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Abstract

We conduct an experiment on individual choice under risk in which we study belief
updating when an agent receives a signal that restricts the number of possible states of the
world. Subjects observe a sample drawn from an urn and form initial beliefs about the urn’s
composition. We then elicit how beliefs are modified after subjects receive a signal that
restricts the set of the possible urns from which the observed sample could have been drawn.
We find that this type of signal increases the frequency of correct assessments and that
prediction accuracy is higher for lower levels of risk. We also show that prediction accuracy
is higher after invalidating signals (i.e. signals that contradict the initial belief). This pattern
is explained by the lower level of risk associated with invalidating signals. Finally, we find
evidence for a lack of persistence of choices under high risk.
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We study an assessment problem in which there are several possible states of the

world and agents have to determine which state they are facing. The agent first

observes a sample drawn from all possible states of nature and then a signal that

restricts the set of the possible states of nature. Before receiving the signal, the

agent forms an initial belief based on observing the sample. This initial belief may

or may not be included in the subset of possible states of nature that remains after

receiving the signal. The objective of this paper is to analyze how this type of signal

is used by agents to update their beliefs.

In the theoretical context of incomplete information, belief updating relies on the

use of Bayes’ theorem. However, experiments in both psychology and economics

have shown that this theorem is rarely perfectly implemented in decisions taken

under risk. Kahneman, Slovic, and Tversky (1982) describe heuristics that can ex-

plain consistently observed behaviors in probability updating. In risky situations,

information is key for the economic agent and may take several forms, such as the

probability of an event, an indication of the agent’s behavior or a restriction of the

possible states of nature.

A signal that reduces the number of possible states of nature is found in any

situation in which an object or a person undertakes a pass/fail test, such as those

preceeding the issuance of a label, a diploma or an audit notation. This type of test

provides additional information and is supposed to make the evaluation of an object

or a person easier. Many institutions, such as scientific journals, human resource

consulting or even state medical licensing, adopt minimum certification standards1

or pass/fail strategies. These signals do not allow precise quality assessment of an

object or a person but indicate whether the object or the person is just above the

minimum standard required.
1A standard is defined as a minimum level to achieve.

2



For example, we may consider this problem in the context of an employer-employee

relationship. The employer, by observing the employee working in his firm, forms

an initial belief about the employee’s productivity. But the employee’s productivity

may be hard to assess due to difficulties in observing his behavior or due to multi-

tasking. If this is the case, an employee’s performance appraisal may be undertaken

to acquire more information about his productivity level. For a sales person, for

example, the performance appraisal may take the form of a sales objective. What

information about the employee’s productivity does the employer extract from the

observation that the employee succeeds or fails to achieve his sales objective? He does

not observe the precise level of the employee’s productivity, but instead, a reduction

in the range of possible productivity levels.

We examine how this type of signal is used by agents to update their belief

by studying a two-stage task in a laboratory setting. In our experiment, subjects

initially observe a sample of balls drawn from an urn composed of 20 balls, blue

and yellow. We elicit their initial belief about the composition of balls in the urn

by asking subjects to predict the total number of yellow balls contained in the urn.

They then receive a true but imperfect signal about the urn’s composition and are

asked to once again predict the number of yellow balls contained in the urn. Varying

the size of the observed sample and the precision of the signal allows us to study

belief updating in situations characterized by different levels of risk.

On the whole, we find that the signals help subjects in their assessment task and

that the prediction accuracy increases with the precision of the signal. Moreover,

we show that the subjects’ performance is higher after signals that contradict their

initial belief than after signals that confirm it. After receiving a signal that confirms

their initial belief, subjects’ performance is poorer if they change their prediction

between the two parts. This change in predictions happens when the initial risk
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level associated with the state of nature is high and the signal does not reduce it.

Thus, our results suggest beliefs change under risk, whereas the literature (Charness

and Levin, 2005; Friedman, 1998) seems to support the assertion that beliefs are

persistent under risk, in particular, when they are formed voluntarily. Indeed, we

find that the absence of initial belief reinforcement by a validating signal seems to

trigger belief updating. With a high initial level of risk, low accuracy validating

signals appear to confuse the subjects.

This paper is organized as follows. Section 1 studies the literature on belief

updating. Section 2 describes the experimental design. The data are analyzed in

Section 3 and in Section 4 we discuss our results and conclude.

1 Related Literature

When faced with risk, economic agents use the available information to form their

beliefs. In theory, they should use Bayes’ rule to update their beliefs when they re-

ceive new information. However, many experiments in psychology and in economics

have shown that people are not perfect Bayesian updaters and instead tend to use

heuristics in dealing with uncertain events. Kahneman, Slovic, and Tversky (1982)

analyze three heuristics used in the updating process: representativeness, availability

and anchoring. We will focus our attention on representativeness, which is the most

closely related to our work. The intuition behind representativeness is that people

tend to associate an observed sample with the population it most resembles. When

representativeness and Bayesian reasoning are not in line, the former may drive the

updating process to non-maximizing behavior and lead to a number of errors. For

instance, Kahneman, Slovic, and Tversky (1982) emphasize insensitivity to the prior

probability of outcomes and insensitivity to sample size.
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To study the insensitivity to prior probability Kahneman and Tversky (1973)

conduct an experiment in which two groups of subjects face different descriptions of

people. The first group knows that a population of 100 people is composed of 30 en-

gineers and 70 lawyers. The second group knows that the population is composed of

70 engineers and 30 lawyers. The participants in both groups have to give the prob-

ability that a certain description corresponds to an engineer. When the description

is uninformative, Baysian individuals in the first group should declare a probability

of 0.3 and the participants in the second group should declare a probability of 0.7.

However, the authors find participants in both groups declare the same probability

of 0.5 independently of their base rate. The prior probability stated for the first

(second) group that there are 30% (70%) of engineers in the population is ignored

by the participants. Grether (1980) confirms, in an experiment that conforms to

economic principles, that individuals do not use the base rate when updating beliefs.

He demonstrates that individuals place less weight on the likelihood of information:

they update their belief but less than they should do.

When using the representativeness heuristic, people tend to be insensitive to the

size of the observed sample in the revision process. Tversky and Kahneman (1971)

use an urn containing balls of two different colors to study this phenomenon. They

show that a high proportion of balls of one color in the sample, even if this sample

is small, induces subjects to believe that it comes from the urn that contains a large

amount of balls of that color and leaves them more confident about it than if they

had observed a bigger sample but with a less extreme proportion.2 Thus, the com-

position of the sample seems to matter as much as the size of the sample. In our
2For instance, consider an urn containing balls of two colors: 2/3 are red and 1/3 are white. A first subject

draws 6 balls (5 are red and 1 is white), and a second subject draws 20 balls (12 are red and 8 are white). Asking

individuals about who of the two subjects should feel more confident that the urn from which the sample has

been drawn contains 2/3 of red balls, they answer the first one.
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experiment, the composition and the size of the sample vary to identify this possible

source of error.

Charness and Levin (2005) and Friedman (1998) show the persistence in sub-

jects’ choices, and thus in beliefs, when Bayesian updating would require beliefs to

change. Charness and Levin (2005) examine how the difference between clash and

reinforcement affects the propensity to use Bayes’ rule. Reinforcement supposes that

people are more likely to choose actions associated with successful past outcomes. In

their experiment, the subjects face two equally likely states of the world, “Up” and

“Down”, and two urns, “Left” and “Right”, containing black or white balls. The Up

state of the world is characterized by more black balls in both urns. Moreover, the

Left urn has a mixed composition whereas the Right urn contains balls of only one

color (only black balls in Up and only white balls in Down), thus indicating the state

of the world for sure. The subjects make two draws. For the second draw they choose

to continue drawing in the same urn or to switch. Three treatments are conducted.

They differ by (i) the composition of the Left urn and (ii) the ability to choose from

which urn the first ball is drawn. Bayesian predictions state that the participants

should draw a second time from the Left urn (Right urn) after having drawn a white

ball (black ball) since this represents a failure (success). Charness and Levin (2005)

find that when Bayesian updating and reinforcement are not aligned around 50%

of the decisions are inconsistent with Bayesian updating. They also find that when

the urn used for the first draw is a choice, it is more likely to be chosen again than

when the urn is imposed on the participants. This experiment points out the role of

past successes and the degrees of freedom in subject’s decisions in changing initial

predictions. Our design shares similarities with Charness and Levin (2005) as we

also ask for repeated assessments of the state of nature, which is represented by the

6



composition of an urn. In our experiment, however, we focus on the signal’s impact

and the precision of initial beliefs.

The consistency of subjects’ choices is also studied by Friedman (1998) in his

analysis of the three door paradox. The subject faces three face-down cards, one of

which is the winning card. First, the subject chooses a card. Second, the experi-

menter turns over a non-winning card that the subject did not choose. Then the

subject chooses one of the two remaining cards. Finally, the two cards are turned

over. The participants play 10 trials. Bayes’ rule predicts that the subjects should

switch between their two choices. However, only 6/104 of the subjects switch more

than half of the time. Friedman (1998) explains this recurrent behavior by the illu-

sion of control (Camerer, 1995), i.e. the subjects’ belief that their initial choice is the

most likely, or by the non rational escalation of commitment (Bazerman, 1990), i.e.

the persistence in choices is viewed as a virtue and flip flopping as a vice. Friedman

(1998) proposes as an exploration of the three door paradox in which one manipu-

lates the subject’s initial choice by increasing the number of cards. In some ways

we pursue this endeavour as the number of possible urns in our experiment is higher

than the number of cards. Yet the subject’s choice is a similar one and lies in choos-

ing the correct urn/card in between all possible ones in two steps, where the first

step represents the formation of an initial belief. The main difference between the

two experiments is the fact that the signal may invalidate the initial belief of the

subject. The experiments in Charness and Levin (2005) and Friedman (1998) are of

particular interest to us as they underline the difficulty to predict subjects’ choices.

Ashton and Ashton (1988) study the sequential belief revision in five experiments

and how subject’s beliefs are influenced by the order and the presentation of new

evidence. They study the impact of validating/invalidating new information and

the degree with which it confirms the initial belief. The participants are auditors.
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They have to investigate the payroll records of a hypothetical client. They observe

the result of a preliminary investigation that indicates the probability that controls

would prevent errors was either 0.20, 0.50, or 0.80. Then, they receive validating

or invalidating evidence that can be either strong or weak. The study finds that

subjects are more willing to revise their belief after receiving new information, which

stands in contrast with Bayesian updating behavior. Moreover, the subjects revise

their belief to a greater extent after receiving new evidence that invalidates their

initial belief.

Ouwersloot, Nijkamp, and Rietveld (1998) study how the characteristics of mes-

sages impact the size of errors in updating beliefs. Subjects are asked to assess a

quantity. They are given a prior distribution of the unknown value and then receive

information. The experiment confirms that people do not apply Bayes’ rule. The

authors find that the deviations from Bayesian behavior are impacted by the char-

acteristics of the message, such as its precision, reliability, relevance and timeliness.

However, the precision of the message has only a small impact on the error of pre-

diction. The main limit of their experiment is that no proper incentives are given

to subjects. Subjects receive a fixed reward that does not depend on the correctness

of the answers. In our experiment subjects have to assess a risky state of nature

incorporating the information given by a pass/fail test and are incentivized to give

the correct answer.

A recent paper by Hoffman, Kagel, and Levin (2011) compares the impact of

simultaneous and sequential arrival of information on updating behavior.3 They

also investigate the impact of the order of receiving bad and good news on updating.

In a framed experiment, they ask subjects to determine the likelihood of having a

genetic disorder. In the simultaneous treatment, subjects receive the results of two
3We thank an anonymous referee for having suggested this article.
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biological tests at the same time. One of the tests declares that the subject has

the genetic disorder, whereas the second one claims that he does not have it. In

two sequential treatments, subjects receive the two results at a two week interval.

After receiving the first result they are asked to determine the likelihood of actually

having a genetic disorder. And then after two weeks, they have to determine it

once again but this time taking into account the results of both tests. The two

sequential treatments differ in the order in which good and bad news arrive. They

show that both sequencing and the order of the signals matters. Sequential arrival

of information biases the results compared to simultaneous arrival of information.

Subjects attach more importance on the latest information they got than to the

combined information. The authors note that one source of bias is the incomplete

adjustment to the initial test result received.

The updating process is still to be investigated and understood. People do not

seem to be exclusively Bayesian thinkers and there is a need for understanding the

different processes used in their decision making. Our experiment contributes to this

goal by analyzing specifically one kind of information: a signal that restricts the set

of possible states of the world, or more precisely, the use of a pass/fail test to assess

the characteristics of an object.

2 Experimental Design

2.1 The task

Subjects have to determine the number of yellow balls contained in an urn. The urn

is composed of 20 balls that can be either yellow or blue. The number of yellow

balls (between 0 and 20) is randomly drawn. Therefore, each of the 21 possible urn

compositions (representing a particular state of nature) has the same probability of
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being drawn. This is common information.

The subjects observe only a random sample drawn from this urn, whose size is

either 6, 10 or 14 balls. The size of the sample is also randomly drawn.4

Each period consists of two parts. In the first part, subjects observe the sample

drawn from the urn. They are then asked to predict the number of yellow balls in

the urn based on observing the sample. We call this first prediction the initial belief.

In the second part, the same sample is kept visible and the subjects receive a

signal about the urn’s composition. The signal indicates that the urn is composed

of either weakly more or strictly less than X yellow balls. The value on which the

test is based is randomly chosen from amongst the three possible values of 6, 10 or

14.5 This is common information. Therefore one of the following six signals is sent

to the subjects: There are LESS THAN (AT LEAST) X yellow balls in the urn, with

X being either 6, or 10, or 14. Subjects are then once again asked to predict the

number of yellow balls in the urn.

Each subject plays 50 periods of this experiment. In each period, the urn’s com-

position, the observed sample and the signal change.

2.2 The payoffs

Subjects were paid in cash in a separate room. They received a show-up fee of

€10. Subjects were also paid according to their predictions in three randomly drawn

periods. When they entered the payment room, they tossed a coin three times to

determine which part of each selected period was paid. If one of the predictions over

the three selected periods was correct, subjects received €10. If two were correct,

they received €15 and if three were correct, €20.
4As an illustration, see the instructions in Appendix 1.
5Given that the urn and the sample composition are random, the numbers 6, 10 and 14 are chosen so as to

ensure enough observations in each case.
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This payoff rule induces subjects to provide, as a prediction, the number of yellow

balls which they believe to have the highest probability to be correct.

2.3 Optimal predictions

Given the fact that the urn’s composition, the observed sample and the signal are

drawn randomly from known distributions, it is possible to compute the number

of yellow balls that has the highest probability of being correct from a theoretical

perspective. This number, which we call the optimal prediction, is obtained using

Bayes’ rule.6 From the available information, Bayes’ rule allows us to compute the

probability associated with each urn from which the observed sample could have been

drawn. And the optimal prediction corresponds to the number of yellow balls con-

tained in the urn with the highest theoretical probability. The way this probability

distribution is computed is provided in Appendix 2.

In the first part, the most probable urn is the one having the same proportion

of yellow balls as the observed sample, since the number of yellow balls contained

in the urn is drawn from a uniform distribution.7 Therefore, in our setup, Bayesian

revision and representativeness are in line.

The computation of the optimal prediction in the second part follows the same

logic. Bayes’ rule is applied to take into account the information provided by the

signal, which restricts the set of potential urns from which the observed sample could

have been drawn. Given that the signal is randomly selected, the urns that remain

possible candidates after the signal is received are still ranked in the same order
6The objective of the paper is not to test if the subjects apply Bayes’ rule in forming their beliefs. Instead,

our goal is to study how individuals update their beliefs after observing a pass/fail test, regardless of the law or

heuristic they use in their revision process. Nevertheless, we think that predictions computed with Bayes’ rule

represent an interesting point of comparison.
7For instance, if the observed sample contains 6 yellow balls out of 10, the most likely number of yellow balls

contained in the urn is 12.
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with respect to their probability of occurrence. Therefore, the optimal prediction in

the second part is the same as the one in the first part when the corresponding urn

is still present in the set of possible urns. When it is not, the optimal prediction

corresponds to the urn in which the number of yellow balls is the closest to the first

part’s optimal prediction (see Appendix 3 for an example).

2.4 Procedures

The experiment was conducted at the GATE laboratory, Lyon, France, using the

Regate software (Zeiliger, 2000). Using the ORSEE software (Greiner, 2004), we

recruited 81 under-graduate students from local business and engineering schools.

At the beginning of each session each subject was randomly assigned to a com-

puter. The subjects participated in the 50 periods of the experiment. At the end of

the session, they filled out a demographic questionnaire and were asked to provide a

brief description of how they made their decisions.

On average, a session lasted 60 minutes and subjects earned €15.

3 Results

First, we compare the predictions made by the subjects with the optimal ones, i.e.

the ones that maximize the expected gain. On average, the optimal prediction is

given in 36% of cases.8 In 60% of the cases, the prediction error is only one ball

with respect to the optimal prediction. We also observe that 20% of the subjects

give the optimal prediction in more than 50% of the cases. The data do not reveal

any other recurrent strategy. On average, subjects earned €15.16. If they had given

the optimal prediction, the average gain would have been €17.70 (see calculations in
8In the post experimental questionnaire 28% of the subjects declare having used the representativeness heuris-

tics to make their decisions.
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Appendix 4).

When the subjects receive a signal that invalidates their initial belief, they modify

their prediction in 98% of the cases and they choose the number of yellow balls that

is closest to their first prediction in the new set of possible urns in 30% of the cases.

When the subjects receive a signal that validates their initial belief, they change

their prediction in 50% of the cases.

Overall, we can conclude that in a majority of cases subjects do not use Bayesian

updating to make their predictions.

In what follows, we analyze how the signal affects the probability that the subject

predicts the exact number of yellow balls in the urn. We then investigate whether

signals that invalidate the initial belief affect the prediction accuracy differently than

signals that validate it. Finally, we explain why subjects change their predictions

when the signal validates their initial belief.

3.1 Impact of the signal on the prediction accuracy

For each subject we compute the proportion of correct predictions as the number

of predictions equal to the number of yellow balls contained in the urn divided by

the total number of decisions taken. Figure 1 plots the density of the proportion of

correct predictions in the whole sample. Figure 1.A (resp. Figure 1.B) shows this

density for predictions realized in the first (respectively second) part. A Wilcoxon

matched-pairs signed-ranks test9 shows that the two distributions of the proportion

of correct predictions in part 1 and in part 2 are significantly different (p-value =

0.000) and that the median of the distribution of correct predictions is higher in

part 2 than in part 1 (p-value = 0.000). Therefore, on average, signals sent to the

agents help them to correctly assess the number of yellow balls contained in the urn.
9Test of equality of distributions on matched data.
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Figure 1: Density of the proportion of correct predictions.

Result 1: The signal improves the accuracy of the subjects’ predictions.

In order to understand how the signal helps the subjects in assessing the number

of yellow balls contained in the urn we analyze the determinants of the probability

that the prediction made in part 2 (i.e. after the signal is received) is correct. The

potential determinants are the composition of the observed sample, the initial risk

level (before the signal is received), and the final risk level (after the signal is re-

ceived). Each subject makes predictions during a subsequent number of periods. The

post-experimental questionnaire shows an important heterogeneity in the strategies

reported by the subjects. This heterogeneity also appears in the data, as illustrated

in Figure 1. Therefore, there might be some underlying characteristics (observable

or not) that affect the decisions of the subjects. We account for the individual char-

acteristics persistent over time by (i) introducing individual observed characteristics

(reported by the subjects in the questionnaire) and (ii) allowing for the presence of

unobserved permanent characteristics by exploiting the panel dimension of our data.

We estimate a random effect logit model, that takes the following form:

Pr(Yit = 1) = βOSOSit + βIRIRit + βF RFRit + βXXi + αi + εit, (1)

where Yit is an indicator variable equal to 1 if the prediction made in part 2 by
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subject i in period t is correct. OSit represents the composition of the observed sam-

ple, measured by the observed proportion of yellow balls and discretized into three

categories.10 IRit represents the initial risk level. In the context of our experimental

design, the initial risk level may either be high (when the observed sample is com-

posed of 6 visible balls), medium (10 visible balls) or low (14 visible balls). Therefore,

a high risk level means that there are 15 possible urns from which the observed sam-

ple may be drawn. Medium and low risk levels correspond to 11 and 7 possible urns

respectively. FRit represents the final risk level, measured as the number of possible

urns remaining after the signal is received. Xi is a set of time-invariant observed

characteristics captured in the questionnaire (it includes indicators for gender, the

field of study and the first participation in an experiment). αi is a time-invariant un-

observed term assumed to follow a normal distribution and εit is a period-individual

specific error term following a standard logistic distribution.

The results are reported in Table 1. In the first specification (column 1), we

include only the potential determinants that are observed by the subjects before

the signal is received: the composition of the observed sample and the initial risk

level. We observe that the higher the initial risk level, the lower the prediction

accuracy. The composition of the observed sample also plays a key role: subjects

perform better when the observed sample is composed of almost only yellow balls

(high proportion) or almost only blue balls (low proportion). We find evidence

similar to that of Tversky and Kahneman (1971), who show that the composition

of the sample is influencing the updating behavior. In the second specification, we

include the final risk level as a third potential explanatory factor. This element

represents the information provided by the signal: the more precise the signal, the
10The three categories are: (i) the proportion of yellow balls is lower than 0.1, (ii) the proportion of yellow balls

is between 0.1 and 0.9, and (iii) the proportion of yellow balls is higher than 0.9.
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lower the number of possible urns in part 2. We find that a decrease in the final risk

level has a positive impact on prediction accuracy. More interestingly, the coefficients

associated to the initial risk level become insignificant. Hence, only the risk level

remaining after the signal is received seems to influence prediction accuracy in part 2.

Result 2: Prediction accuracy increases with the precision of the signal.

3.2 Impact of invalidating signals on the prediction accuracy

Let us now turn to the question of how the prediction accuracy in part 2 is affected by

signals that confirm the initial belief (validating signals) on the one hand and signals

that do not (invalidating signals) on the other. There are 85% of validating signals

and 15% of invalidating signals. The first column of Table 2 reports the results

of the estimation of equation (1) in which an indicator of an invalidating signal is

introduced as an additional explanatory variable. The first column provides results

when the final risk level is not controlled for. We find that the probability that

the prediction is correct in part 2 is higher after an invalidating signal. This means

that a signal that does not confirm the subject’s initial belief improves a subject’s

prediction by more than a signal that confirms it.

In order to find an explanation for this pattern one has to remember that invali-

dating signals happen for two reasons: the subjects make a bad prediction in part 1

(far from the optimal prediction) and/or the observed sample is a bad representa-

tion of the urn’s composition. Thus, the positive impact of invalidating signals on

prediction accuracy may be caused (totally or partially) by the fact that invalidating

signals happen in situations in which the subjects are left with a low number of pos-

sible urns.11 We examine this potential explanation by running the same regression,
11Indeed, the coefficient of correlation between the number of possible urns after a signal and invalidating

signals is negative and high (-0.301).
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Table 1: Impact of the Signal on the Prediction Accuracy in Part 2

Dependent variable : Indicator of correct prediction in part 2
(1) (2)

Composition of the observed sample:

Proportion of yellow balls ∈ [0, 0.1] 0.271∗∗ 0.325∗∗∗
(0.118) (0.120)

Proportion of yellow balls ∈ (0.1, 0.9) ref. ref.

Proportion of yellow balls ∈ [0.9, 1] 0.242∗∗ 0.421∗∗∗
(0.121) (0.124)

Initial risk level:

Low 0.248∗∗∗ -0.106
(0.097) (0.104)

Medium ref. ref.

High -0.264∗∗ -0.070
(0.105) (0.108)

Final risk level:

Number of possible urns in part 2 - -0.163∗∗∗
(0.019)

Constant -1.548∗∗∗ -0.216
(0.126) (0.194)

Control for individual observed characteristics yes yes
Observations 3,850 3,850
Log-likelihood -1905.429 -1866.237
ρ 0.027∗∗ 0.026∗∗

Logit model with random effects. Standard errors in parentheses. Significance levels: *** 1%; ** 5%; * 10%.
ρ denotes the share of the individual (within-group) variance in the total variance. High, medium and low initial
risk levels correspond to situations in which the number of possible urns in part 1 is respectively 15, 11 and 7.
Individual observed characteristics are indicators for gender, the field of study and the first participation in an
experiment.
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Table 2: Impact of Invalidating Signals on Prediction Accuracy in Part 2

Dependent variable : Indicator of correct prediction in part 2
(1) (2)

Invalidating signal indicator 0.535∗∗∗ 0.080
(0.115) (0.130)

Number of possible urns in part 2 - -0.157∗∗∗
(0.035)

Constant -1.633∗∗∗ -0.275
(0.130) (0.216)

Control for initial risk level yes yes
Control for observed sample composition yes yes
Control for individual observed characteristics yes yes
Observations 3,850 3,850
Log-likelihood -1895.162 -1866.049
ρ 0.030∗∗∗ 0.027∗∗∗

Logit model with random effects. Standard errors in parentheses. Significance levels: *** 1%; ** 5%; *
10%. ρ denotes the share of the individual (within-group) variance in the total variance. Individual observed
characteristics are indicators for gender, the field of study and the first participation in an experiment.

this time controlling for the final risk level, measured as the number of possible urns

left after the signal is received. The results are shown in the second column of Ta-

ble 2. We find that the higher the final risk level, the lower the prediction accuracy

(the impact of the number of possible urns in part 2 is negative). Moreover, the

impact of invalidating signals looses significance. This means that the higher proba-

bility of prediction accuracy after an invalidating signal can be attributed to the fact

that invalidating signals reduce the risk level associated with the urn’s composition

by more than validating signals and subjects are thus left with fewer options.

Result 3: Prediction accuracy is higher after invalidating signals than

validating signals. This is explained by the lower risk level left after

invalidating signals.

Let us now examine the prediction accuracy after validating signals more closely,

since it appears that the prediction accuracy is lower in such situations. When
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subjects receive a signal that confirms their initial belief, they change their prediction

from the one made in part 1 in half of the cases. We examine if the decision of

changing the prediction affects the prediction accuracy. In order to do so, we estimate

equation (1) in which we introduce an indicator variable for a prediction change

between the two parts as an explanatory variable. This estimation is conducted

only on observations for which the signal validates the initial belief. Results are

presented in Table 3. The first column provides results when the final risk level

is not controlled for. It shows that the probability of a correct prediction is lower

when the subjects change their prediction between the two parts. Again, one may

wonder if this result can be explained by the risk level remaining after the signal

is received. We thus run the same regression, this time introducing the number

of possible urns in part 2 as an explanatory variable. Consistent with the results

reported in the second column of Table 2, we find that a higher risk level has a

negative impact on the prediction accuracy. Nevertheless, the impact of a prediction

change remains negative and highly significant after we control for the final risk level.

We can conclude that validating signals have an adverse effect. In half of the cases

in which subjects receive a signal that confirms their initial belief they change their

prediction. And this updating behavior has a negative impact on the prediction

accuracy.

Result 4: Signals that validate the initial belief make subjects change

their predictions in half of the cases. The prediction change has a negative

impact on subjects’ performances.
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Table 3: Impact of Prediction Change on Prediction Accuracy in Part 2 when the Signal Vali-
dates the Initial Belief

Dependent variable : Indicator of correct prediction in part 2
(1) (2)

Indicator of prediction change -0.420∗∗∗ -0.403∗∗∗
(0.100) (0.100)

Number of possible urns in part 2 - -0.138∗∗∗
(0.022)

Constant -1.426∗∗∗ -0.244
(0.141) (0.233)

Control for initial risk level yes yes
Control for observed sample composition yes yes
Control for individual observed characteristics yes yes
Observations 3,316 3,316
Log-likelihood -1591.493 -1572.065
ρ 0.023∗∗∗ 0.021∗∗∗

Logit model with random effects. Standard errors in parentheses. Significance levels: *** 1%; ** 5%; *
10%. ρ denotes the share of the individual (within-group) variance in the total variance. Individual observed
characteristics are indicators for gender, the field of study and the first participation in an experiment.

3.3 Explaining prediction change when the signal validates the ini-

tial belief

In this section, we analyze situations in which subjects change their initial belief

when the signal validates it. Such situations are interesting in light of the results in

section 3.2, which showed that this behavior has a negative impact on the probability

that a subject’s prediction is correct. Moreover, the existing literature exhibits belief

persistence instead of belief change when dealing with risky situations (Charness and

Levin, 2005; Friedman, 1998). Thus, we investigate whether there are some situations

in which information revealed to the subjects may make them more likely to change

their prediction.

We estimate a random effect logit model in which the dependent variable is the

indicator of a prediction change between parts 1 and 2. This estimation is performed

on observations for which the signal confirms the initial belief. We explore the role
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of the two factors that may explain why people change their beliefs: the evolution

of the risk level associated with the state of nature between the first and the second

part and the (objective) probability that the prediction made in part 1 is correct.

The evolution of the risk level takes into account both the risk level in the first

part and the reduction of the risk level between parts 1 and 2 induced by the signal.

The initial risk level may be either high (15 possible urns from which the observed

sample is drawn), medium (11 urns) or low (7 urns). The signal reduces the number

of possible urns from which the sample might be drawn. In order to obtain the final

risk level, the number of possible urns left after receiving the signal is discretized into

three categories, high, medium and low, if the number of possible urns is 12 or more,

between 8 and 11, or 7 or less respectively. The evolution of the risk level between

the two parts therefore falls into one of six categories: high-to-high, high-to-medium,

high-to-low (taken as the reference category because it corresponds to the highest

decrease in risk between the two parts), medium-to-medium, medium-to-low, and

low-to-low.

The probability that the prediction in part 1 is correct corresponds to the proba-

bility that the number of yellow balls contained in the urn is equal to the prediction

made by the subject in part 1, given the signal he received. It is calculated using

Bayes’ rule. This variable takes into account the composition of the observed sample

and the prediction that the subjects make in part 1. Therefore, it allows us to con-

trol for both the difficulty of the assessment problem (some urns are more difficult

to assess than others) and the subject’s performance in part 1.

Table 4 shows the results of this estimation. We find that only being in a situ-

ation of high initial risk level that is not reduced after the signal is received has an

increasing impact on the propensity to update the belief when the signal received

validates the initial belief. This result suggests that the decision to change one’s
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Table 4: Determinants of Belief Updating when the Signal Validates the Initial Belief

Dependent variable: Indicator for prediction change
Evolution of the risk level between the two parts:

high → high 0.516∗∗ (0.260)
high → medium 0.381 (0.256)
high → low ref.
medium → medium 0.355 (0.237)
medium → low 0.055 (0.261)
low → low 0.327 (0.231)

Probability of correct prediction at part 1 -2.596∗∗∗ (0.349)
Constant 0.595 (0.569)
Control for individual observed characteristics yes
Observations 3,316
Log-likelihood -1491.910
ρ 0.596∗∗∗

Logit model with random effects. Standard errors in parentheses. Significance levels: *** 1%; ** 5%; * 10%.
ρ denotes the share of the individual (within-group) variance in the total variance. High, medium and low initial
risk levels correspond to situations in which the number of possible urns in part 1 is respectively 15, 11 and 7.
High, medium and low final risk levels correspond to situations in which the number of possible urns in part 2
is respectively 12 or more, between 8 and 11, and 7 or less. Individual observed characteristics are indicators for
gender, the field of study and the first participation in an experiment.

prediction is neither affected only by the initial risk level nor only by the fact that

the signal reduces the number of possible urns. Rather, it is the combination of

these two factors that plays a key role: the prediction change is more likely when the

subjects observe a sample of 6 balls and afterward receive a signal of low accuracy.

Concerning the impact of the sample composition and the subject’s first prediction,

we find that the probability that the prediction made in part 1 is correct decreases

the propensity to change the prediction when a validating signal is received. This

result suggests that when the subjects are more confident about their initial belief,

they are less likely to change it after receiving a validating signal.12

Result 5: When the signal confirms the initial belief, the subjects are

more likely to change their prediction when the initial risk level is high
12A closer look at the data makes it apparent that the subjects are less likely to change their prediction when

the observed sample is composed of around 100% or 0% of yellow balls and subjects play the optimal strategy

(their predictions are close to 20 or 0 yellow balls respectively) and regardless of the sample size.
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and remains high after the signal is received.

4 Conclusion

In this paper, we analyze how individuals update their beliefs when they receive an

imperfect signal. Our original contribution to the literature resides in the type of

signal sent to agents, which is a restriction of the set of possible states of nature.

More precisely, we analyze how subjects update their beliefs after receiving this kind

of signal for different levels of risk associated with the state of nature and for different

signal accuracies. We examine these questions in a laboratory setting with a two-

stage task. The subjects observe a partially revealed urn composed of 20 balls (yellow

or blue) and have to assess the total number of yellow balls in the urn twice, once

before a signal of the urn’s composition is observed, and once after such a signal is

observed.

We find that, on average, signals significantly help subjects predict the number

of yellow balls contained in the urn. Prediction accuracy decreases with the level

of risk (less precise signals). A signal that disproves a mistaken initial belief, i.e.

an invalidating signal, increases the probability of finding the exact composition of

the urn. Validating signals, however, may have an adverse effect. Subjects change

their prediction in half of the cases following a signal that validates their initial

belief and this change in prediction is associated with lower levels of prediction

accuracy. Furthermore, we show that in cases in which the signal confirms their

initial beliefs, subjects are more likely to change their prediction when the initial

risk level associated with the state of nature is high, i.e. the observed sample is

small, and the signal is not precise.

Our results suggest that signals corresponding to pass/fail tests are useful in

improving the assessment of the state of nature, especially when the first prediction
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is wrong. However, we find a limitation on the ability of this type of signal to better

inform agents about the state of nature. Moreover, individuals are more likely to

revise their beliefs in situations where the state of nature remains risky after the

signal is received.

The literature on updating beliefs has highlighted the persistence of subjects’

beliefs, whereas Bayesian updating requires changes (Charness and Levin, 2005;

Friedman, 1998). Our results suggest that subjects change their beliefs, even when

Bayesian updating requires persistence. We show that the evolution of risk associ-

ated with the state of the world significantly affects subjects’ behavior. Agents are

more willing to change their belief facing a riskier state of the world.

Our framework could readily be extended to introduce a measure of the degree of

confidence subjects have in their predictions. In a new experimental design, we could

ask subjects to provide a confidence interval around their predictions. We expect

that the higher a subject’s confidence level in their initial belief (first prediction),

the lower the likelihood that they change their initial belief. In this new setting,

we could also investigate if there exist some specific signals or situations that make

agents want to change their initial beliefs even if they are confident about them.
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Appendix 1: Instructions (original in French)

You are about to participate in an experiment during which you can earn money.

Your earnings will depend on your decisions taken during the experiment. Your

earnings will be paid to you in cash in private and in a separate room.

There are 50 periods in the experiment. Each period has two parts. In each period,

you see a partially revealed urn containing 20 balls. The balls may be yellow or blue.

In each part, you have to predict the total number of yellow balls in the urn. Your

earnings depend on your prediction of the total number of yellow balls. You increase

your earnings if you find the exact total number of yellow balls in the urn.

Period description An urn is composed of 20 balls: yellow or blue. The number

of yellow balls is randomly determined between 0 and 20. There are equal chances

that the urn is composed of 0 yellow balls, or 1 yellow ball,. . . , or 20 yellow balls.

The urn stays the same during the period. You can observe only 6, 10 or 14 balls in

the urn. The visible balls are randomly drawn from the urn.

Each period has 2 parts. The set of visible balls is identical for the 2 parts.

PART 1: You have to predict the total number of yellow balls in the urn. Enter

your answer with the scroll bar and validate it.

PART 2: The urn stays the same as in the 1st part. You receive complementary
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information on the urn’s composition. This information indicates if the urn is com-

posed with at most, or at least 6, 10 or 14 yellow balls. Then, you have to predict a

second time the total number of yellow balls in the urn. Enter your answer with the

scroll bars, even if your answer does not differ from your prediction in the 1st part,

and validate it.

Description of the added information on the urn’s composition You can

receive one of the following pieces of information:

• ≥ 6, there are AT LEAST 6 yellow balls in the urn.

• < 6, there are LESS THAN 6 yellow balls in the urn.

• ≥ 10, there are AT LEAST 10 yellow balls in the urn.

• < 10, there are LESS THAN 10 yellow balls in the urn.

• ≥ 14, there are AT LEAST 14 yellow balls in the urn.

• < 14, there are LESS THAN 14 yellow balls in the urn.

All six possibilities are not simultaneously possible for a given composition of the

urn. For example, when an urn has a total number of 8 yellow balls, only three

things out of six are possible:

• ≥ 6, there are AT LEAST 6 yellow balls in the urn.

• < 10, there are LESS THAN 10 yellow balls in the urn.
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• < 14, there are LESS THAN 14 yellow balls in the urn.

The computer draws randomly and shows one of the possible pieces of information.

At the end of this 2nd part, you observe the complete urn and the predictions

you made in part 1 and in part 2.

A new period starts automatically when you validate the last screen. At each

new period, your task remains the same, but the following elements can be different:

• the urn’s composition

• the number of visible balls

• the information on the maximum or minimum total number of yellow balls in

the urn.

Payment Three periods over the 50 played are selected for your payoff. The three

periods are randomly drawn by the computer at the end of the experiment. They

can be different among the participants. Thus, you do not know in advance which

periods will be selected. Each period has the same chance to be selected.

For each of the three selected periods, only one part is chosen for your payoff.

When you enter the payment room, you determine the part selected for the payoff

by tossing a coin:

• if you toss tails, the 1st part is selected for your payoff.

• if you toss heads, the 2nd part is selected for your payoff.

To summarize, three periods are selected randomly by the computer and, for

each of the selected periods, you determine which part will be paid by tossing a coin.

Thus, three parts are selected for your payoff. Your payoff depends on the number

of exact predictions you have made for these three parts:

• If none of your three predictions is exact: your payoff is €0.
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• If one of your three predictions is exact: your payoff is €10.

• If two of your three predictions are exact: your payoff is €15.

• If all your three predictions are exact: your payoff is €20.

In all the cases, you will receive €10 more for your participation in this experiment.

It is forbidden to communicate with other subjects during the experiment. If you

have any question regarding these instructions, please raise your hand.
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Appendix 2: Predicted Probabilities

Predicted Probabilities in Part 1

An urn is composed of 20 balls and the number of yellow balls contained in the urn

is chosen randomly (from 0 to 20). Therefore, there are 21 possible urns, with each

one having the same probability (1/21) of being drawn. Then, the probability to

observe sample S, given the urn from which the sample is drawn is Ui is:

P (S|Ui) =
Cys

yu
∗ Cns−ys

nu−yu

Cns
nu

where nu (resp. ns) is the number of balls contained in urn Ui, nu = 20, (resp. in

sample S) and yu (resp. ys) represents the number of yellow balls contained in urn

Ui (resp. in sample S). Then, according to Bayes’ rule and given an observed sample

S, the probability that this sample is drawn from urn Ui is equal to:

P (Ui|S) = P (S|Ui) · P (Ui)∑21
x=1 P (S|Ux) · P (Ux)

Given an observed sample S, the distribution of probabilities over the 21 possible

urns is obtained using this formula. The optimal choice for the subject is thus to give

as a prediction the number of yellow balls contained in the urn having the highest

probability.

Predicted Probabilities in Part 2

Now, we have to compute the probability that a particular observed sample is drawn

from each of the 21 possible urns, after a signal is received. According to Bayes’

rule, the probability that sample S is drawn from urn Ui given signal I (I stands for

information) is:

P (Ui|S, I) = P (S, I|Ui) · P (Ui)∑21
x=1 P (S, I|Ux) · P (Ux)
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The signal sent to the agent is only based on the composition of the urn. In particular,

it is independent from the composition of the observed sample drawn from the urn

in part 1. Therefore, P (S, I|Ui) = P (S|Ui) ·P (I|Ui). P (I|Ui) is computed according

to the following logic. For a particular urn, among the six existing signals, only

three can be sent to the subject. Indeed, the number of yellow balls contained in

an urn cannot be both inferior and superior to the same number. Since the signal

is randomly chosen, the probability that a signal is sent is equal to one third if the

signal is a possible one, and 0 if the signal is inconsistent with the composition of

the urn. This leads to the following:

P (Ui|S, I) = P (S|Ui) · P (I|Ui) · P (Ui)∑21
x=1 P (S|Ux) · P (I|Ux) · P (Ux)

with

P (I|Ui) =


1/3 if signal I is consistent with the composition of urn Ui

0 if not

As is the case in the first part, the optimal choice for the subject is to give as

a prediction the number of yellow balls contained in the urn having the highest

probability, given the sample and the signal.
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Appendix 3: Example of optimal prediction

Figures 2 and 3 display the probability distribution that different predictions are

correct for an urn where the observed sample is composed of 6 yellow balls and 4

blue balls.

Figure 2: Optimal predictions for a validating signal.

Figure 3: Optimal predictions for an invalidating signal.

In both figures, the optimal prediction in the first part (represented by light

bars) is 12 yellow balls as it is the number of yellow balls associated with the urn

having the highest probability to be correct. Figure 2 represents the case where the

subject receives a signal that validates his initial belief (indeed the signal states that

“there are at least 10 yellow balls”). Each one of the urns remaining in the new
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restricted set has a higher probability of being correct. Thus, the optimal prediction

in part 2 (represented by dark bars) remains the same (12) and its probability of

being correct increases. Figure 3 represents the case where the signal invalidates the

first prediction. The signal states that “there are less than 10 yellow balls” in the urn

and proves the optimal prediction to be wrong. In this case, the optimal prediction

in the second part corresponds to 9, which is the closest number to 12 included in

the new restricted set.
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Appendix 4: Expected revenue

The expected gain for one subject depends both on the number of correct predictions

he gives and on the likelihood that the period(s) at which he makes correct predictions

is(are) drawn at the end of the experiment. Three periods are drawn. The probability

that, among those three periods, a subject makes i correct predictions (and therefore

makes 3− i wrong predictions) is given by:

P (i) =
Ci

n ∗ C3−i
n−c

C3
n

, for i = 0, . . . , 3

where n represents the total number of periods played and c the total number of

correct predictions.

The expected gain is the average of the gains associated with 0, 1, 2 and 3 correct

answers drawn, weighted by the probability that the corresponding number of correct

answers is drawn:

ER(n, c) =
C0

c ∗ C3
n−c

C3
n

∗ 10 +
C1

c ∗ C2
n−c

C3
n

∗ 20 +
C2

c ∗ C1
n−c

C3
n

∗ 25 +
C3

c ∗ C0
n−c

C3
n

∗ 30

Given that, for the whole experience, the subjects made 7900 predictions, among

which 1492 were correct ones, the total expected revenue is ER(7900, 1492) =€15.16.

If every subject had played with the optimal strategy (consisting in giving as a predic-

tion the urn associated with the highest probability), they would have made 2340 cor-

rect predictions. In this case, the expected revenue would have beenER(7900, 2340) =€17.70.
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