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Updating the neural network sediment load models using

different sensitivity analysis methods: a regional

application

Reza Asheghi, Seyed Abbas Hosseini, Mojtaba Saneie and

Abbas Abbaszadeh Shahri
ABSTRACT
The amount of transported sediment load by streams is a vital but high nonlinear dynamic process in

water resources management. In the current paper, two optimum predictive models subjected to

artificial neural network (ANN) were developed. The employed inputs were then prioritized using

diverse sensitivity analysis (SA) methods to address new updated but more efficient ANN structures.

The models were found through the 263 processed datasets of three rivers in Idaho, USA using nine

different measured flow and sediment variables (e.g., channel geometry, geomorphology, hydraulic)

for a period of 11 years. The used parameters were selected based on the prior knowledge of the

conventional analyses in which the effect of suspended load on bed load was also investigated.

Analyzed accuracy performances using different criteria exhibited improved predictability in updated

models which can lead to an advanced understanding of used parameters. Despite different SA

methods being employed in evaluating model parameters, almost similar results were observed and

then verified using relevant sensitivity indices. It was demonstrated that the ranked parameters using

SA due to covering more uncertainties can be more reliable. Evaluated models using sensitivity

indices showed that contribution of suspended load on predicted bed load is not significant.
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INTRODUCTION
The transported sediments by rivers as a complicated set of

processes between stream flow, geologic, geomorphic, and

organic factors is an important but critical regionally

specific concern in the hydrological perspective to realize

how rivers work (e.g., Melesse et al. ; Hajbabaei et al.

; Sari et al. ; Jin et al. ). Such sediments can be

very informative in assessment of engineering purposes

(e.g., channels, reservoirs, and dams), geo-environmental

and ecosystem impacts (e.g., protection of fish and wildlife

habitats), and river basin management (e.g., soil erosion,

transported sediments, and pollutants) (e.g., Kisi et al. ;

Bouzeria et al. ; Jin et al. ). Thereby, prediction of
sediment loads has become an important issue in many

countries in introducing schemes for river water monitoring.

Modeling approaches are the common way to estimate

transported sediment loads. However, the effects of the

involved parameters due to model structure, hydrological,

time-series inputs, geological, geomorphological, hydrologi-

cal and hydraulic features on predicted sediment loads

should be considered. The wide variety of involved par-

ameters exhibit no accepted universal approach to predict

all types of sediment loads (Ma et al. ; Leimgruber

et al. ; Asheghi & Hosseini ). This indicates why

several modeling tools for simulating sediment loads have
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been developed and evaluated (e.g., Kisi et al. ; Bouzeria

et al. ; Leimgruber et al. ; Asheghi & Hosseini ).

However, development of transported sediment models

often needs to identify the uncertainty and the sensitivity

of system performance due to any changes in possible

input data from that predicted. This process assists in redu-

cing not only the level of uncertainty but also, to an

extent, the practicability (Gevrey et al. ; Saltelli et al.

; Razavi & Gupta ; Vu-Bac et al. ; Asheghi &

Hosseini ).

Almost all of the developed conventional and analytical

predictive sediment load models have mainly been utilized

by regression techniques relying on hydrologic engineering

parameters or landscape features (e.g., Camenen & Larson

; Ahmad et al. ; Kumar ). Meanwhile, the

deficiency of regression techniques in simulating the effects

of auxiliary factors and the involved uncertainty of exper-

imental tests as well as inaccurate prediction in the wide

range of expanded data (Cao et al. ; Asheghi et al.

) should be considered. Therefore, the developed

equations are regionally specific and thus their applicability

for other areas can never be guaranteed. Owing to such

drawbacks in the adopted equations, prediction of sediment

loads using different variables is a challenging task in the

field of computational hydrology (e.g., Melesse et al. ;

Bouzeria et al. ; Jin et al. ). Despite increased com-

puting power in creating more sophisticated mathematical

models, identifying the most important parameters on pre-

dicted sediment loads using sensitivity analysis (SA)

techniques can lead to generating more accurate predictive

models for carried sediment by a river.

In recentyears, soft computinganddatamining techniques

and, in particular, artificial neural networks (ANNs) have suc-

cessfully been applied, not only to capture complex nonlinear

predictive sediment loadmodels but also to overcome the inef-

ficiencies of conventional methods to produce more precise

results (e.g., Kisi et al. ; Afan et al. ; Bouzeria et al.

; Toriman et al. ; Asheghi et al. ). The main goal

of ANN technology in dynamic environments such as rivers

is to build a system that can change, adapt, and convert the

potentials to become computable using many different types

of computer learning. In order to design adaptive models

for the evolving complexity of dynamic environments,

ANN-based models are indicated as an appropriate choice.
://iwaponline.com/jh/article-pdf/22/3/562/693089/jh0220562.pdf
Such developed ANN-based models then can be ana-

lyzed by different SA methods to identify the importance

of the input variables. The SA methods allow understanding

the concept of scientific codes (Rabitz ) and play a cru-

cial role to provide essential insights on model behavior,

structure, and response to inputs (Razavi & Gupta ;

Borgonovo & Plischke ; Jin et al. ). Subsequently,

removing the less effective factors not only leads to simpler

and cost-effective models but also reduces the design and

analysis time (Storlie et al. ; Abbaszadeh Shahri ;

Asheghi et al. ). This issue in water resource engineering

is gaining more importance to explain the nonlinear

relationships between the explicative and response variables

of a problem (e.g., Bahremand & De Smedt ; Razavi &

Gupta ; Leimgruber et al. ).

Applying SA compels the decision-maker to identify

effective variables on forecasts and indicates the critical

variables for which additional information may be obtained.

It helps to expose inappropriate estimation and thus guides

the decision-maker to concentrate on the relevant variables.

Due to the influence of various uncertain parameters on

transported sediment loads’ behavior, there is a need to

identify and rank the importance of input factors on

model output.

In this paper, two ANN-based predictive models for sus-

pended and bed load using compiled datasets from 11 years’

measurements of three rivers in Idaho, USA were devel-

oped. Discharge (Q), mean grain size (D50), slope (S), flow

velocity (V ), area (A), depth (d), width (W ), and shear

flow velocity (U*) were the selected inputs according to

prior knowledge of conventional analyses. The models

were then updated using different SA methods and exam-

ined by means of different external sensitivity indices. The

compared performances indicated the appropriate predict-

ability level of the updated models which can lead to an

advanced understanding of the parameters used for model

improvement.
STUDY AREAS AND DATA SOURCE

The Main Fork Red River (MFRR), South Fork Red River

(SFRR), and Little Slate Creek (LSC) are in the streams’

category of the state of Idaho (Figure 1). The MFRR in



Figure 1 | An overview of investigated rivers and connected streams (the maps have been generated by Idaho Fishing Planner (www.idfg.idaho.gov/ifwis/fishingplanner/mapcenter) and

reproduced by the authors).
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northern Idaho forms a confluence with the SFRR in the

Nez Perce National Forest and the watershed predomi-

nantly lies on metamorphic rocks. The LSC flow is also

on land administered by the Nez Perce Forest Service,

but the geology of the watershed is mostly intrusive

igneous. A unified dataset from the primary information

on flow records and sediment transport measurements

was screened from the United States Department of Agri-

culture (USDA) and United State Geological Survey

(USGS). The provided dataset covers a period of 11 years

(1986–1997) for both suspended and bed load sediments,

including 263 sets of discharge (Q), mean grain size

(D50), slope (S), river area (A), velocity (V ), river depth

(d), river width (W ), and shear flow velocity (U*). The

components of the database were then categorized into

channel geometry, geomorphological, and hydraulic sets.

Descriptive statistics of the compiled datasets can be

found in Table 1. Due to the wide range of precipitations

in the recorded years and consequently significant

observed variation in Q and A, higher standard deviation
om http://iwaponline.com/jh/article-pdf/22/3/562/693089/jh0220562.pdf
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for these factors are to be expected (Table 1). The datasets

were normalized within the range of [0, 1] as a necessary

step to improve the learning speed and model stability.

To organize training, testing, and validation sets for ANN

models, datasets were randomized into 55%, 25%, and

20%. These values were considered because in comparison

with several different tested percentages they showed more

accurate results.
MODELING BY ANN

The ANNs are recognized as applicable and robust compu-

tational models for predicting and classification purposes.

Typically, such structures are configured by an appropriate

combination of artificial neurons and activation functions

to improve the quality of processed information (e.g., Kisi

et al. ; Bouzeria et al. ; Toriman et al. ; Asheghi

& Hosseini ). In each artificial neuron (Figure 2),

input (xi), weights (wi,j), bias (bi), activation function

http://www.idfg.idaho.gov/ifwis/fishingplanner/mapcenter


Table 1 | Statistical description of input parameters of the used rivers to predict sediment loads

River Variable Mean Mean SE St. dev. Min Max Skewness

MFRR Q (ft3/s) 151.50 10.50 105.3 13.3 487 1.36
D50 (mm) 1.343 0.06 0.634 0.54 5.279 2.6
W (ft) 32.184 0.29 2.925 22 40.3 0.4
V (ft/s) 2.867 0.089 0.903 0.99 5.01 0.22
d (ft) 1.423 0.044 0.445 0.34 2.86 0.57
A (ft2) 46.4 2.41 24.22 9.3 126 0.94
S (ft/ft) 0.004 0.000001 0.000085 0.0038 0.0041 �0.06
U* (ft/s) 0.42 0.007 0.06938 0.204 0.612 �0.08

SFRR Q (ft3/s) 109.78 9.95 93.85 7.25 458 1.69
D50 (mm) 0.886 0.048 0.454 0.13 2.7 1.03
W (ft) 26.942 0.364 3.432 20 40 1.28
V (ft/s) 2.572 0.107 1.014 0.553 5.293 0.52
d (ft) 1.281 0.045 0.423 0.37 2.28 0.46
A (ft2) 37.37 1.66 15.69 10.3 78.95 0.94
S (ft/ft) 0.0014 0.000005 0.000044 0.0013 0.00146 �0.13
U* (ft/s) 0.236 0.0044 0.042 0.125 0.32657 0.07

LSC Q (ft3/s) 194.4 14.5 123.9 18.7 534 0.81
D50 (mm) 1.118 0.147 1.26 0.42 6.65 3.73
W (ft) 37.775 0.487 4.16 22 44 �1.37
V (ft/s) 2.537 0.127 1.085 0.68 5.39 0.52
d (ft) 1.619 0.044 0.374 0.81 2.67 0.18
A (ft2) 69.3 2.28 19.46 27.1 112 �0.14
S (ft/ft) 0.0261 0.000052 0.00044 0.025 0.0267 �0.26
U* (ft/s) 1.158 0.016 0.136 0.825 1.47 �0.21

Note: The units are according to US measurement system: SE, standard error; St. dev., standard deviation.

Figure 2 | Simplified comparison between artificial and biological neuron scheme.
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( fact), and output (Oi,j) are the involved components on

information transferring. The data from the input layer

are projected to the intermediate (hidden) layers while

the final hidden layer projects the information to the

output neurons.

The jth network output (netj) using set of inputs X¼ {x1,

x2,…, xn} and corresponding adaptive weight of wi,j can be
://iwaponline.com/jh/article-pdf/22/3/562/693089/jh0220562.pdf
expressed using the propagation function ( fprop) as:

netj ¼ f prop(Oi1, . . . , Oin, wi1,j, . . . , win,j) ! netj

¼
X
x∈X

(Oi:wi,j)þ bi (1)

where bi denotes the bias which is a type of connection

weight with a constant nonzero value and set up into all

the neurons in the back-propagation and transfer functions

except for the input layer. The activation state aj(t) explicitly

is assigned to any given jth neuron and transforms the netj
from the previous activation state aj(t� 1) into a new aj(t)

using:

aj(t) ¼ fact(netj(t), aj(t� 1), θj) (2)

where θj denotes the threshold value uniquely assigned to jth

neuron and marks the position of the maximum gradient

value of the activation function. Then, the output value Oj
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of the neuron j is calculated from its activation state aj as:

fout(aj) ¼ Oj (3)

The specific error of each sample (Errp) and root mean

square error (RMSEErr) between the input (x) and the

actual output (y) for the kth output neuron can be defined

by:

Errp ¼ 1
2

X
k∈O

(xk � yk)
2 ; Errtotal ¼

X
Errp (4)

RMSEErr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k∈O (xk � yk)
2

jOj

s
(5)

The weight wi,j due to activity of both neuron j and i is

changed to (Δwi,j):

Δwi,j ¼ ηOiaj (6)

where η is the learning rate.

Network training basically aims to find the optimum

weights using and updating procedure for (nþ 1)th pattern

known as generalized delta rule (GDR):

Δwi,k ¼ �η
@Err(W)
@wi,k

(7)

wi,k(nþ 1) ¼ wi,k(n)þ∇wi,k(n) (8)
SENSITIVITY ANALYSES TO ASSESS MODEL
PARAMETERS

In recent years, different SA techniques have been devel-

oped to evaluate quantitative models and address the

contribution of parameters on produced output (Borgonovo

& Plischke ). The SA methods, due to their ability in

determining the effectiveness of input parameters on pro-

duced outputs, are important in a simulation process

(Calver ; Saltelli et al. , ). According to the lit-

erature (e.g., Jacomino & Fields ; Saltelli ;

Borgonovo & Plischke ), the SA methods are categor-

ized into quantitative techniques, graphical method,
om http://iwaponline.com/jh/article-pdf/22/3/562/693089/jh0220562.pdf
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sensitivity-index approach, and specified tailored mathemat-

ical models. These methods facilitate finding a simplified but

robust calibrated model from a large number of parameters

and identify important connections between observations

and model output as well as ability in investigating the

effect and impacts of the uncertainties in the output of a

mathematical model (Wang et al. ; Saltelli ;

Gevrey et al. ; Helton et al. ; Bahremand & De

Smedt ).

The one-at-a-time (OAT/OFAT) method (Czitrom ),

the local methods including adjoint modeling (Cacuci et al.

) and automated differentiation (Griewank ),

scatter plots (Paruolo et al. ), regression analysis and

variance-based methods (Sobol ), variogram-based

methods (Haghnegahdar & Razavi ), screening

(Campolongo et al. ), emulators (data-modeling/

machine learning approaches) (Storlie et al. ), and

probabilistic methods (Oakley & O’Hagan ; Vu-Bac

et al. ) are some of the used or introduced SA methods.

In ANN-based models, the SA is conducted by analyzing

adjusted weights through the equation method (EM)

(Hashem ), weight magnitude analysis method

(WMAM) (Garson ; Poh et al. ), variable pertur-

bation method (VPM) (e.g., Gedeon ; Poh et al. ;

Montaño & Palmer ; Zeng & Yeung ), partial

derivative algorithm (PaD) (Dimopoulos et al. ), profile

method (PM) (Lek et al. ), stepwise method (SM) (Sung

; Gevrey et al. ), and cosine amplitude method

(CAM) (Ross ). Despite different suggested SA tech-

niques, the PaD and the VPM have presented superior

performance compared to other techniques based on the

WMAM (Wang et al. ; Zeng & Yeung ). However,

successes of the CAM in different engineering applications

have also been approved (Abbaszadeh Shahri ; Abbas-

zadeh Shahri & Asheghi ; Abbaszadeh Shahri et al.

).

In EM, the influence of each input variable on the

output (Ii) can be calculated as:

Ii ¼
X
k

O(1�O)w2
k1ν

2
k(1� ν2k)w

1
ik (9)

where wa
bc denotes the weight from the bth node in the ath

layer to the cth node in the next layer. O is the output
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node and w2
k1 expresses the outgoing weight of the kth node

in the second layer. ν2k is the output value of the kth node in

the second layer and w1
ik represents the connection weights

between the ith and kth nodes of the first and hidden layers.

Based on the WMAM, different equations have been

proposed. Poh et al. () indicated that by normalizing

the connecting weights between input and hidden layers

subjected to largest weight magnitude, the influence of vari-

ables on output then can be ranked as:

Ii ¼
X
k

w1
ik

maxAlli,kw1
ik

(10)

Garson () pointed out that the importance of each

parameter on the output (Qik) can be found through the con-

nection weight between the input neuron i and the hidden

neuron j (Wij) and then hidden neuron j and the output

neuron k (Vjk) for each of the hidden neurons of the net-

work:

Qik ¼

PL
j¼1

wijPN
r¼1 wrj

 !
Vjk

 !

PN
i¼1

PL
j¼1

wijPN
r¼1 wrj

 !
Vjk

 ! (11)

where
PN
r¼1

wrj denotes the sum of the connection weights

between the input neurons N and the hidden neuron j.

Gevrey et al. () showed that the relative contribution

(RC) of each input on output can be calculated using the

number of input (ni) and hidden neurons (nj) and corre-

sponding weight to input neuron i and hidden neuron j (wij):

D ¼ jwijjPni
i¼1 jwijj

! RCi ¼
Pnj

j¼1 DijPnj

j¼1

Pni
i¼1 Dij

(12)

Conversely, the similarity between related parameters

can be obtained by the CAM. In this method, all data

pairs (X¼ (xi,yj)) are expressed in common X-space to pro-

vide a data array (X ¼ {X1, X2, . . .Xn}) in which each Xi is

a vector of length m (Xi ¼ {xi1, xi2, . . . xim}) and exhibits

the dot product for the cosine function (Ross ). The

assigned data pairs to a point in m-dimensional space

needs to be described by m-coordinates. Therefore, the

importance and membership value of each element of a
://iwaponline.com/jh/article-pdf/22/3/562/693089/jh0220562.pdf
model in m-dimensional space (Rij) in the form of a m ×m

matrix can be expressed by a pairwise comparison of two

data samples (xi and xj) by:

Rij ¼
Pm

k¼1 (xik × x jk)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1 x

2
ik

Pm
k¼1 x

2
jk

q (13)

The PaD is a famous ANN-based SA technique that can

identify the contribution of input changes on the output

using Jacobian matrix of the partial derivatives of outputs

with respect to inputs (Dimopoulos et al. ). The general

formulation of PaD using the output variable (Yj) and

parameters (θi) for Np number of parameters and Nv

number of variables (model outputs) is expressed as:

PaDi,j ¼
@Yj

@θi
! i ¼ 1, 2, . . .Np; j ¼ 1, 2, . . .Nv (14)

In the case of ANN models, PaD can be expressed by:

PaDoi ¼
@Op

k

@xpi

Xnh

h¼1

wjoyij(1� y jo)wij (15)

where yij is the output of j
th neuron in respect to ith input.wjo

and wij are the weights between the kth output neuron and

jth hidden neuron as well as ith input and jth hidden

neuron, respectively. Then the sensitivity of p training

samples of N total number of data variables for each input

xi on the output Ok is defined as:

Si ¼ 1
N

X
p

@Op
k

@xpi
(16)

The relative contribution of ith input variable (RCi) on a

specific output then can be determined by the sum of the

squares of the partial derivatives (SSD) using:

RCi ¼ SSDiP
i SSDi

! SSDi ¼
X
p

@Op
k

@xpi

 !2

(17)

The PM introduced by Lek et al. () aims to analyze

the median of a particular input subjected to fixing of all
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other inputs using dividing into five equal subintervals

(scales) corresponding to minimum, quarter, half, three

quarters, and maximum. The contribution of each input par-

ameter then can be explained from the created profile of the

median values against the corresponding subintervals. This

procedure should be executed for all inputs to obtain a set

of descriptive relative importance curves (Gevrey et al.

).

The SM is focused on examining a step-by-step pro-

cedure for adding or rejecting the input using an iterative

loop. In the SM process, by blocking one-by-one of the

input parameters and calculating the corresponding MSE

of responses, the relative importance of each input variable

is ranked. The parameter with the maximum MSE value is

considered as the most important and can then be either

removed from the model or use its mean value to find the

contribution of other parameters (Gevrey et al. ). The

SM can be organized into two forward and backward strat-

egies. In the backward strategy, the MSE of each parameter

is calculated using constructed ANN models consisting of

all input parameters and then starting to block each input

parameter while forward strategy works in the reverse way

(Sung ).

The VPM is a common straightforward SA technique for

ANN-based models which can be achieved by analyzing the

output disturbance due to perturbed inputs. The VPM

adjusts the input values of one variable while keeping all

the other variables untouched (Gedeon ; Montaño &

Palmer ). In the VPM, the direct small perturbation

on each ANN input and the corresponding change in the

outputs is measured, while EM and WMAM analyze indir-

ect changes of ANN weights. The variance of the input

parameter from 0 to 50% by steps of 5% can be implemented

as perturbation and the generated outputs can be ranked

based on the calculated MSE corresponding to each per-

turbed input (Gevrey et al. ).
Figure 3 | The implemented procedure to find the optimum structure.
APPLYING THE SA TO UPDATE ANN MODELS

In this paper, the contribution of input variables in predicted

suspended and bed loads were found through two developed

optimum ANN-based models. The dependency of optimum

network size to internal characteristics (e.g., training
om http://iwaponline.com/jh/article-pdf/22/3/562/693089/jh0220562.pdf
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algorithm, number of neurons, learning rate, activation func-

tion, architecture, regularization) implies that no standard

method nor for programmatic network configuration neither

to prevent the over-fitting problem is accepted (Ghaderi

et al. ). To optimize the ANN models the organized pro-

cedure in Figure 3 using integration of trial-and-error

methods with a developed code based on constructive tech-

niques was followed. In this process, various training

algorithms including quick propagation (QP), Levenberg–

Marquardt (L-M), quasi Newton (QN) and momentum

(MO) were used. As defined in Figure 3, different internal

characteristics on numerous generated topologies were

applied to avoid the overfitting problem and escape from

local minima.

The QP as one of the most popular recognized back

propagation training algorithms is based on the mathemat-

ical method of gradient descent, with appropriate results in

most problems (Fahlman ). The L-M (Levenberg ;

Marquardt ) is an advanced and fast non-linear optim-

ization algorithm that can solve generic curve-fitting

problems. However, it can only be used on networks

with a single output unit or small networks because its
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memory requirements are proportional to the square of the

number of weights in the network. Moreover, L-M is

specifically designed to minimize the sum of squares

error and thus cannot be used for other types of network

error. The QN (Bertsekas ) is a network training algor-

ithm based on Newton’s method to avoid the need to store

computed Hessian matrix during each iteration and thus

requires less memory and can be used for bigger networks.

The MO as a well-known standard algorithm in the neural

network community is designed to overcome some of the

problems associated with standard back propagation train-

ing algorithm and is used to speed up convergence and

maintain generalization performance (Swanston et al.

). The MO is a locally adaptive approach in which

each weight remembers the most recent update and thus

each weight is able to update independent of other weights

(Wiegerinck et al. ). Two stopping criteria, the mini-

mum root mean square error (MRMSE) and number of

iterations, were employed. The number of iterations is

replaced when MRMSE cannot be achieved. As presented

in Figure 4(a) and 4(b), the MRMSE of applied training

algorithms subjected to different activation functions

against the number of neurons was found to be 11 and

12, which further should be organized in hidden layer(s).

According to the defined procedure in Figure 3, numerous

models with similar structures but different internal

characteristics were examined and investigated by the

absolute error (AE). The AE as the deviation between

predicted and measured values corresponds to model

quality and indicates the amount of physical error and

uncertainty in a measurement (Abbaszadeh Shahri ).

In Figure 4(c)–4(f), a sample of the carried out procedure

to find the optimum topologies and corresponding calcu-

lated AE, as well as model predictability for suspended

and bed loads, is presented. The characteristics of optimum

structures using applied training algorithms are reflected in

Table 2. It was observed that the 7-5-6-1 and 8-5-7-1 struc-

tures for suspended and bed loads can generate higher

predictability than other tested models (Table 2; Figure 4(a)

and 4(b)). The effect of input parameters on the predicted

sediment loads were then identified using PaD, CAM,

RC, and EM sensitivity analysis methods (Figure 5).

Despite observed differences, the ranked parameters

almost follow a similar trend. Accordingly, the Q, V, d,
://iwaponline.com/jh/article-pdf/22/3/562/693089/jh0220562.pdf
and A for suspended load and the Q, V, D50, S, and d on

bed load were identified as the most effective factors.

On the basis of SA results, the least effective factors on

predicted output can be removed. This procedure is not only

able to update the model and reduce network size but may

also lead to increasing the accuracy of prediction (Hamby

; Saltelli ; Gevrey et al. ; Helton et al. ;

Saltelli et al. ; Razavi & Gupta ; Vu-Bac et al.

; Abbaszadeh Shahri et al. ; Asheghi et al. ).

Therefore, the S, U*, W and Sus-load, W, A as the three

least effective factors were ignored. The results of updated

models subjected to the most dominant identified variables

(Figure 5) and the same randomized datasets through the

defined procedure (Figure 3) are then reflected in Table 3

and Figure 6, respectively.
DISCUSSION AND VALIDATION

SA techniques can determine the performance indices,

modeling hypothesis, and interaction of factors or group of

factors with each other (Saltelli et al. ; Pappenberger

et al. ). In nonlinear models, applying elementary

effects (EE), first-order Sobol sensitivity index (SI) (Sobol

), and total sensitivity index (TSI) provide valuable

information to quantify the sensitivity (Sobol ). The

TSI measures the contribution to the output variance of

Xi of the input factors including all interactions with

any other input variables. The EE, SI, and TSI of a

set of variables X¼ {X1, X2,…, Xk} on model Y are defined

as:

EEi ¼ Y(X1, X2, . . . , Xi þ Δ, . . . , , Xk)� Y(X1, X2, . . . , Xk)
Δ

(18)

SI ¼ VXi (EX∼i(Y jXi)
V(Y)

(19)

TSI ¼ 1� VX∼i (EXi(Y jX∼i)
V(Y)

(20)

where EEi represents the elementary effects of each vari-

able i. Δ shows the step change in the discrete variable

Xi. Y(X1, X2,…, Xk) is the model output that should be



Figure 4 | Variation of network RMSE subjected to different training algorithms and number of neurons for (a) suspended and (b) bed loads. A series of tested structures and corresponding

AE to find the optimum models (c) and (d). Comparison of measured and predicted values in training stage using introduced optimum models (e) and (f).
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fixed for each calculated EEi. V is the variance and X∼i are

all parameters but Xi and E represent the average. V(Y )

denotes the unconditional variance of the quantity of inter-

est. The term VXi (EX∼i(Y jXi) as the variance of conditional

expectation is the first-order effect of Xi on Y and is the

variation of the average Y when fixing Xi at different

values while varying the other parameters.

Each EEi using SI then can be characterized by the

mean value and its standard deviation whereas high EEi
om http://iwaponline.com/jh/article-pdf/22/3/562/693089/jh0220562.pdf
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values indicate more impact on the model Y. The lower SI

value also shows the less variability in the output Y and con-

sequently is more robust to variations in the model

parameters (Gan et al. ; Song et al. ; Jin et al.

). The scatter plots of mean and standard deviation

values of SI using validation datasets for suspended and

bed load are presented in Figure 7. The closer to the (0, 0)

coordinate is interpreted as more robust method to capture

the changes of parameters.



Table 2 | Characteristics and internal properties of optimum models

Training algorithm Number of neurons Corresponding structure MRMSE

Activation function

Hidden layer Output

Suspended load➔ Inputs: Q, S, V, d, W, U*, A

QP 14 7-6-8-1 0.375 hyperbolic tangent logistic

L-M 11 7-11-1 0.361 logistic logistic

QN 12 7-5-7-1 0.350 hyperbolic tangent hyperbolic tangent

MO 11 7-5-6-1 0.317 hyperbolic tangent logistic

Bed load➔ Inputs: Q, S, V, d, W, D50, A, Sus-load

QP 15 8-6-9-1 0.441 hyperbolic tangent logistic

L-M 12 8-5-7-1 0.383 logistic logistic

QN 11 8-11-1 0.403 hyperbolic tangent hyperbolic tangent

MO 14 8-9-5-1 0.426 logistic hyperbolic tangent

Figure 5 | The calculated effectiveness of input variables using CAM, PaD, RC, and EM techniques for (a) suspended load and (b) bed load.

Table 3 | Comparison of optimum and updated models

Model Topology Activation function Training algorithm MRMSE

Suspended load optimum 7-5-6-1 hidden layer: hyperbolic tangent MO 0.317
output: logistic

updated 4-6-1 hidden layer: logistic MO 0.198
output: logistic

Bed load optimum 8-5-7-1 hidden layer: logistic L-M 0.383
output: logistic

updated 5-8-1 hidden layer: logistic QN 0.201
output: hyperbolic tangent
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Figure 6 | Results of updated models subjected to training procedure for (a) suspended load, (b) bed load, and (c) calculated AE.

Figure 7 | Comparison of robustness of used SA methods in this study for (a) suspended load and (b) bed load.

Figure 8 | The calculated sensitivity indices of input variables on predicted bed (a) and suspended load (b).
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The man absolute values of EEi (MAEEi ) can be

expressed as:

MAEEi ¼
1
n

Xn
i¼1

jEE(i)
j j (21)

where EE(i)
j denotes the EE of jth variable at the ith rep-

etition. The larger value of MAEEi shows more influence

and contribution of jth input on output. As presented in

Figure 8, the ranked MAEEi , SI and TSI indices (Saltelli

et al. ) for both suspended and bed loads indicate

similar trend as the used SA techniques.

In intelligence models, performance measurement is an

essential task. The AUC-ROC (area under curve-receiver

operating characteristics) curve is one of the most important

evaluation metrics in illustrating the diagnostic ability of a

classifier system, where the higher the AUC, the higher pre-

dictability in the model. The ROC curve is created by

plotting the true positive rate (TPR) against the false positive

rate (FPR) at various threshold settings.

TPR is the measured percentage of actual positives

which are correctly identified. In statistics, when performing

multiple comparisons, a false positive ratio is the probability

of falsely rejecting the null hypothesis for a particular test.

The FPR usually refers to the expectancy of the false positive

ratio. As presented in Figure 9, increased AUC-ROC of the

updated models is an indicator of model improvement.

This also implies that by removing the least effective factors

the predictability of models has been increased.
Figure 9 | AUC-ROC of the optimum and updated models.

://iwaponline.com/jh/article-pdf/22/3/562/693089/jh0220562.pdf
The capability of updated and optimum models in cover-

ing a new set of feed data points can be interpreted by

confidence intervals and prediction bands. These factors

can reflect the region of uncertainties in the predicted or

single additional observation values over a range of

independent variables. Therefore, aggregation of data in a

higher percentage of these factors indicates better model

performance. The reflected results of updated models for

suspended and bed loads subjected to 95% confidence inter-

val and prediction bands using validation datasets assign

higher predictability and consequently better performance

than optimum structures (Figure 10(a) and 10(c)). To evalu-

ate the accuracy performance, the calculated residuals (CR)

(Figure 10(e) and 10(f)), measured and predicted values

(Figure 10(b) and 10(d)), as well as MRMSE and R2

(Table 3) were compared to each other. The CR is the differ-

ence between the measured and predicted values and thus

better performance can be found in higher values of R2 as

well as lower CR and MRMSE (Figure 10 and Table 3).

Decreasing the tolerances of CR and MRMSE, as well as

increasing R2, is obvious evidence of improvement in the

predictability level of updated models (Figure 10(e) and

10(f) and Tables 2 and 3).
CONCLUSION

Modeling of sediment loads as a very complex nonlinear be-

havior is a difficult task in river engineering. In the current

paper, two predictive ANN-based models for suspended

and bed loads of three rivers in Idaho, USA were success-

fully developed and examined. These models, using nine

input parameters, covered the channel geometry, geomor-

phological features, and hydraulic characteristics. To

overcome the complexity of the introduced models, four

different SA methods, CAM, EM, RC, and PaD, were

applied and two updated models with smaller size using

the highest ranked inputs were introduced. It was observed

that the best performance before applying the SA methods

decreased from 11 and 12 neurons to 6 and 8, respectively.

Accordingly, the calculated MRMSE values for suspended

(0.317) and bed (0.383) loads after updating were reduced

to 0.198 and 0.201. This implies a 37.54% and 47.54%

decreasing of MRSME in the updating process of suspended



Figure 10 | Results of optimized models based on 95% confidence interval and prediction bands of randomized datasets (a and c), predictability level suspended and bed loads using

validation datasets (b and d), and compared CR of optimum and updated models for suspended (e) and bed loads (f).
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and bed load predictions, which show a more superior per-

formance than optimum models. Furthermore, decreasing

the CR and AE as well as increasing the R2 values (2.04%

in suspended and 3.1% in bed load) exhibited robust

improvement in predictability of the updated models.

Accordingly, the interpreted confidence and prediction
om http://iwaponline.com/jh/article-pdf/22/3/562/693089/jh0220562.pdf
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intervals due to the presence of high aggregation of data in

a more shrunk region of uncertainties demonstrated better

consistency in updated models. Furthermore, comparing

the performance of models using AUC-ROC as one of the

most important evaluation metrics showed 9.39% and

7.56% improvement in accuracy level of bed and suspended



575 R. Asheghi et al. | The neural network sediment load models using different sensitivity analysis Journal of Hydroinformatics | 22.3 | 2020

Downloaded from http
by guest
on 21 August 2022
loads, respectively. Such increasing in the covered AUC-

ROC, as an indicator, confirmed that the predictability of

updated models by removing the least effective factors can

significantly be enhanced.

Although the contribution of input parameters on

output according to the used SA techniques showed similar

trend, the analyses indicated that the results of PaD and

CAM were more reliable than EM and RC. The results of

the applied SA methods were then verified using MAEEi,

SI, and TSI indices and similarly the Q, V, S, d, and D50

(for bed load) and Q, V, A, and d (for suspended load)

were recognized as the most effective factors on transported

sediment loads. The influence of U* and W were evaluated

as the least effective. To have insight and better understand-

ing in transported sediment process, the effect of suspended

load on bed loads was also considered. The applied SA

methods showed that the effect of suspended load on bed

load is not significant and thus can be ignored in bed load

predictions.

The results of this study in distinguishing the critical and

effective variables on dynamic nonlinear forecasts will assist

decision-makers to know which additional information may

need to be obtained. Therefore, appropriate decisions can

help in strengthening the model and guide the decision-

makers to concentrate on the relevant variables.
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