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We show how to compute an LU factorization of a matrix when the factors of a leading princi-
ple submatrix are already known. The approach incorporates pivoting akin to partial pivoting,
a strategy we call incremental pivoting. An implementation using the Formal Linear Algebra
Methods Environment (FLAME) Application Programming Interface (API) is described. Ex-
perimental results demonstrate practical numerical stability and high performance on an Intel
Itanium2 processor based server.
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1. INTRODUCTION

In this paper we consider the LU factorization of a nonsymmetric matrix, A, par-
titioned as

A →
(

B C
D E

)
(1)

when a factorization of B is to be reused as the other parts of the matrix change.
This is known as the updating of an LU factorization.

Applications arising in Boundary Element Methods (BEM) often lead to very
large dense linear systems [Cwik et al. 1994; Geng et al. 1996]. For many of these
applications the goal is to optimize a feature of an object. For example, BEM may
be used to model the radar signature of an airplane. In an effort to minimize this
signature, it may be necessary to optimize the shape of a certain component of
the airplane. If the degrees of freedom associated with this component are ordered
last among all degrees of freedom, the matrix presents the structure given in (1).
Now, as the shape of the component is modified, it is only the matrices C, D,
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and E that change together with the right-hand side vector of the corresponding
linear system. Since the dimension of B is frequently much larger than those of
the remaining three matrices, it is desirable to factorize B only once and to update
the factorization as C, D, and E change. A standard LU factorization with partial
pivoting does not provide a convenient solution to this problem, since the rows to
be swapped during the application of the permutations may not lie only within B.

Little literature exists on this important topic. We have been made aware that
an unblocked out-of-core (OOC) algorithm similar to our algorithm was reported
in [Yip 1979], but we have not been able to locate a copy of that report. The
proposed addition of this functionality to LAPACK is discussed in [Demmel and
Dongarra 2005]. We already discussed preliminary results regarding the algorithm
proposed in the current paper in a conference paper [Joffrain et al. 2005], in which its
application to OOC LU factorization with pivoting is the main focus1. In [Gunter
and van de Geijn 2005] the updating of a QR factorization via techniques that are
closely related to those proposed for the LU factorization in the current paper is
reported.

The paper is organized as follows: in Section 2 we review algorithms for com-
puting the LU factorization with partial pivoting. In Section 3, we discuss how
to update an LU factorization by considering the factorization of a 2 × 2 blocked
matrix. The key insight of the paper is found in this section: High-performance
blocked algorithms can be synthesized by combining the pivoting strategies of LIN-
PACK and LAPACK. Numerical stability is discussed in Section 4 and performance
is reported in Section 5. Concluding remarks are given in the final section.

We hereafter assume that the reader is familiar with Gauss transforms, their
properties, and how they are used to factor a matrix. We start indexing elements
of vectors and matrices at 0. Capital letters, lower case letter, and lower case
Greek letters will be used to denote matrices, vectors, and scalars, respectively.
The identity matrix of order n is denoted by In.

2. THE LU FACTORIZATION WITH PARTIAL PIVOTING

Given an n × n matrix A, its LU factorization with partial pivoting is given by
PA = LU . Here P is a permutation matrix of order n, L is n × n unit lower
triangular, and U is n× n upper triangular. We will denote the computation of P ,
L, and U by

[A, p] := [{L\U}, p] = LU(A), (2)

where {L\U} is the matrix whose strictly lower triangular part equals L and whose
upper triangular part equals U . Matrix L has ones on the diagonal, which need
not be stored, and the factors L and U overwrite the original contents of A. The
permutation matrix is generally stored in a vector p of n integers.

Solving the linear system Ax = b now becomes a matter of solving Ly = Pb
followed by Ux = y. These two stages are referred to as forward substitution and
backward substitution, respectively.

1More practical approaches to OOC LU factorization with partial pivoting exist [Toledo 1997;
1999; Toledo and Gustavson 1996; Klimkowski and van de Geijn 1995], which is why that appli-
cation of the approach is not further mentioned so as not to distract from the central message of
this paper.
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Algorithm: [A, p] := [{L\U}, p] = LUunb(A)

Partition A→
 

ATL ATR

ABL ABR

!
and p→

 
pT

pB

!

where ATL is 0× 0 and pT has 0 elements

while n(ATL) < n(A) do
Repartition 

ATL ATR

ABL ABR

!
→
0
@

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1
A and

 
pT

pB

!
→
0
@

p0

π1

p2

1
A

where α11 and π1 are scalars

LINPACK variant: LAPACK variant:»„
α11

a21

«
, π1

–
:= Pivot

„
α11

a21

«

if α11 6= 0 then„
aT
12

A22

«
:= P (π1)

„
aT
12

A22

«

a21 := a21/α11

A22 := A22 − a21aT
12

endif

»„
α11

a21

«
, π1

–
:= Pivot

„
α11

a21

«

if α11 6= 0 then„
aT
10 aT

12

A20 A22

«
:= P (π1)

„
aT
10 aT

12

A20 A22

«

a21 := a21/α11

A22 := A22 − a21aT
12

endif

Continue with 
ATL ATR

ABL ABR

!
←
0
@

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1
A and

 
pT

pB

!
←
0
@

p0

π1

p2

1
A

endwhile

Fig. 1. LINPACK and LAPACK unblocked algorithms for the LU factorization.

2.1 Unblocked right-looking LU factorization

Two unblocked algorithms for computing the LU factorization with partial pivoting
are given in Figure 1. There, n(·) stands for the number of columns of a matrix;
the thick lines in the matrices/vectors denote how far computation has progressed;
Pivot(x) determines the element in x with largest magnitude, swaps that element
with the top element, and returns the index of the element that was swapped; and
P (π1) is the permutation matrix constructed by interchanging row 0 and row π1 of
the identity matrix. The dimension of a permutation matrix will not be specified
since it is obvious from the context in which it is used. We believe the rest of the
notation to be intuitive [Bientinesi and van de Geijn 2006; Bientinesi et al. 2005].
Both algorithms correspond to what is usually known as the right-looking variant.
Upon completion matrices L and U overwrite A. These algorithms also yield the
LU factorization of a matrix with more rows than columns.

The LINPACK variant, LUlin
unb hereafter, computes the LU factorization as a

sequence of Gauss transforms interleaved with permutation matrices:

Ln−1

(
In−1 0

0 P (πn−1)

)
· · ·L1

(
1 0
0 P (π1)

)
L0P (π0)A = U.

For the LAPACK variant, LUlap
unb, it is recognized that by swapping those rows

of matrix L that were already computed and stored to the left of the column
that is currently being eliminated, the order of the Gauss transforms and the
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Algorithm: [A, p] := [{L\U}, p] = LUblk(A)

Partition A→
 

ATL ATR

ABL ABR

!
and p→

 
pT

pB

!

where ATL is 0× 0 and pT has 0 elements

while n(ATL) < n(A) do
Determine block size b
Repartition 

ATL ATR

ABL ABR

!
→
0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A and

 
pT

pB

!
→
0
@

p0

p1

p2

1
A

where A11 is b× b and p1 has b elements

LINPACK variant: LAPACK variant:»„
A11

A21

«
, p1

–
:=

»„ {L\U}11
L21

«
, p1

–

= LUlap
unb

„
A11

A21

«

»„
A11

A21

«
, p1

–
:=

»„ {L\U}11
L21

«
, p1

–

= LUlap
unb

„
A11

A21

«

„
A12

A22

«
:= P (p1)

„
A12

A22

« „
A10 A12

A20 A22

«
:= P (p1)

„
A10 A12

A20 A22

«

A12 := U12 = L−1
11 A12 A12 := U12 = L−1

11 A12

A22 := A22 − L21U12 A22 := A22 − L21U12

Continue with 
ATL ATR

ABL ABR

!
←
0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A and

 
pT

pB

!
←
0
@

p0

p1

p2

1
A

endwhile

Fig. 2. LINPACK and LAPACK blocked algorithms for the LU factorization built upon an
LAPACK unblocked factorization.

permutation matrices can be rearranged so that P (p)A = LU . Here P (p), with
p = ( π0 · · · πn−1 )T , denotes the n× n permutation

(
In−1 0

0 P (πn−1)

)
· · ·

(
1 0
0 P (π1)

)
P (π0).

Both algorithms will execute to completion even if an exact zero is encountered on
the diagonal of U . This is important since it is possible that matrix B in (1) is
singular even if A is not.

The difference between the two algorithms becomes most obvious when forward
substitution is performed. For the LINPACK variant forward substitution requires
the application of permutations and Gauss transforms to be interleaved. For the
LAPACK algorithm, the permutations are applied first on the right-hand side vec-
tor, after which a clean lower triangular solve yields the desired (intermediate)
result: Ly = P (p)b. Depending on whether the LINPACK or the LAPACK variant
was used for the LU factorization, we denote the forward substitution stage respec-
tively by y := FSlin(A, p, b) or y := FSlap(A, p, b), where A and p are assumed to
contain the outputs of the corresponding factorization.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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2.2 Blocked right-looking LU factorization

It is well-known that high performance can be achieved in a portable fashion by
casting algorithms in terms of matrix-matrix multiplication [K̊agström et al. 1995;
Gustavson et al. 1998; K̊agström et al. 1998; Gunnels et al. 2001]. In Figure 2 we
show LINPACK(-like) and LAPACK blocked algorithms, LUlin

blk and LUlap
blk respec-

tively, both built upon an LAPACK unblocked algorithm. The former algorithm
really combines the LAPACK style of pivoting, within the factorization of a panel
of width b, with the LINPACK style of pivoting. The two algorithms attain high
performance on modern architectures with (multiple levels of) cache memory by
casting the bulk of the computation in terms of the matrix-matrix multiplication
A22 := A22 − L21U12, also called a rank-k update, which is known to achieve high
performance [Goto and van de Geijn 2006]. The algorithms also apply to matrices
with more rows than columns.

As the LINPACK and LAPACK blocked algorithms are based on the LAPACK
unblocked algorithm (which completes even if the current panel is singular), both
blocked algorithms will complete even for a singular matrix. If matrix A in (1)
is nonsingular, then the upper triangular factor will also be nonsingular, which is
what is needed in order to use the factored matrix to solve a linear system.

3. UPDATING AN LU FACTORIZATION

In this section we discuss how to compute the LU factorization of the matrix in (1)
in such a way that the LU factorization with partial pivoting of B can be reused if
D, C, and E change. We consider A in (1) to be of dimension n×n, with square B
and E of orders nB and nE , respectively. For reference, factoring the matrix in (1)
using the standard LU factorization with partial pivoting costs 2

3n3 flops (floating-
point arithmetic operations). In this expression (and future computational cost
estimates) we neglect insignificant terms of lower-order complexity, including the
cost of pivoting the rows.

3.1 Basic procedure

We propose employing the following procedure, consisting of 5 steps, which com-
putes an LU factorization with incremental pivoting of the matrix in (1):

Step 1: Factor B. Compute the LU factorization with partial pivoting

[B, p] := [{L\U}, p] = LUlap
blk(B).

This step is skipped if B was already factored. If the factors are to be used for
future updates to C, D, and E, then a copy of U is needed since it is overwritten
by subsequent steps.

Step 2: Update C consistent with the factorization of B:

C := FSlap(B, p, C).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Step 3: Factor
(

U
D

)
. Compute the LU factorization with partial pivoting





 U

D


 , L̄, r


 :=





 {L̄\Ū}

Ľ


 , r


 = LUlin

blk


 U

D


 .

Here Ū overwrites the upper triangular part of B (where U was stored before this
operation). The lower triangular matrix L̄ that results needs to be stored separately,
since both L, computed in Step 1 and used at Step 2, and L̄ are needed during the
forward substitution stage when solving a linear system.

Step 4: Update
(

C
E

)
consistent with the factorization of

(
U
D

)
:

(
C
E

)
:= FSlin

((
L̄
D

)
, r,

(
C
E

))
.

Step 5: Factor E. Finally, compute the LU factorization with partial pivoting

[E, s] :=
[
{L̃\Ũ}, s

]
= LUlap

blk(E).

Overall, the 5 steps of the procedure apply Gauss transforms and permutations
to reduce A to an upper triangular matrix as follows:


 I 0

0 L̃−1P (s)





 L̄ 0

Ľ I



−1

P (r)


 L−1P (p) 0

0 I





 B C

D E




︸ ︷︷ ︸
Steps 1 and 2

=


 I 0

0 L̃−1P (s)





 L̄ 0

Ľ I



−1

P (r)


 U Ĉ

D E




︸ ︷︷ ︸
Steps 3 and 4

=


 I 0

0 L̃−1P (s)





 Ū Č

0 Ě




︸ ︷︷ ︸
Step 5

=


 Ū Č

0 Ũ


 ,

where {L\U},





 L̄ 0

Ľ I


 \


 Ū

0






, and {L̃\Ũ} are the triangular factors com-

puted, respectively, in the LU factorizations in Steps 1, 3, and 5; p, r, and s are the
corresponding permutation vectors; Ĉ is the matrix that results from overwriting C

with L−1P (p)C; and


 Č

Ě


 are the blocks that result from


 I 0

0 L̃−1P (s)





 Ĉ

E


.
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Approximate cost (in flops)
Operation Basic Structure-Aware Structure-Aware

procedure LAPACK LINPACK
procedure procedure

1: Factor B 2
3
n3

B
2
3
n3

B
2
3
n3

B

2: Update C n2
BnE n2

BnE n2
BnE

3: Factor

„
U

D

«
n2

BnE + 2
3
n3

B n2
BnE + 1

2
bn2

B n2
BnE + 1

2
bn2

B

4: Update

„
C

E

«
2nBn2

E +n2
BnE 2nBn2

E +n2
BnE 2nBn2

E +bnBnE

5: Factor E 2
3
n3

E
2
3
n3

E
2
3
n3

E

Total 2
3
n3 + 2

3
n3

B + n2
BnE

2
3
n3 +n2

B

`
1
2
b + nE

´
2
3
n3 +bnB

`nB
2

+ nE

´

Table I. Computational cost (in flops) of the different approaches to compute the LU factorization
of the matrix in (1). The highlighted costs are those incurred in excess of the cost of a standard
LU factorization.

3.2 Analysis of the basic procedure

For now, the factorization in Step 3 does not take advantage of any zeroes below the

diagonal of U : After matrix B is factored and C is updated, the matrix
(

U C
D E

)
is

factored as if it is a matrix without special structure. Its cost is stated in the column
labeled “Basic procedure” in Table I. There we only report significant terms: we
assume that b ¿ nE , nB and report only those costs that equal at least O(bnEnB),
O(bn2

E), or O(bn2
B). If nE is small (that is, nB ≈ n), the procedure clearly does not

benefit from the existence of an already factored B. Also, the procedure requires
additional storage for the nB × nB lower triangular matrix L̄ computed in Step 3.

We describe next how to reduce both the computational and storage requirements
by exploiting the upper triangular structure of U during Steps 3 and 4.

3.3 Exploiting the structure in Step 3

A blocked algorithm that exploits the upper triangular structure of U is given in
Figure 3 and illustrated in Figure 4. We name this algorithm LUsa−lin

blk to reflect
that it computes a “Structure-Aware” (SA) LU factorization. At each iteration of

the algorithm, the panel of b columns consisting of
(

U11

D1

)
is factored using the

LAPACK unblocked algorithm LUlap
unb. (In our implementation this algorithm is

modified to, in addition, take advantage of the zeroes below the diagonal of U11.)
As part of the factorization, U11 is overwritten by {L̄1\Ū11}. However, in order
to preserve the strictly lower triangular part of U11 (where part of the matrix L,
that was computed in Step 1, is stored), we employ the b× b submatrix L̄1 of the
nB × b array L̄ (see Figure 3). As in the LINPACK blocked algorithm in Figure 2,
the LAPACK and LINPACK styles of pivoting are combined: the current panel of
columns are pivoted using the LAPACK approach but the permutations from this

factorization are only applied to
(

U12

D2

)
.

The cost of this approach is given in Step 3 of the column labeled “SA LINPACK
procedure” in Table I. The cost difference comes from the updates of U12 in Figure 3

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm:

" 
U

D

!
, L̄, r

#
:= LUsa−lin

blk

 
U

D

!

Partition U →
0
@ UTL UTR

0 UBR

1
A, D →

“
DL DR

”
, L̄→

0
@ L̄T

L̄B

1
A, r →

0
@ rT

rB

1
A

where UTL is 0× 0, DL has 0 columns, L̄T has 0 rows, and rT has 0 elements

while n(UTL) < n(U) do

Determine block size b
Repartition
0
@ UTL UTR

0 UBR

1
A→

0
BB@

U00 U01 U02

0 U11 U12

0 0 U22

1
CCA,
“

DL DR

”
→
“

D0 D1 D2

”
,

0
@ L̄T

L̄B

1
A→

0
BB@

L̄0

L̄1

L̄2

1
CCA,

0
@ rT

rB

1
A→

0
BB@

r0

r1

r2

1
CCA

where U11 is b× b, D1 has b columns, L̄1 has b rows, and r1 has b elements

" 
{L̄1\U11}

D1

!
, r1

#
:= LUlap

unb

 
U11

D1

!

 
U12

D2

!
:= P (r1)

 
U12

D2

!

U12 := L̄−1
1 U12

D2 := D2 −D1U12

Continue with0
@ UTL UTR

0 UBR

1
A←

0
BB@

U00 U01 U02

0 U11 U12

0 0 U22

1
CCA,
“

DL DR

”
←
“

D0 D1 D2

”
,

0
@ L̄T

L̄B

1
A←

0
BB@

L̄0

L̄1

L̄2

1
CCA,

0
@ rT

rB

1
A←

0
BB@

r0

r1

r2

1
CCA

endwhile

Fig. 3. SA-LINPACK blocked algorithm for the LU factorization of
`
UT , DT

´T
built upon an

LAPACK blocked factorization.

which, provided b ¿ nB , is insignificant compared to 2
3n3.

An SA LAPACK blocked algorithm for Step 3 only differs from that in Figure 3
in that, at a certain iteration, after the LU factorization of the current panel is

computed, these permutations have to be applied to
(

U10

D0

)
as well. As indicated

in Step 3 of the column labeled “SA LAPACK procedure”, this does not incur extra
cost for this step. However, it does require an nB × nB array for storing L̄ (see
Figure 4) and, as we will see next, makes Step 4 more expensive. On the other
hand, the SA LINPACK algorithm only requires a nB× b additional work space for
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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U00 U01 U02

U110

0

00

U12

U22

D0 D1 D2

-

U00 U01 U02

U11

L̄1
0?

0

00

U12

U22

untouched!

D0 D1 D2

L̄1

@
@@

@
@@

@
@@

@
@@

@
@@

-

L̄

6

Fig. 4. Illustration of an iteration of the SA LINPACK blocked algorithm used in Step 3 and how
it preserves most of the zeroes in U . The zeroes below the diagonal are preserved, except within
the b × b diagonal blocks, where pivoting will fill below the diagonal. The shaded areas are the
ones updated as part of the current iteration. The fact that U22 is not updated demonstrates how
computation can be reduced. If the SA LAPACK blocked algorithm was used, then nonzeroes
would appear during this iteration in the block marked as 0?, due to pivoting; as a result, upon
completion, zeros would be lost in the full strictly lower triangular part of U .

storing the factors, as indicated in Figure 4.

3.4 Revisiting the update in Step 4

The same optimizations made in Step 3 must now be carried over to the update

of
(

C
E

)
. The algorithm for this is given in Figure 5. Computation corresponding

to zeroes is avoided so that the cost of performing the update is 2nBn2
E + bnBnE

flops, as indicated in Step 4 of Table I.
Applying the SA LAPACK blocked algorithm in Step 3 destroys the structure of

the lower triangular matrix, which cannot be recovered during the forward substi-
tution stage in Step 4, and explains the additional cost reported for this variant in
Table I.

3.5 Key contribution

The difference in cost of the three different approaches analyzed in Table I is illus-
trated in Figure 6. It reports the ratios between the costs of the different procedures
described above and that of the LU factorization with partial pivoting for a matrix

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm:

" 
C

E

!#
:= FSsa−lin

blk

  
L̄

D

!
, r,

 
C

E

!!

Partition L̄→
0
@ L̄T

L̄B

1
A, D →

“
DL DR

”
, r →

0
@ rT

rB

1
A, C →

0
@ CT

CB

1
A,

where L̄T and CT have 0 rows, DL has 0 columns, and rT has 0 elements

while n(DL) < n(D) do

Determine block size b
Repartition
0
@ L̄T

L̄B

1
A→

0
BB@

L̄0

L̄1

L̄2

1
CCA,
“

DL DR

”
→
“

D0 D1 D2

”
,

0
@ rT

rB

1
A→

0
BB@

r0

r1

r2

1
CCA,

0
@ CT

CB

1
A→

0
BB@

C0

C1

C2

1
CCA,

where L̄1 and C1 have b rows, D1 has b columns,
and r1 has b elements

 
C1

E

!
:= P (r1)

 
C1

E

!

C1 := L̄−1
1 C1

E := E −D1C1

Continue with0
@ L̄T

L̄B

1
A←

0
BB@

L̄0

L̄1

L̄2

1
CCA,
“

DL DR

”
←
“

D0 D1 D2

”
,

0
@ rT

rB

1
A←

0
BB@

r0

r1

r2

1
CCA,

0
@ CT

CB

1
A←

0
BB@

C0

C1

C2

1
CCA,

endwhile

Fig. 5. SA-LINPACK blocked algorithm for the update of
`
CT , ET

´T
consistent with the SA-

LINPACK blocked LU factorization of
`
UT , DT

´T
.

with nB = 1000 and different values of nE using b = 32. The analysis shows that
the overhead of the SA LINPACK procedure is consistently low. On the other
hand, as nE/n → 1 the cost of the basic procedure, which is initially twice as
expensive as that of the LU factorization with partial pivoting, is decreased. The
SA LAPACK procedure only presents a negligible overhead when nE → 0 that is,
when the dimension of the update is very small.

The key insight of the proposed approach is the recognition that combining
LINPACK- and LAPACK-style pivoting allows one to use a blocked algorithm while
avoiding filling most of the zeroes in the lower triangular part of U . This, in turn,
makes the extra cost of Step 4 acceptable. In other words, for the SA LINPACK
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 6. Overhead cost of the different approaches to compute the LU factorization in (1) with
respect to the cost of the LU factorization with partial pivoting.

procedure, the benefit of the higher performance of the blocked algorithm comes at
the expense of a lower-order amount of extra computation. The extra memory for
the SA LINPACK procedure consists of an nB × nB upper triangular matrix and
an nB × b array.

4. REMARKS ON NUMERICAL STABILITY

The algorithm for the LU factorization with incremental pivoting carries out a
sequence of row permutations (corresponding to the application of permutations)
which are different from those that would be performed in an LU factorization with
partial pivoting. Therefore, the numerical stability of this algorithm is also different.
In this section we provide some remarks on the stability of the new algorithm.
We note that all three procedures described in the previous section (basic, SA
LINPACK, and SA LAPACK) perform the same sequence of row permutations.

The numerical (backward) stability of an algorithm that computes the LU fac-
torization of a matrix A depends on the growth factor [Stewart 1998]

ρ =
‖L‖‖U‖
‖A‖ , (3)

which is basically determined by the problem size and the pivoting strategy. For
example, the growth factors of complete, partial, and pairwise ([Wilkinson 1965, p.
236]) pivoting have been demonstrated to be bounded as ρc ≤ n1/2(2·31/2 · · ·n1/n−1),
ρp ≤ 2n−1, and ρw ≤ 4n−1, respectively [Sorensen 1985; Stewart 1998]. Statistical
models and extensive experimentations in [Trefethen and Schreiber 1990] showed
that, on average, ρc ≈ n1/2, ρp ≈ n2/3, and ρw ≈ n, inferring that in practice
partial/pairwise pivoting are both numerically stable, and pairwise pivoting can be
expected to numerically behave only slightly worse than partial pivoting.

The new algorithm applies partial pivoting during the factorization of B and then
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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again in the factorization of
(

U
D

)
. This can be considered as a blocked variant of

pairwise pivoting. Thus, we can expect an element growth for the algorithm that
is between those of partial and pairwise pivoting. Next we elaborate an experiment
that provides evidence in support of this observation.

In Figure 7 we report the element growths observed during the computation of
the LU factorization of matrices as in (1), with nB = 100 and dimensions for E
ranging from nE = 5 to 100 using partial, incremental, and pairwise pivoting. The
entries of the matrices are generated randomly, chosen from a uniform distribution
in the interval (0.0, 1.0). The experiment was carried out on an Intel Xeon processor
using matlab R© 7.0.4 (ieee double-precision arithmetic). The results report the
average element growth for 100 different matrices for each matrix dimension. The
figure shows that the growth factor of incremental pivoting is smaller than that
of pairwise pivoting and approximates that of partial pivoting. A similar behavior
was obtained for other matrix types: uniform distribution in (−1.0, 1.0), normal
distribution with mean 0.0 and deviation 1.0 (N[0.0, 1.0]), symmetric matrices with
elements in N[0.0, 1.0], and Toeplitz matrices with elements in N[0.0, 1.0]. Only
for orthogonal matrices with Haar distribution [Trefethen and Schreiber 1990], we
obtained significantly different results. In that case, incremental pivoting attained a
smaller element growth than pairwise pivoting, and both outperformed the element
growth of partial pivoting. Explaining the behavior of this case is beyond the scope
of this paper.

For those who are not sufficiently satisfied with the element growth of incremen-
tal pivoting, we propose to perform a few refinement iterations of the solution to
Ax = b, at a cost of O(n2) flops per step, as this guarantees stability at a low
computational cost [Higham 2002].
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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5. PERFORMANCE

In this section we report results for a high-performance implementation of the SA
LINPACK procedure.

5.1 Implementation

The FLAME library (Version 0.9) was used to implement a high-performance LU
factorization with partial pivoting and the SA LINPACK procedure. The benefit of
this API is that the code closely resembles the algorithms as they are presented in
Figures 1–3 and 5. The performance of the FLAME LU factorization with partial
pivoting is highly competitive with LAPACK and vendor implementations of this
operation.

The implementations can be examined by visiting
http://www.cs.utexas.edu/users/flame/Publications/ .

5.2 Platform

Performance experiments were performed in double-precision arithmetic on a Intel
Itanium2 (1.5 GHz) processor based workstation capable of attaining 6 GFLOPS
(109 flops per second). For reference, the algorithm for the FLAME LU factor-
ization with partial pivoting delivered 4.8 GFLOPS for a 2000 × 2000 matrix. A
block size b = 128 was employed in this procedure for all experiments reported
next. The implementation was linked to the GotoBLAS R1.6 Basic Linear Algebra
Subprograms (BLAS) library [Goto 2004]. The BLAS routine dgemm which is
used to compute C := C − AB (C ∈ Rm×n, A ∈ Rm×k, and B ∈ Rk×n) attains
the best performance when the common dimension of A and B, k, is equal to 128.
Notice that most computation in the SA LINPACK procedure is cast in terms of
this operation, with k = b.

The performance benefits reported on this platform are representative of the
benefits that can be expected on other current architectures.

5.3 Results

In Figure 8(top) we show the speedup attained when an existing factorization of
B is reused by reporting the time required to factor (1) with the high-performance
LU factorization with partial pivoting divided by the time required to update an
existing factorization of B via the SA LINPACK procedure (Steps 2-5). In that
figure, nB = 1000 and nE is varied from 0 to 1000. The results are reported
when different block sizes b are chosen. The dgemm operation, in terms of which
most computation is cast, attains the best performance when b = 128 is chosen.
However, this generates enough additional flops that the speedup is better when b
is chosen to be smaller. When nE is very small, b = 8 (for Steps 2–5) yields the
best performance. As nE increases, performance improves by choosing b = 32 (for
Steps 2–5).

The effect of the overhead of the extra computations is demonstrated in Fig-
ure 8(bottom). There, we report the ratio of the time required by Steps 1-5 of
the SA LINPACK procedure divided by the time required by the LU factorization
with partial pivoting of (1). The results in the figure may be somewhat disturbing:
The algorithm that views the matrix as four quadrants attains as good, or even

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 8. Top: Speedup attained when B is not refactored, over LU factorization with partial
pivoting of the entire matrix. Bottom: Slowdown for the first factorization (when B must also be
factored).

better, performance than the algorithm that views the matrix as a single unit and
performs less computation. The likely explanation is that the standard LU factor-
ization would also benefit from a variable block size as the problem size changes,
rather than fixing it at b = 128. We did not further investigate this issue since we
did not want to make raw performance the primary focus of the paper.

6. CONCLUSIONS

We have proposed blocked algorithms for updating an LU factorization. They have
been shown to attain high performance and to greatly reduce the cost of an update
to a matrix for which a partial factorization already exists. The key insight is
the synthesis of LINPACK- and LAPACK-style pivoting. While some additional
computation is required, this is more than offset by the improvement in performance
that comes from casting computation in terms of matrix-matrix multiplication.

We acknowledge that the question of the numerical stability of the new algorithm
relative to that of LU factorization with partial pivoting remains open. Strictly
speaking, the LU factorization with partial pivoting is itself not numerically stable
and it is practical experience that has shown it to be effective in practice. The-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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oretical results that rigorously bound the additional element growth in the LU
factorization with incremental pivoting are in order, but are beyond the scope of
the present paper.
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Eds. LNCS 3732. Springer-Verlag, 413–422.
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