
This may be the author’s version of a work that was submitted/accepted

for publication in the following source:

Emmadi, Nitesh, Gauravaram, Praveen, Narumanchi, Harika, & Syed,

Habeeb

(2015)

Updates on sorting of fully homomorphic encrypted data.

In Sung Lee, F B (Ed.) Proceedings of the 2015 International Conference

on Cloud Computing Research and Innovation (ICCCRI).

Institute of Electrical and Electronics Engineers Inc., United States of

America, pp. 19-24.

This file was downloaded from: https://eprints.qut.edu.au/88895/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a

Creative Commons Licence, you must assume that re-use is limited to personal use and

that permission from the copyright owner must be obtained for all other uses. If the docu-

ment is available under a Creative Commons License (or other specified license) then refer

to the Licence for details of permitted re-use. It is a condition of access that users recog-

nise and abide by the legal requirements associated with these rights. If you believe that

this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record

(i.e. published version) of the work. Author manuscript versions (as Sub-

mitted for peer review or as Accepted for publication after peer review) can

be identified by an absence of publisher branding and/or typeset appear-

ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/ICCCRI.2015.28

https://eprints.qut.edu.au/view/person/Gauravaram,_Praveen.html
https://eprints.qut.edu.au/88895/
https://doi.org/10.1109/ICCCRI.2015.28

Updates on Sorting of Fully Homomorphic
Encrypted Data

Nitesh Emmadi∗, Praveen Gauravaram$†, Harika Narumanchi∗, Habeeb Syed∗
∗TCS Innovation Labs, India

Email: {nitesh.emmadi1,h.narumanchi,habeeb.syed}@tcs.com
†Queensland University of Technology, Australia

Email: praveen.gauravaram@qut.edu.au

Abstract—In this paper, we show implementation results of
various algorithms that sort data encrypted with Fully Ho-
momorphic Encryption scheme based on Integers. We analyze
the complexities of sorting algorithms over encrypted data by
considering Bubble Sort, Insertion Sort, Bitonic Sort and Odd-
Even Merge sort. Our complexity analysis together with imple-
mentation results show that Odd-Even Merge Sort has better
performance than the other sorting techniques. We observe that
complexity of sorting in homomorphic domain will always have
worst case complexity independent of the nature of input. In
addition, we show that combining different sorting algorithms to
sort encrypted data does not give any performance gain when
compared to the application of sorting algorithms individually.

I. Introduction

Since the invention of Fully Homomorphic Encryption
(FHE) by Gentry in 2009 [10], cryptographic applications to
secure data stored and managed on the cloud environment have
been gaining significant importance. With FHE algorithms it
is possible to perform arbitrary computations on the encrypted
data and still preserve the confidentiality of the data. Also,
there has been consistent research on designing efficient FHE
algorithms [9], [8], [21], [15] and their analysis. However,
the practical viability of FHE, in general, has not seen a
similar level of progress, which is the prime motivation for
our research work.

In this paper we focus on applying sorting techniques to
sort ciphertexts encrypted using the FHE scheme proposed
by Smart and Vercauteren [17]. Sorting is an important cloud
computing operation and sorting of ciphertexts stored on cloud
managed by a cloud service provider is required whenever sort-
ing has to be computed on the plaintexts and these plaintexts
need to be encrypted. For example, on an encrypted Relational
Database Management System (RDBMS), the ability to sort
on encrypted records is possible, for example, by supporting
ORDER BY SQL query on the encrypted records. Sorting
over encrypted data through FHE could be useful for real-
world cloud service offerings such as Protonmail [2] and
Ciphercloud [1] once such techniques are feasible to deploy in
practice. This paper focuses on how far we can reach on sorting
data in the encrypted domain with the sorting algorithms used
to sort plaintexts.

$Praveen Gauravaram is supported by Australian Research Council Discov-
ery Project grant number DP130104304.

A. Our Contributions

We observe that sorting over data encrypted with a FHE
algorithm has worst case complexity irrespective of the nature
of input data with respect to the sorting order. We note
that even some efficient sorting algorithms such as Merge
sort that have O(n log(n)) complexity in the worst case to
sort n plaintext integers, would have O(n2) complexity in
the FHE domain to sort n ciphertext integers. As a result,
algorithms that are efficient in sorting plaintext integers would
become less efficient when applied to sort encrypted integers.
Therefore, it is interesting to investigate on the complexity
of the sorting algorithms on the encrypted data and analyze
which ones have lower worst case complexity. In this di-
rection, we have analyzed some popular sorting algorithms
on the FHE encrypted data and found that Odd-Even Merge
Sort(OEMS) outperforms Bitonic, Insertion and Bubble sorting
algorithms. We implemented these algorithms to sort arrays
of ciphertext integers whose corresponding plaintext integers
are 32 bits each. We ran our implementations on a 3.4GHz
Intel QuadCore Processor with 16GB RAM running a Ubuntu
14.04 operating system. We compared running times of sorting
techniques together with some optimizations. Our experiments
show that Odd-Even Merge sort takes significantly less time
when compared to the other sorting techniques.

Chatterjee et al. [6] described a sorting technique over
encrypted data called LazySort that combines Bubble sort
and Insertion sort to sort homomorphic data. In this technique
initially input data is fed to the Bubble sort algorithm to
produce a partially sorted array. This partially sorted array
is given as input to the Insertion sort to produce a sorted
array in linear time [6, Section 4]. We observe that applying
Insertion sort on a partially sorted array doesn’t take linear
time for partially sorted array, thus, contradicting the claims
of Chatterjee et al. [6]. Finally, we discuss our ongoing work
in this research direction.

B. Related Work

Study of applications of FHE has been an area of pursuit
in the last few years mainly because of its impact on cloud
computing security [13], [7], [12], [19]. To our knowledge,
the idea of sorting an array of encrypted integers was first
discussed by Carlos et al. [3]. Here authors explicitly presented
control flow of Bubble sort algorithm that can sort encrypted
data. Later Chatterjee et al. [6] used Insertion and Bubble
sorting techniques to sort an array of encrypted integers whose
plaintext array size is 5-40 by using hcrypt [14] library. This

library was programmed in C and is based on FHE scheme
proposed by Smart and Verteceuran [17], which has relatively
smaller key and ciphertext sizes and yet, following Gentry’s
bootstrapping blueprint[10] of developing a FHE scheme from
a Somewhat Homomorphic Encryption scheme. Chatterjee et
al. [6] also proposed a sorting technique called LazySort
which claims a substantial performance improvement com-
pared to the classical Bubble and Insertion sorting techniques.
Most recently, Çetin et al. [5] proposed techniques to sort en-
crypted data focused more on reducing the multiplicative depth
that effects the performance of such sorting algorithms. Their
new algorithms called the Direct sort and Greedy sort have
O(log(N) + log(l)) multiplicative depth but still they require
O(n2) pre-computed comparisons. We note that observations
were similar to ours’ on the equivalence between worst case
and average case complexity of FHE sorting algorithms was
independently made by Çetin et al..

II. Sorting of Encrypted Data

A. Brief Overview of a FHE scheme

A public key FHE scheme ξ :M −→ C is described by a
tuple of four polynomial time algorithms i.e.

ξ = (KeyGen, Enc, Dec, Eval)

where KeyGen, Enc, Dec denote the key generation, encryption
and decryption functions of ξ respectively. Eval is the evalu-
ation algorithm used for computation on encrypted data. This
algorithm takes as input a polynomial expression P and a set of
ciphertexts c = {C0,C1, . . . ,Cn} which are needed to compute
P . The input output of Eval satisfies following equation:

Dec(Eval(P , c, pk), sk) = P(Dec(c, sk)) (1)

In the above expression pk denotes keys that are public, like
encryption keys or ReCrypt keys and sk denotes private or
decryption key which is secret and known only to the generator
of the keys. For the sake of brevity, we omit mentioning these
keys in our work unless it is essential to use them. To illustrate
Eval, consider polynomial expression P(X, Y) = X + Y
which adds two ciphertexts X and Y and results in addition
of corresponding plaintexts. According to Equation (1), for
ciphertext inputs (A, B), we have

Dec(Eval(P , A, B)) = Dec(P(A, B))

= P(Dec(A) + Dec(B))

B. Smart-Vercauteren FHE scheme

The Smart-Vercauteren FHE scheme [17] consists of
four algorithms: {KeyGen, Enc, Dec, ReCrypt} parametrized
by three values {N, η, µ} which are typically taken as

{N, 2
√

N ,
√

N}. This scheme supports two operations: {Add,
Mul}.

KeyGen():

– Set the plaintext space to be P = {0, 1}.

– Choose a monic irreducible polynomial F(x) ∈ Z[x] of
degree N.

– Repeat until p is prime.

• S (x)←−R B∞,N(η/2).

• G(x)←− 1 + 2.S (x).

• p←− resultant(G(x), F(x)).

– D(x)←− gcd(G(x), F(x)) over Fp[x].

– Let α ∈ Fp denote the unique root of D(x).

– Apply the XGCD-algorithm over Q[x] to obtain Z(x) =
Σ

N−1
i=0

zi xi ∈ Z[x] such that Z(x).G(x) = p mod F(x).

– B←− z0 (mod 2p).

– The public key is pk = (p,α) and the private key is
sk = (p, B).

For fully homomorphic encryption scheme a new algorithm
called ReCrypt is defined that takes a ciphertext c and re-
encrypts to a new ciphertext cnew. This is done by extending the
above steps of KeyGen with the following additional operations
and two integer parameters s1 and s2.

– Generate s1 uniformly random integers Bi in [−p, . . . , p]
such that there exists a subset S of s2 elements with
∑

j∈S
B j = B over the integers.

– Define ski = 1 if i ∈ S and 0 otherwise.Only s2 of the
bits {ski} are set to 1.

– Encrypt the bits ski = 1 under the encryption operation
to obtain ci = Enc(ski, pk).

– The public key is (p,α, s1, s2, {ci, Bi}
s1

i=1
).

ReCrypt(c,pk):

– Write down the first t bits of the s1 floating point numbers
(c.Bi) (mod 2p)/p as an s1 × t matrix (bi, j).

– Encrypt each of the bits bi, j under the public key pk to
obtain an s1 × t matrix of clean ciphertexts (ci, j).

– Multiply each row of the matrix by the corresponding
encryption ci of ski to obtain (ci.ci, j) mod p. As such we
obtain the encryption of a matrix with only s2 non-zero
rows.

– Compute the sum of each column as the Hamming weight
using symmetric polynomials and hence reduce the sum
of s1 floating point values to the sum of t floating point
values of t bits of precision. More precisely, denote by
hi, j the j-th bit of the Hamming weight of the i-th column
for i = 1, . . . , t and j = 1, . . . , s and form the t × t matrix
(Hi, j) with Hi, j = hi,i− j+s whenever the right hand side is
defined and zero otherwise.

– Merge rows of the matrix H, so as to obtain an s × t
matrix H such that the sum of the rows of H equals the
sum of the rows of H.

– Apply carry-save-adders to progressively reduce the ma-
trix to one with two rows. Each set of three rows is
reduced to two, and then this procedure is repeated.

– Perform the final addition, and output the encryption of
a single bit.

Enc(M,pk):

– Parse pk as (p,α).

– if M ! {0, 1} abort.

– R(x)←−R B∞,N(µ/2).

– C(x)←− M + 2.R(x).

– c←− C(α) (mod p).

– Output c.

Dec(c,sk):

– Parse pk as (p, B).

– M ←− (c − ⌊c.B/p⌋).

– Output M.

Add(c1, c2, pk):

– Parse pk as (p,α).

– c3 ←− (c1+c2) (mod p).

– Output c3.

Mul(c1, c2, pk):

– Parse pk as (p,α).

– c3 ←− (c1.c2) (mod p).

– Output c3.

C. Sorting of Encrypted Integers

In this section we describe the mathematical model of
sorting algorithm over encrypted data developed by Chatterjee
et al. [6]. Let a, b be any two integers. Using arithmetic based
on 2’s compliment we have

a − b = a + (2′s compliment of b)
︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸

(⋆)

(2)

We denote Most Significant Bit (MSB) of (⋆) by β. According
to bit-wise arithmetic, the value of β is 1 if the subtraction
result is negative and 0 otherwise i.e.

a ≥ b ⇐⇒ β == 0

To swap a and b using the MSB β, we perform the following
operations:

temp = β ∗ a + (1 − β) ∗ b;

b = (1 − β) ∗ a + β ∗ b;

a = temp;

Based on above observations FHE SWAP circuit 1 [6]
is evaluated as follows: Let A, B be two ciphertext integers
which are encryptions of a, b respectively. FHE SWAP circuit
takes A, B as input and return another pair of ciphertexts (X, Y)
such that Dec(X) ≤ Dec(Y) (assuming that we are sorting in
ascending order).

In other words,

(X, Y)←− FHE SWAP(A, B)⇐⇒ Dec(X) ≤ Dec(Y) (3)

Using FHE SWAP as the building block, Bubble sort and In-
sertion sort algorithms for sorting encrypted data were applied
wherein classical swapping of plaintext integers is replaced by
FHE SWAP.

1Circuit is the term used in FHE parlance to denote a function which is
computable on encrypted data.

D. FHE SWAP and Security of Encryption Scheme

It is well known that any public-key encryption scheme
which supports comparison based operations is not secure
against ciphertext only attacks. For any such scheme one can
recover plaintext of a target ciphertext by following binary
search method [16]. In this section, we explain the relevance
of this result to sorting algorithms applied on the encrypted
data and more specifically to the FHE SWAP circuit and
discuss security implications on the underlying encryption
scheme ξ. Recall that the semantic security definition of a
public key FHE scheme is the same as that of any public
key encryption scheme [11]. In particular, semantic security
or Indistinguishability against Choosen Plaintext Attack (IND-
CPA) is independent of Eval algorithm [18, Definition 3.1] and
every FHE scheme must satisfy IND-CPA security under the
assumption that the adversary has access to Eval algorithm.
For an FHE scheme ξ = (KeyGen, Enc, Dec, Eval), the notion
of IND-CPA security can be described as follows: Suppose
that A is a polynomial time adversary and C is a ciphertext
such that C ∈ {Enc(m0), Enc(m1)} for a pair of given plaintexts
(m0,m1) if

Pr[A(Enc(mb))→ mb] =
1

2
+ ε b ∈ {0, 1} (4)

then ε is the advantage of the adversary A. The scheme ξ is
said to be semantically secure if the advantage ε is negligible
for any polynomial adversary A.

Now we focus on FHE SWAP and analyze how semantic
security of FHE scheme ξ is affected. Note that the binary
search attack [16] is not applicable to FHE schemes because
although FHE SWAP supports comparison based operations
it does not reveal output of comparison operation. Consider
the FHE SWAP circuit which takes as input a pair of ci-
phertext integers (A, B) and outputs another distinct pair of
ciphertexts (X, Y). The connection between input and output
is that Dec(X), Dec(Y) ∈ {Dec(A), Dec(B)} but there is no way
of knowing if Dec(X) = Dec(A) or Dec(Y) = Dec(A). In other
words for any polynomial time adversary A if

Pr[A(A, X)→ Dec(X) = Dec(A)]) =
1

2
+ ε′ (5)

then ε′ is advantage of A. Note that this advantage ε′ can
be defined for every possible pair (X, B), (Y, A), (Y, B) and not
just (X, A). For any pair (A, B) if ε′ is non-negligible then by
considering m0 = A,m1 = B in (4) we get ε non-negligible,
thus breaking semantic security of ξ. The output (X, Y) of
FHE SWAP(A, B) is the result of addition, subtraction and
multiplication operations over the input (A, B). Since ξ is
assumed to be FHE scheme (X, Y) are indistinguishable from
(A, B). Thus, we conclude that although FHE SWAP opera-
tion supports comparison based operations it does not disturb
semantic security of ξ.

III. Complexity of Sorting Encrypted Integers

Let A = {A1, . . .An} be a set where Ai = Enc(ai) for some
plaintext integer ai that we need to sort (in ascending order).
Fundamental difference between sorting of plaintext data and
encrypted data is described in Table I.

While sorting plaintext integers, (ai, a j) are swapped based
on the output of the comparison operation. However, in the

TABLE I. Algorithms for sorting encrypted and unencrypted data

Swap on Unencrypted Data Swap on Encrypted Data

1. For every pair with indices i, j with
i < j

1. For every pair with indices i, j with
i < j

2. Compare (ai , a j) 2.(Xi ,Y j)←− FHE SWAP(Ai ,A j)
3. Swap (ai , a j) if necessary

case of encrypted inputs, both comparison and swap are
combined together inside the FHE SWAP circuit. Note that
the output of FHE SWAP(Ai, A j) is encrypted and with-
out decryption there is no way of knowing if inputs are
swapped. Thus, to sort the set A, it is necessary to call
FHE SWAP(Ai, A j) for every pair with indices i, j (i < j).
Unlike sorting plaintext integers, we cannot skip unnecessary
comparisons and swaps while sorting encrypted integers. This
shows that for any data dependent sorting algorithm like
Bubble sort, Insertion sort, Quick sort and Merge sort that
depend on FHE SWAP we have

Average Case Complexity =Worst Case Complexity (6)

The complexities of various sorting algorithms in the encrypted
domain and the plaintext domain are given in Table II.

TABLE II. Sorting algorithms and their complexities in plain and
encrypted domains.

Algorithm Plain Domain
(Best case)

Encrypted Domain
(Any case)

Bubble Sort O(n) O(n2)

Insertion Sort O(n) O(n2)
Quick Sort O(nlog(n)) O(n2)

Merge Sort O(nlog(n)) O(n2)

Bitonic Sort O(log2(n)) O(nlog2(n))

Odd-Even Merge Sort O(log2(n)) O(nlog2(n))

IV. Boosting Performance of Sorting

We considered several sorting techniques for FHE sorting
including Bubble sort, Insertion sort, Merge sort, Quick sort,
BIS and OEMS and analyzed them in terms of number of
comparisons. BIS and OEMS algorithms are defined in Algo-
rithms 1,2,3,4. For any sorting algorithm, time taken for sorting
depends on the number of comparisons. For FHE sorting,
comparison of ciphertext integers in an array is the most expen-
sive operation. Therefore, complexity of FHE sorting directly
depends on the number of comparisons. For sorting an array
of n elements using Merge sort, the array is subdivided into
sub-arrays of size 1. These sub-arrays are repeatedly merged
to generate sorted sub-arrays until there are no sub-arrays to
merge. In FHE Merge sort, as we do not have the knowledge of
the input elements, we cannot avoid comparisons of ciphertexts
and FHE SWAP calls as in the case of un-encrypted integers
until we have a single merged list. Therefore, FHE Merge sort
requires O(n2) comparisons.

For sorting an array of n elements using Quick sort, we
pick an element called pivot from the array and divide the
array such that the elements smaller than the pivot are in the
left partition and the elements greater than the pivot are in the
right partition. We recursively pick the pivot element for the
sub-arrays with smaller values and greater values to produce a
sorted array. Therefore, as in the case of Merge sort, FHE
Quick sort also requires O(n2) comparisons. In contrast to
Merge sort, the Odd-Even Merge sort is data independent i.e.
the number of comparisons are constant independent of the

Algorithm 1: Bitonic Sort

Input: An array of encrypted sequences encarr, Public
Key pk, Lower Index lo, Array Size n

Output: Sorted sequences in ascending order or
descending order

1 if n > 1 then
2 k ← n/2
3 BITONIC SORT(encarr, lo, k, 1);
4 BITONIC SORT(encarr, lo + k, k, 0);
5 BITONIC MERGE(encarr, pk, lo, n, b);

Algorithm 2: BitonicMerge

Input: An array of encrypted sequences encarr, Public
Key pk, Lower Index lo, Array Size n, bit value
b 1 for ascending 0 for descending

1 for i← lo to lo + k do
2 FHE SUB(encarri, encarri+1,MSB, pk);
3 FHE SWAP(encarri, encarri+1,MSB, pk);

4 BITONIC MERGE(encarr, pk, lo, k, b);
BITONIC MERGE(encarr, pk, lo+ k, k, b);

Algorithm 3: Oem Sort

Input: An array of encrypted sequences encarr, Public
Key pk, Lower Index lo, Array Size n,bit value
b 1 for ascending 0 for descending

Output: Sorted sequences in ascending order or
descending order

1 if n > 1 then
2 k ← n/2
3 OEM SORT(encarr, pk, lo, k, b);
4 OEM SORT(encarr, pk, lo+ k, k, b);
5 OEM MERGE(encarr, pk, lo, n, b);

Algorithm 4: Oem Merge

Input: An array of encrypted sequences encarr, Public
Key pk, Lower Index lo, Array Size n, bit value
b 1 for ascending 0 for descending

1 m← b ∗ 2 if m < n then
2 for i← (lo + b) to (lo + n − b) do
3 FHE SUB(encarri, encarri+b,MSB, pk);
4 FHE SWAP(encarri, encarri+b,MSB, pk);

5 else
6 FHE SUB(encarri, encarri+b,MSB, pk);
7 FHE SWAP(encarri, encarri+b,MSB, pk);

8 OEM MERGE(encarr, pk, lo, k, b);
9 OEM MERGE(encarr, pk, lo+ k, k, b);

input. Odd-Even Merge sort divides the input array into two
halves containing even index positions (even sub-sequence)
and odd index positions (odd sub-sequence). The even and
odd sub-sequences are recursively compared and merged to
produce a sorted array. Let T (n) be the number of comparisons
performed by Odd-Even Merge sort. For n > 2, we have
T (n) = 2T (n/2) + n/2 − 1. Since T (2) = 1, we have
T (n) = (n/2)(log(n) − 1) + 1 ∈ O(n log(n)). Therefore, the
number of comparisons in Odd-Even Merge sort defined in
Algorithm 3 is O(n log2(n)). Similarly, Bitonic sort is another
data independent algorithm that sorts two sub-sequences where
first sub-sequence is smaller or equal than the second sub-
sequence. Each sub-sequence is sorted recursively by applying
Bitonic sort Algorithm 1. To produce a sorted array of length n
from two sorted sub-arrays of length n/2, log(n) comparisons
are required. The number of comparisons for sorting entire
array is given by T (n) = log(n) + T (n/2) = log(n)(log(n)+
1)/2. Therefore, Bitonic sort algorithm requires O(n log2(n))
comparisons.

Based on this analysis we implemented Bubble sort, In-
sertion sort, Bitonic sort and Odd-Even Merge sort in C on
encrypted data for l-bit integers with l = 32 by using the hcrypt
library [14] and evaluated algorithm performance for various
array sizes. The execution times for FHE sorting based on
these algorithms are shown in Tables III,IV and V where NT
refers to the time taken for sorting without optimizations, OTA
refers to the time taken for sorting after removal of ReCrypt
in homomorphic addition function of subtraction and swap
modules, OTM refers to sorting time after removal of ReCrypt
from addition operations in the subtract module and from
multiplication operation in the swap module. Even though the
size of the ciphertext increases during the multiplication in the
swap module, the successive ReCrypt operations present in the
addition operations would control the size of ciphertexts. This
gives us an advantage of suppressing 4 ∗ l ReCrypt operations
per swap in OTM instead of suppressing 2 ∗ l ReCrypt
operations per swap in OTA for l-bit inputs. Our experiments
show that OEMS takes about 73% less comparisons and hence
73% less execution time when compared to Bubble sort or
Insertion sort. In addition, OEMS takes 19% less comparisons
and execution time when compared to BIS. Time taken for
sorting n elements is given as the product of number of
comparisons and the time taken for each comparison. Time
taken for each comparison in the case of NT is 12.5 seconds,
for OTA is 6 seconds and in the case of OTM it is 4.7 seconds.
We ran all our experiments on a 3.4GHz Intel Quad-core
Processor with 16GB RAM running a Ubuntu 14.04 operating
system.

Remark 1: Chatterjee et al. [6] provide Bubble sort and
Insertion sort statistics of 5-40 elements without any details
of the system on which the experiments were conducted.
As shown in this paper, it is possible to do practical FHE
sorting for an array of more than 40 elements. Nevertheless,
our experiments show that while sorting an array of 128
integers, sorting algorithms hit a maximum RAM limit of
16GB and consequently sorting aborts. This demonstrates the
impracticality of FHE sorting techniques for reasonable array
sizes, thus leaving prospects for further research to design more
efficient FHE schemes as well as developing techniques to
improve sorting efficiency.

Remark 2: As shown in Tables III, IV and V, the input
sizes for the Bubble sort, Insertion sort, Bitonic sort and
Odd-Even Merge sort need not be a power of 2. These
implementations can be adapted for arbitrary input sizes.

TABLE III. Bubble Sort/Insertion Sort Timings

Bubble/Insertion Sort

#Inputs #Comparisons NT(in mins) OTA(in mins) OTM(in mins)

4 6 1.25 0.61 0.46
8 28 5.8 2.75 2.2
16 120 25 12 9.43
32 496 103 49 38.9
64 2016 418 199 157.91

TABLE IV. Bitonic Sort Timings

Bitonic Sort Timings

#Inputs #Comparisons NT(in mins) OTA(in mins) OTM(in mins)

4 6 1.23 0.6 0.46
8 24 5 2.4 1.86
16 80 16 8 6.31
32 240 49 23 18.98
64 672 139 67 52.63

TABLE V. Odd-EvenMerge Sort Timings

Odd-Even Merge Sort Timings

#Inputs #Comparisons NT(in mins) OTA(in mins) OTM(in mins)

4 5 1 0.51 0.4
8 19 3.93 1.9 1.5
16 63 13 6.3 4.95
32 191 39.5 19 15
64 543 112 53 42.65

V. On the performance claims of combining sorting
techniques

Chatterjee et al. [6, Section 4] proposed a new sorting
technique called LazySort. In this technique, input array
is first sorted using the Bubble sorting without ReCrypt to
produce a partially sorted array. This partially sorted array is
then fed to Insertion sort to yield a complete sorted array.
Consider the initial input set A = {A1, . . . , An} which is sorted
by Bubble sort algorithm giving output B = {B1, . . . , Bn} which
is then sent to Insertion sort for further sorting. It was reported
that applying Insertion sort on a partially sorted array works
in linear time. However, this is not true. For Insertion sort
there is no difference between sending A or B as input because
the algorithm cannot identify the difference between partially
sorted array and unsorted array leading to the same number
of comparisons for both the arrays. Therefore, time taken for
sorting by combining sorting algorithms is the sum of time
taken by all algorithms for sorting the data.

Remark 3: The timings of LazySort [6] do not follow a
consistent pattern of variation i.e. for the input size 10 the
improvement is around 36% whereas for 40 elements the
improvement is about 93%. However our experiments show
a consistent improvement of about 51%.

VI. Discussion and Future work

Improving practicality of FHE schemes is an active re-
search area. A very effective way of achieving this is to
use batching techniques [8][20] which pack multiple plaintext
bits into single ciphertext thereby reducing actual time and
computations performed while evaluating any function on the
encrypted data. Another way of reducing execution time of

FHE scheme is to minimize calls to ReCrypt which can be
achieved by using modulus switching [9] or relinearization
[4] methods. Our ongoing work is focused on using these
optimizations to sorting algorithms to make FHE sorting more
efficient.

Acknowledgment

Praveen Gauravaram thanks Xavier Boyen, Douglas Stebila
and Qinyi Li from QUT and Georg Lippold from Telstra,
Australia for discussions on this subject.

References

[1] Ciphercloud. The official website is accessible at
http://www.ciphercloud.com/ (Accessed on 01/06/2015).

[2] Protonmail. The official website is accessible at https://protonmail.ch/
(Accessed on 01/06/2015).

[3] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey.
Recent advances in homomorphic encryption: A possible future for
signal processing in the encrypted domain. Signal Processing Magazine,

IEEE, 30(2):108–117, 2013.

[4] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-
phic encryption from (standard) LWE. IACR Cryptology ePrint Archive,
page 344, 2011.

[5] Gizem S. Çetin, Yarkin Doröz, Berk Sunar, and Erkay Savas. Depth
optimized efficient homomorphic sorting. In Progress in Cryptology

- LATINCRYPT 2015, volume 9230 of Lecture Notes in Computer

Science, pages 61–80. Springer, 2015.

[6] Ayantika Chatterjee, Manish Kaushal, and Indranil Sengupta. Acceler-
ating sorting of fully homomorphic encrypted data. In INDOCRYPT,
volume 8250 of Lecture Notes in Computer Science, pages 262–273.
Springer, 2013.

[7] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation
of computation using fully homomorphic encryption. In Advances in

Cryptology–CRYPTO 2010, pages 483–501. Springer, 2010.

[8] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Batch
fully homomorphic encryption over the integers. In Advances in

Cryptology EUROCRYPT 2013, volume 7881 of Lecture Notes in

Computer Science, page 36, 2013.

[9] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public
key compression and modulus switching for fully homomorphic en-
cryption over the integers. In EUROCRYPT, volume 7237 of Lecture

Notes in Computer Science, pages 446–464. Springer, 2012.

[10] Craig Gentry. A fully homomorphic encryption scheme. Ph.d. thesis,
2009.

[11] Craig Gentry. Computing arbitrary functions of encrypted data. Com-

mun. ACM, 53(3):97–105, 2010.

[12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic
encryption. In Proceedings of the forty-fourth annual ACM symposium

on Theory of computing, pages 1219–1234. ACM, 2012.

[13] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can
homomorphic encryption be practical? In Proceedings of the 3rd

ACM workshop on Cloud computing security workshop, pages 113–
124. ACM, 2011.

[14] Henning Perl. hcrypt project. This library is accessible at
https://github.com/hcrypt-project/libScarab (Accessed on 28/05/2015).

[15] Thomas Plantard, Willy Susilo, and Zhenfei Zhang. Lll for ideal lattices:
re-evaluation of the security of gentryhalevis fhe scheme. volume 76,
pages 325–344. Springer US, 2015.

[16] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and
privacy homomorphisms. Foundations of Secure Computation, 1978.

[17] Nigel Smart and Fre Vercauteren. Fully homomorphic encryption with
relatively small key and ciphertext sizes. In Public Key Cryptography

- PKC 2010, pages 420–443. Springer LNCS 6056, 2010.

[18] Vinod Vaikuntanathan. Computing blindfolded: New developments in
fully homomorphic encryption. In FOCS, pages 5–16. IEEE Computer
Society, 2011.

[19] Marten Van Dijk and Ari Juels. On the impossibility of cryptography
alone for privacy-preserving cloud computing. HotSec, 10:1–8, 2010.

[20] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama,
and Takeshi Koshiba. Practical packing method in somewhat homo-
morphic encryption. In DPM/SETOP, volume 8247 of Lecture Notes in

Computer Science, pages 34–50. Springer, 2013.

[21] Zhenfei Zhang, Thomas Plantard, and Willy Susilo. Reaction attack on
outsourced computing with fully homomorphic encryption schemes. In
Howon Kim, editor, Information Security and Cryptology - ICISC 2011,
volume 7259 of Lecture Notes in Computer Science, pages 419–436.
Springer Berlin Heidelberg, 2012.

