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ABSTRACT
This article develops and extends previous investigations on the temporal
aggregation of ARMA predications. Given a basic ARMA model for disaggre-
gated data, two sets of predictors may be constructed for future temporal aggre-
gates: predictions based on models utilizing aggregated data or on models
constructed from disaggregated data for which forecasts are updated as soon
as the new information becomes available. We show that considerable gains in
efficiency based on mean-square-error-type criteria can be obtained for short-
term predications when using models based on updated disaggregated data.
However, as the prediction horizon increases, the gain in using updated disag-
gregated data diminishes substantially. In addition to theoretical results asso-
ciated with forecast efficiency of ARMA models, we also illustrate our findings
with two well-known time series. Copyright © 2004 John Wiley & Sons, Ltd.
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INTRODUCTION 

The effects of temporal aggregation of time series on predictions have been studied extensively over
the past two or three decades. Amemiya and Wu (1972) investigated the effect of temporal aggre-
gation on prediction when the disaggregated series followed an autoregressive (AR) process and the
data were aggregated over m nonoverlapping periods. They presented numerical computations for
the efficiency loss on prediction due to the temporal aggregation for AR(1) and AR(2) processes.
They also showed that the ratio of the mean square error of the predictors based on disaggregated
and aggregated series, r, tended to unity when m increased. Tiao (1972) studied integrated moving
average (IMA(d,q)) processes, and obtained similar results to those of Amemiya and Wu. In addi-
tion, Tiao showed that the ratio r was close to unity for any forecast horizon when the process was
stationary (d = 0). However, when the process was nonstationary (d > 0), substantial gains in fore-
casting efficiency could be obtained by using disaggregated data, especially for short-term forecasts.
Wei (1978) extended these studies to include seasonal autoregressive integrated moving average
(SARIMA) models. He showed that the loss in forecasting efficiency through aggregation could be
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substantial if the nonseasonal component of the disaggregated series was nonstationary. This loss 
in efficiency was less serious for long-term forecasts. Furthermore, he showed that there was no 
loss in efficiency due to aggregation if the disaggregated series followed a purely seasonal process.
Lütkepohl (1984, 1987) and Wei (1990) extended these results to multivariate cases. 

Although theory predicts that the disaggregated series will always provide more accurate 
forecasts than those based on aggregated data, several empirical studies have shown that there 
are circumstances in which predictions from aggregated data may yield more accurate forecasts than
those derived from disaggregated data. For example, Butter (1976), using monthly and quarterly
observations of the difference between the yield on mortgages and the yield on government loans
from 1961 to 1974, generated quarterly forecasts based on quarterly models and on the aggregation
of the three monthly predictions. His study indicated that the quarterly models in most cases 
were superior to the monthly models if the forecast horizon was more than one quarter. Similar find-
ings have been reported in Nijman and Palm (1990). 

In this article we examine the forecast accuracy of models over different time horizons based on
aggregated data, and on disaggregated data which are immediately updated as the new information
becomes available. Assuming that the disaggegated data are generated by an ARMA model, we will
show how new monthly observations available during the current quarter can be used to significantly
improve the performance of quarterly forecasts for short-term predictions. We will also show 
that there is not much to be gained in using (updated) monthly data instead of quarterly data for
long-term forecasts. 

The article is organized as follows. In the next section we provide a brief overview of models for
aggregated and disaggregated data, and derive the minimum mean square prediction error (MMSE)
of temporally aggregated prediction horizons for general ARMA processes based on aggregated
series which are updated regularly, and on disaggregated series which are updated within the time
span of the forecast interval as soon as new information becomes available. In the following section
we compare the relative impact of aggregation on MMSE predictions for several ARMA parame-
trizations (with and without seasonal components) and forecast horizons. Then we extend our 
findings to some nonstationary models. Finally, we conclude with some general comments and offer
some directions for future work. Proofs of theorems are outlined in the Appendix. 

THE AGGREGATED AND DISAGGREGATED SERIES 

Models and predictors 
Suppose the disaggregated time series xt follows a stationary and invertible ARMA process, F(B)xt

= q (B)at, where F(B) and q (B) are finite polynomials in the back-shift operator B such that Bjwt =
wt-j and {at} is a white noise process with variance s 2

a. Such a stochastic process can also be
expressed as autoregressive or moving average processes respectively, i.e., P(B)xt = at or xt = Y(B)at,
where P(B) = q -1(B)F(B) and Y(B) = F-1(B)q (B). Now consider the time series XT, which is the m-
period nonoverlapping aggregate of xt, namely 

(1)

This aggregated time series XT follows and ARMA(p, [ p + 1 + (q - p - 1)/m]) (Brewer, 1973; Harvey,
1981), where [k] denotes the integer part of k. The orders of the aggregate series given by p and 
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[p + 1 + (q - p - 1)/m] are only maximum since some cancellations may occur (Stram and Wei,
1986). We will refer to XT as the aggregated series generated from xt. 

Suppose that {xt} is available and hence so is {XT}. Two different predictions of XT+L (L is a 
positive integer) can be obtained: one is the sum of m predictions based on the disaggregated xt and
the other one generated directly from models based on the aggregated series XT. 

The MMSE l-step-ahead prediction of xt, based on a weighted average of previous observations
and the forecasts made at previous lead times from the same origin, is defined in terms of the con-
ditional expectation, t(l) = E(xt+l|xt, xt-1, . . .). If we restrict ourselves to the class of linear predic-
tors, then t(l) = E(xt+l|xt, xt-1, . . .) = St

i=-•pl
i,xxi, where pl

i,xs are the weights estimated from the data
which will yield the MMSE for t(l). A natural L-step-ahead prediction of XT+L based on xt, denoted
as T,0(L), can be derived by summing m forecasts t(l)s: 

(2)

When new disaggregated observations become available, the predictor in (2) can be improved,
i.e. 

(3) 

where k(1 £ k < m) is the number of disaggregated observations available after the last aggregated
observation. When k = 0, T,k(L) becomes T,0(L) in (2). 

The predictor T,0(L) yields the linear unbiased MMSE forecast of XT+L given {xmT, xmT-1, 
xmT-2, . . .} (Box and Jenkins, 1976, p. 128; Pino et al., 1987). Following similar arguments we have: 

Theorem 1 For 0 £ k < m, T,k(L) = E(XT+L|xmT+k, xmT+k-1, . . .). That is, T,k(L) is the linear unbiased
MMSE forecast of XT+L given {xmT+k, xmT+k-1, . . .}. 

The linear unbiased MMSE predictor of XT+L, which is based on XT, is 

(4)

where p L
i,Xs are the weights estimated from the data which will yield the MMSE for T (L). 

Minimum mean square errors 
To derive MMSE for general ARMA processes, we first rewrite the disaggregated series {xt} as a
moving average process of infinite order (MA(•)): 

(5)

where S•
j=0y 2

j < • (i.e., the sequence {y j} is square summable). Then, we have: 
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Theorem 2 For 0 £ k < m, 

(6)

From (6) it is evident that MMSE( T,k(L)) depends not only on the magnitude of the y weights,
but also on their signs. Since MMSE( T,k(L)) consists essentially of summations of several non-neg-
ative terms which are expressed as squares of (Sv

j=0yj), if all the y’s share the same sign, then there
will be no cancellations when the summations are performed. However, if some of the yj’s alternate
in sign, then cancellations will surely occur, thus impacting the magnitude of MMSE( T,k(L)) as well
as that of MMSE( T(L)), the MMSE based on aggregated series. [See the next section for further
discussion on how the magnitude and sign of the y weights affect the measurement of the relative
impact of aggregation on MMSE prediction (defined later in this section).] 

From Theorem 2, it is easy to obtain the following results: 

Corollary 1 For 0 £ k1 £ k2 < m, 

Corollary 2 For 0 < k < m, 

as L Æ •. 

The MMSE of T(L) can be obtained in the traditional way for ARMA processes although the
series is sampled in a less frequent time scale. The MMSE of T(L) for XT+L is simply MMSE( T(L))
∫ E( T(L) - XT+L)2. It can be evaluated from the relation 

(7)

where s 2
a* is the variance of the white noise term of the XT process and the Yi’s are the coefficients

of the MA(•) representation of XT. Both s 2
a* and the Yi’s are determined by the parameters of the

disaggregated series in a complicated way. General expressions for simple ARIMA models such as
AR(1), MA(1) and ARIMA(0, 1, 1) ¥ SARIMA(0, 1, 1)12 can easily be derived (see later sections
as well as Amemiya and Wu, 1972; Nijman and Palm, 1990). 

It is also possible to evaluate MMSE( T(L)) if the autocovariance structures of the XT process are
known. Let XT = (XT, XT-1, . . ., X1)¢ and RL

T,X = (gX(L), gX(1 + L), . . . , gX(T - 1 + L))¢, where gX(.) is
the autocovariance function of XT and GT,X = [gX(i - j)]i,j=1,2, . . . T. Then, the MMSE of T(L) is 
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The autocovariance function of aggregated series {XT} can be obtained in terms of the autoco-
variance function of the disaggregated series {xt}. The following results from Stram and Wei (1986)
are useful in building that connection. If m ≥ 2 and k ≥ 1, the kth autocovariance of XT is 

where Bgxt(i) = gxt(i - 1). Although (7) is based on the knowledge of XT’s going all the way back to
the infinite past, (8) utilizes only the finite distant past. 

In general, prediction from an aggregated series is less efficient than prediction from a disaggre-
gated series. In fact, we have the following results: 

Theorem 3 For 0 £ k < m, 

Note that Theorem 3 holds under the assumption that the series {xt} (and hence the aggregated
series {XT}) is correctly identified. If {xt} is misspecified, then the inequality in Theorem 3 need not
hold. We demonstrate this later, when we examine Butter’s (1976) series. 

Denote the difference between MMSE( T,k(L)) (where 0 £ k < m) and MMSE( T(L)) as DMMSE,
that is 

Consequently, 

(9)

is a measurement of the relative impact of aggregation on MMSE predictions. More specifically, 
—MMSE is the percentage improvement of MMSE using disaggregated data over the MMSE based
on aggregated data. 

The magnitude of the gain in efficiency for prediction from a disaggregated series, measured by
either DMMSE or —MMSE, can be evaluated using (7) (or (8)) and (6). Since both MMSE(XT(L))
and MMSE( T,k(L)) can be expressed explicitly in either {yi} or {Yi}, we derive explicit expres-
sions for —MMSE for AR(1) and MA(q) processes. As will be shown, there is not much insight to
be gained from similar expressions for general ARMA(p,q) models. 

From Theorem 3, we can also establish the bounds 0 £ —MMSE £ 1 for all m and L. When m
becomes large, XT tends to white noise, and in this case, there is no gain in using the disaggregated
data when long-term predictions are made. Applying the result of Corollary 2, the limit holds also
for T,k(L) for all k = 0, 1, 2, . . . , m - 1. That is, 

Corollary 3 For sufficiently large m,
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Corollary 3 generalizes the results in Tiao (1972) where he considered just the case k = 0, and
showed that as L Æ •. 

We would like to point out, however, that the results of Corollary 3 appear to hold even for finite
m, as will be demonstrated in the following sections. 

Note that when we derived the above results we assumed that the model parameters were known.
In practice, it is necessary to replace these parameters with their estimates. The effect of estimation
errors on the variance of prediction errors has been evaluated in Butter (1976) for the AR(1) model.
The bias is small in comparison to the variance of the disturbances. It is very complicated to esti-
mate the effect of estimation errors on the variance of prediction errors for other models such as
ARMA(1,1). However, as pointed out by Box and Jenkins (1976), for model parameter estimates
based on series of moderate length, the effect of such estimation errors is small and may be neg-
ligible. Hence, if all parameters are to be estimated consistently, those results will remain valid in a
certain asymptotic sense. 

PREDICTIONS BASED ON ARMA MODELS 

—MMSE’s generated from ARMA parametrizations without seasonal components 
In this section, we derive exact values for —MMSE associated with several ARMA models. We have
chosen model structures and parametrizations of {xt} which not only conform to other previously
published studies, such as Pukkila et al. (1990) and Koreisha and Fang (1999, 2001), but which also
cover a wide spectrum of parameter values ranging from well-defined stationary and invertible
processes to nearly noninvertible or nonstationary processes. Without loss of generality, we will
assume that the variance of {at}, s 2

a, is one. 
Tables I–V contain —MMSE’s for selected ARMA(p,q) structures for several prediction horizons,

L, and various levels of m and k (0 £ k < m). If m = 3, for example, the disaggregated and aggre-
gated series xt and XT can be viewed as monthly and quarterly data, respectively. For the sake of
brevity we will only report results for m = 3. However, for illustrative purposes, for mixed

MMSE MMSEˆ̂ ˆ
,x L X LT T0 1( )( ) ( )( ) Æ

Table I. —MMSE of AR (1) process: xt - f1xt-1 = at with s 2
a = 1 (m = 3)

L k f1

-0.99 -0.90 -0.50 -0.30 0.30 0.50 0.90 0.99

1 0 0.326645 0.265426 0.060589 0.019561 0.022384 0.064814 0.193495 0.223919
1 0.659956 0.596366 0.352130 0.308994 0.431040 0.518518 0.688978 0.720682
2 0.659990 0.600362 0.481704 0.536238 0.788491 0.851851 0.932533 0.943687

2 0 0.158394 0.091793 0.000914 0.000014 0.000016 0.000933 0.054147 0.087162
1 0.320021 0.206243 0.005310 0.000223 0.000308 0.007466 0.192804 0.280531
2 0.484929 0.347539 0.022898 0.002546 0.003560 0.033600 0.363984 0.477826

5 0 0.057693 0.010307 0.0 0.0 0.0 0.0 0.005580 0.028396
1 0.116564 0.023159 0.0 0.0 0.0 0.0 0.019870 0.091390
2 0.176630 0.039025 0.0 0.0 0.0 0.0 0.037512 0.155664

10 1 0.024530 0.000418 0.0 0.0 0.0 0.0 0.000224 0.011667
1 0.049561 0.000941 0.0 0.0 0.0 0.0 0.000799 0.037552
2 0.075101 0.001586 0.0 0.0 0.0 0.0 0.001510 0.063961



Updating ARMA Predictions for Temporal Aggregates 281

Copyright © 2004 John Wiley & Sons, Ltd. J. Forecast. 23, 275–296 (2004)

ARMA(p,q) structures (p ≥ 1 and q ≥ 1), we will also report results for m = {4,12}. For a more com-
plete set of results including m = {4,12} please see http://lcb1.uoregon.edu/sergiok/updating.pdf. 

Several general conclusions emerge from the results in Tables I–V. First, the impact of temporal
aggregation on one or two-step-ahead forecasts is significant for all models examined. The updat-
ing of disaggregated series can also dramatically improve prediction irrespective of the underlying
model parametrizations for the disaggregated series and the level of aggregation. From Table I which
contains the —MMSE’s for AR(1) processes we can see, for example, when the level of aggregation
m = 3 and the forecast horizon L = 1, the improvement in MMSE prediction using disaggregated
data over aggregated data ranges from 2% to 33% when there is no updating. As new disaggregated
data become available the improvement in MMSE is even more noticeable: for this same model
structure, as well as level of aggregation and forecast horizon, for instance, when the number of
updates k = 2, the improvement in MMSE prediction is well above 48% in all cases.  

Second, the impact of temporal aggregation on prediction becomes less significant as the predic-
tion horizon L increases. As can be seen, for the majority of ARMA parametrizations, the —MMSE’s
for L = 5 and 10 are generally less than 1%. For pure MA(q) processes (Tables II and III) there
appears to be no difference in predictive ability of models using updated disaggregated over aggre-
gated data for L > q (see next subsection for a more detailed discussion). 

Third, the impact on predictive MMSE appears to depend on the model parametrization of the
disaggregated process. Consider, for example, the ARMA(1,1) parametrizations (0.8, -0.7) and 
(-0.8, -0.7) of Table IV. For m = 3, L = 1 and k = 0 the improvement in MMSE is 32.9% for the
(0.8, -0.7) parametrization and just about 1% for the other parametrization. For m = 4, L = 2 and 
k = 1 the corresponding improvements are 9.3% and practically 0%, respectively. For these para-
metrizations when m = 12 noticeable changes are most apparent only when L = 1. 

Fourth, the improvement in predictive MMSE in most cases seems to decrease as the level of
aggregation increases, particularly for mixed ARMA processes. As can be seen, for example, from
Table V for the ARMA(1,2) parametrization with F = 0.6, q1 = -0.5 and q2 = -0.9 the one-step-
ahead forecast improvement in MMSE when there is no updating is 42.1% for m = 3, 36.0% for 
m = 4 and 12.6% for m = 12. For this same parametrization when L = 2 and k = 2 the correspon-
ding improvements are 30.4%, 8.3% and almost 0%, respectively. 

Theoretical insights and an application 
To gain a better understanding as to why there is so much variation in —MMSE due to model param-
etrization and level of aggregation we will examine in more detail the AR(1) and MA(q) cases since
the formulae for MMSE( T,k(L)) in these cases are relatively simple to derive. ˆ̂x

Table II. —MMSE of MA (1) process: xt = at - q1at-1 with s 2
a = 1 (m = 3)

L k q1

-0.99 -0.90 -0.50 -0.30 0.30 0.50 0.90 0.99

1 0 0.089802 0.080474 0.036134 0.015680 0.022496 0.058421 0.0555556 0.008171
1 0.4938829 0.484304 0.430442 0.395474 0.264403 0.215351 0.064814 0.00827
2 0.897962 0.888135 0.824751 0.775269 0.506311 0.372281 0.074074 0.008369

2, 5, 10 0–2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table IV. —MMSE of ARMA(1,1) process: xt - f1xt-1 = at - q1at-1 with s 2
a = 1

Panel A: m = 3

L k (f1,q1)

(0.8,-0.7) (-0.8,0.7) (0.8,0.7) (-0.8,-0.7) (0.9,-0.9) (-0.9,0.9) (0.3,0.5) (-0.3,-0.5)

1 0 0.329152 0.157299 0.002261 0.005788 0.403205 0.062724 0.011518 0.011518
1 0.767734 0.394611 0.387907 0.350446 0.814082 0.335265 0.258955 0.258955
2 0.967963 0.515689 0.723035 0.641130 0.978968 0.594674 0.548143 0.548143

2 0 0.052718 0.016763 0.000574 0.001515 0.104771 0.009126 0.000007 0.000007
1 0.160116 0.144794 0.007118 0.002552 0.265312 0.204475 0.000283 0.000283
2 0.327925 0.344842 0.017342 0.004171 0.463509 0.445646 0.003344 0.003344

5 0 0.000836 0.000250 0.000010 0.000027 0.010535 0.000805 0.0 0.0
1 0.002539 0.002160 0.000126 0.000046 0.026678 0.018052 0.0 0.0
2 0.005201 0.005146 0.000308 0.000075 0.046609 0.039344 0.0 0.0

10 0 0.000001 0.0 0.0 0.0 0.000422 0.000032 0.0 0.0
1 0.000003 0.000002 0.0 0.0 0.001071 0.000715 0.0 0.0
2 0.000006 0.000006 0.0 0.0 0.001871 0.001559 0.0 0.0

Panel B: m = 4

L k (f1,q1)

(0.8,-0.7) (-0.8,0.7) (0.8,0.7) (-0.8,-0.7) (0.9,-0.9) (-0.9,0.9) (0.3,0.5) (-0.3,-0.5)

1 0 0.317069 0.092993 0.004124 0.000811 0.396214 0.019671 0.013439 0.004560
1 0.664743 0.126913 0.303381 0.233083 0.727729 0.166406 0.203288 0.267296
2 0.883925 0.372782 0.572636 0.498946 0.915180 0.408798 0.402721 0.521928
3 0.983990 0.498226 0.806624 0.723175 0.990405 0.639511 0.635805 0.804069

2 0 0.036390 0.012965 0.000668 1.000136 0.090894 0.007673 0.000001 0.0
1 0.092684 0.039424 0.004934 0.000214 0.195024 0.026101 0.000021 0.000004
2 0.180643 0.080765 0.011600 0.000336 0.323579 0.048852 0.000254 0.000041
3 0.318079 0.145362 0.022015 0.000527 0.482289 0.076939 0.002838 0.000451

5 0 0.000162 0.000059 0.000003 0.000001 0.005472 0.000574 0.0 0.0
1 0.000412 0.000180 0.000023 0.000001 0.011742 0.001954 0.0 0.0
2 0.000802 0.000369 0.000054 0.000001 0.019482 0.003658 0.0 0.0
3 0.001413 0.000664 0.000103 0.000002 0.029037 0.005761 0.0 0.0

10 0 0.0 0.0 0.0 0.0 0.000079 0.000008 0.0 0.0
1 0.0 0.0 0.0 0.0 0.000170 0.000029 0.0 0.0
2 0.0 0.0 0.0 0.0 0.000282 0.000054 0.0 0.0
3 0.0 0.0 0.0 0.0 0.000420 0.000085 0.0 0.0

Panel C: m = 12

L k (f1,q1)

(0.8,-0.7) (-0.8,0.7) (0.8,0.7) (-0.8,-0.7) (0.9,-0.9) (-0.9,0.9) (0.3,0.5) (-0.3,-0.5)

1 0 0.187624 0.185211 0.012950 0.000681 0.307495 0.052572 0.009984 0.001602
1 0.304535 0.188285 0.114150 0.082637 0.431803 0.065409 0.084317 0.086108
5 0.713330 0.243560 0.500112 0.413158 0.809133 0.197923 0.381667 0.424139
11 0.998105 0.660070 0.952331 0.907182 0.999302 0.785544 0.854307 0.936525

2 0 0.000829 0.000633 0.000060 0.000002 0.019154 0.002929 0.0 0.0
1 0.001467 0.001726 0.000135 0.000004 0.028101 0.009746 0.0 0.0
5 0.010258 0.016791 0.001170 0.000029 0.090404 0.057217 0.0 0.0
11 0.153424 0.262113 0.018017 0.000440 0.368337 0.268990 0.001172 0.000148

5 0 0.0 0.0 0.0 0.0 0.000009 0.000001 0.0 0.0
1 0.0 0.0 0.0 0.0 0.000013 0.000004 0.0 0.0
5 0.0 0.0 0.0 0.0 0.000044 0.000028 0.0 0.0
11 0.0 0.0 0.0 0.0 0.000183 0.000133 0.0 0.0

10 0–11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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AR(1) process 
Suppose that xt follows an AR(1) process: xt = fxt-1 + at with |f| < 1. Since Y(B) = (1 - fB)-1 = 1 +
fB + f2B2 + . . . , we have yi = fi for i = 0, 1, 2, . . . . Consequently, for L = 1 

(10)

If L > 1 

(11) 

Therefore, the efficiency gain from updating disaggregated data depends not only on s 2
a but also f.

Thus, the magnitude and the sign of f affect —MMSE. 
In addition, note that MMSE( t((L - 1)m - k + 1)) = s 2

aSi=0
m(L-1)-kf2i. Therefore, (11) can be expressed

as 

As L Æ •, for any given k and m with 0 £ k < m

Example 1 Differences between yield on mortgages (RH) and the yield on government loans (RO)
The data span the period from January 1961 to March 1974 with 159 monthly or 53 quarterly

observations. In studying the difference between RH and RO, Butter (1976) identified the process
governing the behaviour of the series as an AR(1) model if monthly data were used. He estimated
the following (de-meaned) model: 

If quarterly data are used, the quarterly aggregation of xt, namely XT, follows the ARMA(1, 1)
process 

(13)

where m = 3, F = fm, and Q is the root of 
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for Q with |Q| < 1, since if Q is a solution, then so is 1/Q. Hence, knowledge of f and var(at) yields
F = 0.595, Q = -0.217 and var(a*T) = 0.324. 

These parameters can also be estimated directly from quarterly data as: F = 0.707, Q = -0.109
and var(a*T) = 0.284. As expected, they are close to those derived from the disaggregated monthly
model. 

To compare the predictive performance of T,k(L) against T(L), we calculated —MMSE for 
L = 1, 2, 3, 4 (i.e., predicting up to one year ahead). In this simple AR(1) case, from (10), (11) and
(13), we have 

where Q is the root of Q2 + Q/r + 1 = 0 with .
In Table VI two —MMSE’s are presented: —MMSEI which is evaluated where T(L) is based on

ARMA(1, 1): XT = FXT-1 + a*T - Qa*T-1 with F = 0.595, Q = -0.217 and var(a*T ) = 0.324; and 
—MMSEII based on the same model with F = 0.707, Q = -0.109 and var(a*T) = 0.284, estimated
directly from quarterly data. 

As shown in Table VI, for short time horizons the predictions based on the AR(1) monthly model
(with and without updating) appear to be more accurate than those derived from the aggregated quar-
terly process. There are significant gains from updating the forecasts based on the disaggregated
model when new monthly data are available. When L = 1 both —MMSEI and —MMSEII are above
60% and 90% for k = 1 and 2, respectively. As expected, as the forecast horizon increases the 
differences between predictions based on monthly and quarterly data become much smaller, except
for the two-quarter-ahead predictions (L = 2) with monthly data updating (i.e., k = 1 or 2). 

Note that there are some differences between DMMSEI and —MMSEII. These differences, although
small in magnitude, become more noticeable as the forecast horizon increases. —MMSEI is positive
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for all prediction periods with or without monthly information updating (Theorem 2). On the other
hand, —MMSEII can become negative, hence validating Butter’s original observations, when more
than one quarter ahead is predicted because the model’s parameters were allowed to be freely esti-
mated. Note, however, that when there is updating —MMSEII becomes positive (or nearly so) for
several predictive horizons greater than 1. 

The negative sign is some —MMSEII’s is due to model misspecification (see the Remark on
Theorem 3) and estimation error. 

MA(q) processes 
Suppose xt follows an MA(q) process. For sufficiently large L, —MMSE ∫ 0 for all k. In fact, both
MMSE( T,k(L)) and MMSE( T(L)) converge to a constant as L increases. For example, suppose xt

follows an MA(1) process: xt = at - qat-1. From Theorem 2, if m = 3 and L > 1, MMSE( T,k(L)) =
s 2

a(1 + q2 + 2(1 - q)2). On the other hand, for all m > 1, XT follows an MA(1) process: XT = a*T -
Qa*T with s 2

a* = s 2
a(1 + q2 + 2(1 - q)2). Therefore, MMSE( T(L)) = MMSE( T,k(L)) for L > 1. Hence,

both DMMSE and —MMSEI are zero for L > 1. 

—MMSE’s generated from seasonal ARMA parametrizations 
We also investigated the impact of temporal aggregation on the forecastibility of some typically used
seasonal ARMA models. Table VII, for instance, contains —MMSE’s for several parametrizations of
the multiplicative structure ARMA(0, 1) ¥ SARMA(1, 0)12. The pattern of behaviour of —MMSE’s
observed her is not too dissimilar from those discussed earlier for nonseasonal processes. 

In order to compare the results of Table VII with those for nonseasonal models we chose some
parametrizations used in Table IV for ARMA(1, 1) processes. In addition, we added some new
parametrizations to investigate the cases in which the process is purely seasonal. As can be seen,
most of the general observations made earlier about —MMSE appear to hold. The major difference
in behaviour between the results from those tables lies in the fact that the —MMSE’s of the seasonal
models do not appear to be affected by the sign of the autoregressive parameter. In fact, neither
MMSE( T,k(L)) nor MMSE( T (L)) depend on f for m £ 12 when L = 1, as shown below. From
Theorem 2, MMSE( T,k(L)) = s 2

eSi=0
m-k-1(Si

j=0yj)2, where ˆ̂x
X̂ˆ̂x

ˆ̂xX̂

ˆ̂x
X̂ˆ̂x

Table VI. —MMSE’s of Butter’s data

L k —MMSEI —MMSEII

1 0 0.173697 0.058642
1 0.666740 0.620336
2 0.924074 0.913502

2 0 0.035906 -0.092396
1 0.141276 0.026997
2 0.290254 0.195802

3 0 0.010804 -0.066012
1 0.043480 -0.030798
2 0.089680 0.018989

4 0 0.003738 -0.036784
1 0.014812 -0.024135
2 0.030466 -0.007861
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Table VII. —MMSE of ARMA(0, 1) ¥ SARMA(1, 0)12 process: xt - f1,12xt-12 = at - q1at-1 with s 2
a = 1

Panel A: m = 3

L k (f1,12, q1)

(0.8, -0.7) (-0.8, 0.7) (0.8, 0.7) (-0.8, -0.7) (0.9, -0.9) (-0.9, 0.9) (0.9, 0.0) (-0.5, 0.0)

1 0 0.058589 0.085427 0.085427 0.058589 0.080474 0.055555 0.0 0.0
1 0.459869 0.155182 0.155182 0.459869 0.484304 0.064814 0.333333 0.333333
2 0.861148 0.224938 0.224938 0.861148 0.888135 0.074074 0.666666 0.666666

2 0–2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0 0.022733 0.028264 0.028264 0.022733 0.035812 0.017968 0.0 0.0

1 0.178433 0.051343 0.051343 0.178433 0.215526 0.020962 0.149171 0.066666
2 0.334133 0.074423 0.074423 0.334133 0.395239 0.023957 0.298342 0.133333

10 0–2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Panel B: m = 4

L k (f1,12, q1)

(0.8, -0.7) (-0.8, 0.7) (0.8, 0.7) (-0.8, -0.7) (0.9, -0.9) (-0.9, 0.9) (0.9, 0.0) (-0.5, 0.0)

1 0 0.043666 0.101388 0.101388 0.043666 0.059280 0.072730 0.0 0.0
1 0.329478 0.165069 0.165069 0.329478 0.346352 0.081732 0.250000 0.250000
2 0.615291 0.228751 0.228751 0.615291 0.633416 0.090735 0.500000 0.500000
3 0.901103 0.292432 0.292432 0.901103 0.920480 0.099738 0.750000 0.750000

2 0–3 0.390243 0.0 0.0 0.390243 0.0 0.0 0.0 0.0
5 0–3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0 0.004930 0.009443 0.009443 0.004930 0.010467 0.008370 0.0 0.0
1 0.037200 0.015374 0.015374 0.037204 0.061148 0.009408 0.044323 0.002941
2 0.069476 0.021305 0.021305 0.069476 0.111828 0.010445 0.088646 0.005882
3 0.101749 0.027236 0.027236 0.101749 0.162509 0.011481 0.132969 0.008825

Panel C: m = 12

L k (f1,12, q1)

(0.8, -0.7) (-0.8, 0.7) (0.8, 0.7) (-0.8, -0.7) (0.9, -0.9) (-0.9, 0.9) (0.9, 0.0) (-0.5, 0.0)

1 0 0.014287 0.120839 0.120839 0.014287 0.019047 0.142238 0.0 0.0
1 0.101164 0.160600 0.160600 0.101164 0.106034 0.149966 0.083333 0.083333
5 0.448674 0.319644 0.319644 0.448674 0.453982 0.180876 0.416666 0.416666
11 0.969938 0.558210 0.558210 0.969938 0.975903 0.227241 0.916666 0.916666

2 0 0.005461 0.034673 0.062326 0.005690 0.008341 0.0 0.0 0.000771
1 0.038674 0.046082 0.082835 0.040295 0.046438 0.034260 0.037292 0.016666
5 0.171524 0.091718 0.164867 0.178713 0.198823 0.041321 0.186464 0.083333
11 0.370800 0.160172 0.287915 0.386339 0.427401 0.051914 0.410220 0.183333

5 0 0.000930 0.005273 0.013023 0.000997 0.002312 0.007095 0.0 0.0
1 0.006634 0.007008 0.017308 0.007063 0.012870 0.007480 0.010464 0.000244
5 0.029422 0.013949 0.034448 0.031329 0.055104 0.009021 0.052322 0.001222
11 0.063606 0.024360 0.060159 0.067727 0.118455 0.011334 0.115109 0.002688

10 0 0.000090 0.000499 0.001313 0.000096 0.000595 0.001723 0.0 0.0
1 0.000641 0.000664 0.001745 0.000686 0.003315 0.001817 0.002705 0.0
5 0.002847 0.001321 0.003475 0.003044 0.014195 0.002191 0.013527 0.0
11 0.006155 0.002308 0.006068 0.006580 0.030516 0.002753 0.029759 0.000002
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for j = 0, 1, 2, 3, . . . . When m £ 12, only y0 and y1, which do not depend on f, are required to cal-
culate MMSE( T,k(L)). When L > 1 and m = 3 or 4, MMSE( T,k(L)) depends on the magnitude of f
but not on its sign. When L > 1, MMSE( T,k(L)) = s 2

e[Si=0
m-1(Si

j=0yj)2 + Si=1
m(L-1)-k(Sj=0

m-1yi+j)2]. In the cases
that m = 3 and 4, MMSE( T,k(L)) is essentially the summation of several s 2

e(fj - qfj)2 factors, which
do not depend on the sign of f. However, if m = 12, MMSE( T,k(L)) contains terms such as s 2

e (fi -
qf j+1)2, which depend on both the magnitude and the sign of f. Similar arguments can be made for
MMSE( T(L)). 

When the data are generated by purely seasonal AR processes the results in Table VII confirm
findings of published studies such as Wei (1978) which showed that there is no gain in predictive
ability for seasonal models by using models based on nonupdated disaggregated data (k = 0) over
those constructed from aggregated data. However, as shown in Table VII, —MMSE is, in general,
not zero if updating is allowed (k > 0). 

We also studied the impact of temporal aggregation for other seasonal processes. For the various
parametrizations of the ARMA(0, 1) ¥ SARMA(0, 1)12 structure (results not shown here), for
example, we found that there is a substantial gain in using predictions based on disaggregated data
for short horizons, but these gains decrease as L increases. When L = 5 or 10, there appears to be
no loss in predictive efficiency by using aggregated data (see http://lcb1.uoregon.edu/sergiok/
updating.pdf). 

PREDICTIONS BASED ON NONSTATIONARY MODELS

Nonseasonal integrated models 
A widely used class of models to represent business and economic series (Ermini, 1991; Ali and
Zarowin, 1992; Brown, 1993; Koreisha and Pukkila, 1995) is the IMA(1, 1) structure: (1 - B)xt =
(1 - qB)at. For this model structure, the MMSE forecast is an exponentially weighted average of the
observations with the smoothing parameter (1 - q). 

The temporally aggregated series, XT, follows IMA(1, 1): (1 - B)XT = (1 - QB)a*T. The parameters
Q and s 2

a*
can be obtained from the relations 

(14) 

and 

(15)

where c-1 = 1 + 2–
3
(m2 - 1)(1 + 2r) and r = -q/(1 + q 2). Note that the first-order autocorrelation of

XT is cr + 1–
4
(1 - c), which approaches 0.25 as m Æ •. The limit for Q is -0.268 as m Æ •. 
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Following the approach in Box and Jenkins (1976), we express both xt and XT as infinite moving
averages: xt = S•

j=0yjat-j and XT = S•
j=0Yja*T-j . Consequently, MMSE( T,k(L)) can be obtained using

(6). Since XT can be expressed as XT = a*T + S•
i=1(1 - Q)a*T-i, MMSE( T(L)) = [1 + (L - 1)(1 - Q)2]s 2

a*.
In Table VIII we present —MMSE’s for several IMA(1, 1) parametrizations. 

As shown the behaviour of —MMSE’s depends on L, m, k and the MA coefficient q. —MMSE’s
show similar characteristics to those observed earlier for stationary processes. For any given m, k
and q, —MMSE can be quite large even for large L. The magnitude of the gain in predictive effi-
ciency by using disaggregated data, however, decreases as L increases but at a much slower decay
rate than the corresponding stationary MA(1) processes in Table II. This slower decay rate is likely
due to the fact that for nonstationary processes the forecasting errors increase without bound as L
increases. We also note that for fixed L, m and k, —MMSE decreases as q increases. 

It should be noted, however, that although —MMSE for nonstationary processes decreases at a
slower rate than that of corresponding stationary processes, for large m, —MMSE converges to zero
as L Æ •. From (6) (which also holds for nonstationary processes), we see that 

(16)

for sufficiently large L. Similarly, from (15) we have 

(17)

From (14), (1 - Q)2/(1 + Q2) ª 3/2 since for large m, c ª 0. Hence, for large m, (17) will be domi-
nated by the first term, namely s 2

am3(1 - q)2L, which from (16) equals MMSE( T,k(L)). Therefore,
for sufficiently large m, —MMSE converges to zero as L Æ •. 

A seasonally integrated model 

Example 2 Monthly totals of international airline passengers (Box and Jenkins, 1976). 
The monthly airline passenger data can be represented by the nonstationary model: 

(18)

where q1 = 0.4, q1,12 = 0.6 and var(at) = 0.00134. The model structure based on monthly data implies
that the model based on quarterly data would follow an ARIMA(0, 1, 1) ¥ SARIMA(0, 1, 1)4 (see,
for example, Wei, 1978), namely 

(19)

where Q1,4 = q1,2 and Q1 and var(a*T) are determined by 
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Table VIII. —MMSE of IMA(1, 1) process: xt = xt-1 + at - q1at-1 with s 2
a = 1

Panel A: m = 3

L k q1

-0.99 -0.90 -0.50 -0.30 0.0 0.30 0.50 0.90 0.99

1 0 0.455066 0.441833 0.367346 0.318140 0.227238 0.123359 0.060589 0.000862 0.000001
1 0.844081 0.838140 0.802721 0.777200 0.724013 0.646618 0.578885 0.395042 0.339945
2 0.984314 0.982799 0.972789 0.964578 0.944802 0.909156 0.870426 0.726263 0.673256

2 0 0.169980 0.165074 0.138461 0.121600 0.091248 0.056024 0.032321 0.000803 0.000001
1 0.378804 0.373870 0.346153 0.327526 0.290730 0.237971 0.187840 0.023744 0.000294
2 0.587627 0.582665 0.553846 0.533452 0.490212 0.419917 0.343360 0.046684 0.000588

5 0 0.059032 0.057334 0.048257 0.042616 0.032642 0.021241 0.013468 0.000665 0.000001
1 0.131555 0.129853 0.120643 0.114787 0.104005 0.090225 0.078277 0.019680 0.000294
2 0.204078 0.202373 0.193029 0.186957 0.175367 0.159209 0.143086 0.038695 0.000587

10 0 0.028274 0.027461 0.023136 0.020463 0.015766 0.010439 0.006829 0.000518 0.000001
1 0.063010 0.062196 0.057840 0.055118 0.050233 0.044341 0.039691 0.015313 0.000292
2 0.097746 0.096931 0.092544 0.089773 0.084700 0.078244 0.072554 0.030108 0.000584

Panel B: m = 4

L k q1

-0.99 -0.90 -0.50 -0.30 0.0 0.30 0.50 0.90 0.99

1 0 0.458961 0.449206 0.393382 0.355058 0.278775 0.176018 0.098997 0.001960 0.000002
1 0.774416 0.768900 0.736376 0.713011 0.663428 0.587153 0.516128 0.317819 0.257414
2 0.935455 0.932984 0.917794 0.906225 0.879795 0.833577 0.783091 0.586953 0.509852
4 0.993506 0.992878 0.988661 0.985091 0.975959 0.957217 0.933259 0.813101 0.757364

2 0 0.173472 0.169806 0.149418 0.135907 0.109813 0.075168 0.047874 0.001751 0.000002
1 0.328980 0.325302 0.304460 0.290213 0.261334 0.218406 0.176976 0.028460 0.000390
2 0.484488 0.480799 0.459503 0.444519 0.412855 0.361643 0.306078 0.055169 0.000777
3 0.639996 0.636295 0.614546 0.598826 0.564377 0.504880 0.435179 0.08187 0.001165

5 0 0.060525 0.059249 0.052234 0.047658 0.038965 0.027647 0.018780 0.001326 0.000002
1 0.114783 0.113506 0.106435 0.101769 0.092729 0.080330 0.069423 0.021552 0.000388
2 0.169041 0.167762 0.160636 0.155880 0.146493 0.133013 0.120067 0.041778 0.000774
3 0.223298 0.222018 0.214837 0.209990 0.200257 0.185696 0.170710 0.062005 0.001159

10 0 0.029026 0.028415 0.025064 0.022888 0.018775 0.013462 0.009329 0.000944 0.000002
1 0.055048 0.054436 0.051072 0.048875 0.044682 0.039115 0.034489 0.015344 0.000385
2 0.081068 0.080456 0.07708 0.074862 0.070589 0.064768 0.059649 0.029745 0.000768
3 0.107089 0.106477 0.103088 0.100849 0.096496 0.090422 0.084809 0.044146 0.001150

Panel C: m = 12

L k q1

-0.99 -0.90 -0.50 -0.30 0.0 0.30 0.50 0.90 0.99

1 0 0.463329 0.460136 0.441445 0.427963 0.398305 0.346374 0.284962 0.028108 0.000064
1 0.586740 0.584055 0.568295 0.556877 0.531604 0.486787 0.432690 0.169748 0.092203
2 0.893784 0.892694 0.886197 0.881384 0.870404 0.849755 0.822551 0.611050 0.444406
4 0.999764 0.999741 0.999585 0.999449 0.999074 0.998144 0.996503 0.967881 0.925213

2 0 0.177398 0.176178 0.169108 0.164082 0.153219 0.134736 0.113508 0.018076 0.000063
1 0.228825 0.227605 0.220518 0.215465 0.204496 0.185654 0.163647 0.047818 0.001126
2 0.434533 0.433310 0.426158 0.420997 0.409603 0.389323 0.364205 0.166789 0.005379
3 0.743093 0.741868 0.734619 0.729296 0.717264 0.694827 0.665041 0.345246 0.011758

5 0 0.062215 0.061787 0.059320 0.057576 0.053837 0.047559 0.040466 0.008729 0.000061
1 0.080251 0.079823 0.077354 0.075607 0.071854 0.065532 0.058341 0.023093 0.001085
2 0.152394 0.151966 0.149489 0.147729 0.143924 0.137423 0.129840 0.080546 0.005181
3 0.260609 0.260181 0.257692 0.255911 0.252028 0.256260 0.237089 0.166726 0.011325

10 0 0.029880 0.029675 0.028491 0.027656 0.025870 0.022883 0.0195 0.004688 0.000057
1 0.038542 0.038337 0.037153 0.036317 0.034528 0.031530 0.028150 0.012403 0.001022
2 0.073191 0.072985 0.071799 0.070961 0.06915 0.066120 0.062649 0.043262 0.004881
3 0.125163 0.124958 0.123769 0.122926 0.121106 0.118006 0.114398 0.089551 0.010600
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Hence, based on (18), Q1 = -0.026 and var(a*T ) = 0.01237. 
Direct estimation of model (19) based on quarterly data yields Q1 = 0.067, Q1,4 =0.524 and var(a*T)

= 0.013. The 95% confidence intervals for Q1 and q1,4 are (-0.237, 0.370) and (0.271, 0.778), 
respectively. 

As was the case for Butter’s data, in Table IX we present two measures of predictive efficiency:
—MMSEI based on derived estimates for the quarterly parameters and —MMSEII based on direct
estimates of these parameters. As can be observed, the quarterly forecasts based on the model esti-
mated from monthly data (with and without updating) are superior to those generated from the model
based on quarterly (aggregated) data. Like the IMA(1, 1) case, the most striking difference between
the results here and those of stationary processes is that the —MMSE’s decrease at a much slower
rate as L increases than those associated stationary processes SARMA(0, 1) ¥ SARMA(0, 1)12 with
similar parameters. 

CONCLUSIONS 

In this article we have compared the performance of two predictors for temporally aggregated series:
one based on ARMA models generated from aggregated data, and the other based on aggregation of
predictions constructed from disaggregated data and which are also permitted to be updated as the
new information becomes available. We have shown that for lower order ARMA models, the loss
of information can be substantial if models based on aggregated data are used for short-term 

- * = ( ) - +( )var( ) vara aT tQ1 1
2

14 11 1 4q q

var( ) vara aT t
* +( ) = ( ) - +( )1 19 32 191

2
1
2

1Q q q

Table IX. —MMSE’s of airline passenger data

L k —MMSEI —MMSEII

1 0 0.090056 0.134153
1 0.614357 0.633046
2 0.891673 0.896923

2 0 0.043746 0.001462
1 0.214732 0.180008
2 0.385718 0.358555

5 0 0.028341 -0.02282
1 0.154005 0.109457
2 0.258169 0.219106

10 0 0.015022 0.004172
1 0.074360 0.064163
2 0.133698 0.124155

15 0 0.010357 0.034605
1 0.051565 0.074803
2 0.092772 0.115001

20 0 0.007923 0.057932
1 0.039674 0.088082
2 0.071424 0.118231
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predictions. Updating models based on disaggregated data can improve forecasts dramatically.
However, this gain in predictive efficiency decreases as the forecast horizon increases. 

In the seasonal and nonstationary cases we examined, the gain in predictive efficiency as meas-
ured by MMSE by using models based on disaggregated data (with and without updating) appear to
be more long-lasting than for stationary ARMA processes. This has important practical implications
because most economic time series seem to exhibit some sort of trend and seasonality. 

It should be noted, however, that in many applications such as financial analysis of stock prices
and exchange rates, the more finely the data is sampled, e.g. daily, hourly, minute-by-minute prices,
the more likely it is that the error component in the data (relating to the signal) will be larger than
when the data are sampled less frequently, such as weekly, monthly or annually (Merville and
Pieptea, 1989; Hasbrouck, 1993; Zhou, 1996). A very interesting as well as productive line of
research might examine to what extent the results derived in this article for data without measure-
ment noise carry over to observations measured with noise. 

APPENDIX 

Proof of Theorem 1: Using the fact that (3) is the conditional expectation of XT+L give {xmT+k, 
xmT+k-1, . . .}, the result in Theorem 1 follows. 

Proof of Theorem 2: Note that for any L, the MMSE of T,k(L) is the same as the MMSE of Sk
j=1xmT+j

+ Sm
i=k+1 mT(m(L - 1) + i). Hence 

Then, (6) follows. 

Proof of Theorem 3: 

where Hd,k and Ha are the closed linear manifold spanned by {xi}i=1
t+k and {Xi}T

i=1 (t = mT and 0 £ k
< m), respectively. 
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