 1 (Mar. 1979), 30-59.
5. Beeri, C., Bernstein, P. A., and Goodman, N. A sophisticate's introduction to database normalization theory. In Proceedings of the 4th VLDB Conference (West Berlin, Germany, Sept. 1315). ACM, New York, 1978, pp. 113-124.
6. Beeri, C., and Vardi, M. Y. On the complexity of testing implications of data dependencies. Res. Rep., Dept. of Computer Srience, Hebrew Univ. of Jerusalem, Jerusalem, Israel, Dec. 1980.
7. Beeri, C., and Vardi, M. Y. On acyclic database decompositions. Inf. Control, to be published.
8. Carlson, C. R., and Arora, A. K. The updatability of relational views based on functional dependencies. In 3rd International Computer Software and Applications Conference (Nov.). IEEE Computer Society, Chicago, Ill., 1979.
9. Chamberlin, D. D., Gray, J. N., and Traiger, I. L. Views, authorization and locking in a relational data base system. In Proceedings of 1975 National Computer Conference. AFIPS Press, Reston, Va., 1975, pp. 425-430.
10. CodD, E. F. A relational model for large shared data banks. Commun. ACM 13, 6 (June 1970) 377-387.
11. Codd, E. F. Relational completeness of database sublanguages. In Data Base Systems, R. Rustin, Ed. Prentice Hall, Englewood Cliffs, N.J., 1972, pp. 65-98.
12. Cond, E. F. Further normalization of the database relational model. In Data Base Systems, R. Rustin, Ed. Prentice Hall, Englewood Cliffs, N.J., 1972, pp. 33-64.
13. Cond, E. F. Extending the database relational model to capture more meaning. ACM Trans. Database Syst. 4, 4 (Dec. 1979), 397-434.
14. CODASYL Data Base Task Group, April 71 Report. ACM, New York, 1971.
15. Cook, S. A. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual ACM Symposium on the Theory of Computing (Shaker Heights, Ohio, May 3-5). ACM, New York, 1971, pp. 151-158.
16. Date, C. J. An Introduction to Database Systems. Addison Wesley, Reading, Mass., 1977.
17. Dayal, U., and Bernstein, P. A. On the updatability of relational views. In Proceedings of the 4th VLDB Conference (West Berlin, Germany, Sept. 13-15). ACM, New York, 1978, 368-377.
18. Fagin, R. Multivalued dependencies and a new normal form for relational databases. ACM Trans. Database Syst. 2, 3 (Sept. 1977), 262-278.
19. Fagin, R., Ullman, J.D., and Vardi, M. Y. On the semantics of updates in databases. In Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, 1983.
20. Furtado, A. L., Sevcik, K. C., and Dos Santos, C. S. Permitting updates through views of data bases. Inform. Syst. 4, 4 (1979), 269-283.
21. Garey, M. R. and Johnson, D. S. Computers and Intractability: A Gude to the Theory of NP. Completeness. Freeman, San Francisco, Calif. 1979.
22. IMS/VS publications GH20-1260, SH20-9025, SH20-9026, SH20-9027. IBM, White Plans, New York, 1978.
23. Kanellakis, P. C., Cosmadakis, S. S., and Vardi, M. Y. Unary inclusion dependencies have polynomial time inference problems. In Proceedings of the 15th ACM Symposium on Theory of Computing (Boston, Mass., Apr. 25-27). ACM, New York, 1983, pp. 264-277.
24. Karp, R. M. Reducibility among combınatorial problems. In Complexity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds. Plenum Press, New York, 1972, pp. 85-104.
25. Maier, D., Mendelzon, A. O., and Sagiv, Y. Testing implications of data dependencies. $A C M$ Trans. Database Syst. 4, 4 (Dec. 1979), 455-469.
26. Maier, D., Sagiv, Y., and Yannakakis, M. On the complexity of testing implications of functional and join dependencies. J. ACM 28, 4 (Oct. 1981), 680-695.
27. Rissanen, J. Independent components of relations. ACM Trans. Database Syst. 2, 4 (Dec. 1977), 317-325.
28. Rissanen, J. Theory of relations for databases-A tutorial survey. In Proceedings of the 7th Sympostum on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, vol. 64. Springer-Verlag, New York, 1978, pp. 536-551.
29. Rowe, L., and Stonebraker, M. Manuscript. Univ. Cal., Berkeley, Berkeley, Calif., 1979.
30. Sagiv, Y., Delobel, C., Stott Parker, D., Jr, and Fagin, R. An equivalence between relational database dependencies and a fragment of propositional logic. J. ACM 28, 3 (July 1981), 435-453.
31. Spyratos, N. Translation structures of relational views. In Proceedings of the 6th VLDB Conference (Montreal, Canada, Oct. (-3). ACM, New York, 1980, pp. 411-416.
32. Stockmeyer, L. J. The polynomial time hierarchy. Theor. Comput. Sci. 3, 1 (1976), 1-22.
33. Stonebraker, M., Wong, E., Kreps, P., and Held, G. The design and implementation of INGRES. ACM Trans. Database Syst. 1, 3 (Sept. 1976), 189-222.
34. ToDd, S. J. P. The Peterlee relational test vehicle-A system overview. IBM Syst. J. 15, 4 (1976), 285-308.
35. Ullman, J. D. Princtples of Database Systems. Computer Science Press, Rockville, Md., 1980.
36. Ullman, J. D. The U.R. strikes back. In Proceedings of the ACM Symposium on Principles of Database Systems, (Los Angeles, Calif. Mar. 29-30). ACM, New York, 1982, pp. 10-22.
37. Vardi, M. Y. On decomposition of relational databases. In Proceedings of the 23rd Sympostum on Foundatıons of Computer Science (Chicago, Ill., Nov.), IEEE, New York, 1982.
38. Vardi, M. Y. Inferring multivalued dependencies from functional and join dependencies. Res. Rep., Dept. of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, March 1980.
39. Wrathall, C. Complete sets and the polynomial-time hierarchy. Theor. Comput. Sci. 3, 1 (1976), 23-33.
40. Zaniolo, C. Analysis and design of relational schemata for database systems. Tech. Rep. UCLA-ENG-7669, Dept. of Computer Science, Unıv. of California, Los Angeles, Calif., July 1976.
41. Zaniolo, C. Database relations with null values. In Proceedings of the ACM Sympostum on Principles of Database Systems (Los Angeles, Calif., Mar. 29-31). ACM, New York, 1982, pp. 2733.
42. Zloof, M. M. Query-by-Example: A data base language. IBM Syst. J. 16, 4 (1977), 324-343.

RECEIVED MARCH 1983; REVISED MARCH 1984; ACCEPTED MARCH 1984

