archive ouverte UNIGE

http://archive-ouverte.unige.ch

Article

Updating the sequence-based classification of glycosyl hydrolases

HENRISSAT, Bernard, BAIROCH, Amos Marc

Reference

HENRISSAT, Bernard, BAIROCH, Amos Marc. Updating the sequence-based classification of glycosyl hydrolases. *Biochemical journal*, 1996, vol. 316 (Pt 2), p. 695-6

PMID: 8687420

DOI: 10.1042/bj3160695

Available at: http://archive-ouverte.unige.ch/unige:36909

Disclaimer: layout of this document may differ from the published version.

BIOCHEMICAL LETTERS JOURNAL

Updating the sequence-based classification of glycosyl hydrolases

A classification of glycosyl hydrolases based on amino-acid-sequence similarities was proposed in this Journal a few years ago [1]. This classification originated from the analysis of ~ 300 sequences and their grouping into 35 families designated 1–35. Because such a classification is necessarily sensitive to the sample, it was anticipated that it was incomplete and that new families would be determined when additional sequences would become

available. When the number of glycosyl hydrolase sequences reached \sim 480, ten additional families (designated 36–45) could be defined and were added to the classification [2]. There are at present over 950 sequences of glycosyl hydrolases in the databanks (EMBL/GenBank and SWISS-PROT). Their analysis shows that the vast majority of the \sim 470 additional sequences that have become available since the last update could be classified in the existing families. However, several sequences not fitting the existing families allow the definition of new families (designated 46–57) (Table 1). When the several present genome sequencing projects have reached completion, the number of

Table 1 New families in the classification of glycosyl hydrolases

Family	Enzyme	Organism	SWISS-PROT	EMBL/GenBank
46 46 46	Chitosanase Chitosanase Chitosanase	Bacillus circulans MH-K1 Streptomyces sp. N174 Nocardioides sp.	P33673 P33665 P48846	D10624 L07779 L40408
47 47 47 47 47 47 47	α-Mannosidase α-Mannosidase 9 α-Mannosidase α-Mannosidase α-Mannosidase α-Mannosidase α-Mannosidase Open reading frame	Drosophila melanogaster Human Mouse Mouse Penicillium citrinum Rabbit Saccharomyces cerevisiae Caenorhabditis elegans	P33908 P39098 P45700 P45701 P32906	X82641 X74837 U03458 U04299 D45839 U04301 M63598; Z49631 Z47073
48 48 48 48	Cellulase CelS Cellulase CelF Open reading frame Cellobiohydrolase B	Clostridium thermocellum Clostridium cellulolyticum Caldocellum saccharolyticum Cellulomonas fimi	P38686 P37698 P22534	S56455 U30321 M36063 L38827
49 49	Dextranase Dextranase	Arthrobacter sp. Penicillium minioluteum	P39652 P48845	D00834 L41562
50 50	Agarase A Agarase B	<i>Vibrio</i> sp. <i>Vibrio</i> sp.	P48839 P48840	D14721 D21202
51 51	Arabinofuranosidase A Arabinofuranosidase	Aspergillus niger Streptomyces lividans	P42254	L29005 U04630
52 52	eta-Xylosidase eta -Xylosidase	Bacillus stearothermophilus 236 Bacillus stearothermophilus 21	P45704 P45702	U15984 D28121
53 53 53	Galactanase 1 Open reading frame Galactanase	Aspergillus aculeatus Bacillus polymyxa Pseudomonas fluorescens	P48842 P48843 P48841	L34599 L03425 X91885
54 54	Arabinofuranosidase B Arabinofuranosidase/xylanase	Aspergillus niger Trichoderma koningii	P42255 P48792	X74777 U38661
55 55	Exo-1,3- β -glucanase Endo-1,3- β -glucanase	Cochliobolus carbonum Trichoderma harzianum	P49426	L48994 X84085
56 56 56 56 56 56 56 56	Hyaluronidase	Apis mellifera Cavia porcellus Dolichovespula maculata Human Macaca fascicularis Mouse Rabbit Vespula vulgaris	Q08169 P23613 P49 371 P38567 P38568 P48794 P38566 P49370	L10710 X56332 L34548 L13781 L13780 U33958 U09183 L43562
57 57	α-Amylase 1 α-Amylase	Dictyoglomus thermophilum Pyrococcus furiosus	P09961 P49067	X07896 L22346

```
Description: Endoglucanases (EC 3.2.1.4) and cellobiohydrolases (EC 3.2.1.91).

PROSITE: PDOC00563
3D structure status: Available
Reaction stereochemical outcome: Inverted anomeric configuration Catalytic nucleophile/base: Asp (experimental)
Catalytic proton donor: Asp (experimental)
Clan: None
Known taxonomic range: eukaryotae, prokaryotae.
Note: formerly known as cellulase family B.

GUNA_CELFI (P07984), GUNB_FUSOX (P46236), GUNA_MICBI (P26414),
GUNA_STRHA (P3682), GUNI_STRSQ (P13933), GUN2_THEFU (P26222),
GUX2_TRIRE (P07987)
```

Figure 1 Example of a section of the glycosyl hydrolase classification document

The text in **bold** denotes hypertext links to other electronic servers (ENZYME, PROSITE and SWISS-PROT).

glycosyl hydrolase sequences will probably increase dramatically. There are two major problems with keeping the classification: (i) how to make it available *in toto*, and (ii) how to disclose the new families when they are discovered. One way is the publication in scientific journals of papers whose interest decreases as they become progressively similar to stamp collections. Another way is the use of more adapted media such as electronic databases.

We are happy to announce that a permanently updated version of the classification is now available through the ExPASy WWW server [3] at the URL: 'http://expasy.hcuge.ch/cgi-bin/lists?glycosid.txt'. For each family of glycosyl hydrolases, a section of the document exists (Figure 1) that briefly lists the main enzymes that belong to this family. This section includes links to the relevant SWISS-PROT [4] protein-sequence entries. Links are also provided to the relevant EC numbers in the ENZYME [5] nomenclature database as well as to PROSITE [6] entries (which currently exist for more than half of the known glycosyl hydrolase families). This electronic classification should answer the need for rapid updates and availability *in toto* or family by family and allow users to navigate seamlessly between various types of network resources providing information on these enzymes.

There are two major mechanisms for glycosyl hydrolases, leading to overall retention or inversion of the stereochemistry at the cleavage point [7]. The mechanism appears to be conserved within each family [8]. The following families have been found to act with a retaining mechanism: 1, 2, 5, 7, 10, 11, 12, 13, 16, 17, 22, 30, 31, 32, 33, 34, 35, 39 and 42 (the mechanism of families 30, 35 and 42 was inferred from sequence similarities [9]). The inverting mechanism prevails in families 6, 8, 9, 14, 15, 19, 24, 37, 43, 44, 45, 46, 47 and 48. The electronic classification indicates the type of mechanism for each family where it is known.

The three-dimensional structure is now known for at least one member of families 1, 2, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 33, 34, 45 and 46 (for a review, see [10]). The availability of a three-dimensional structure is indicated in the electronic version of the classification.

A 'clan' is a group of families that are thought to have a common ancestry and are recognized by significant similarities in tertiary structure together with conservation of the catalytic

Table 2 Clan grouping of glycosyl hydrolase families

Clan	Families grouped	Reference
GH-A	1, 2, 5, 10, 17, 30, 35, 39, 42	[9,11]
GH-B	7, 16	[12]
GH-C	11, 12	[13]
GH-D	27, 36	[14,15]
GH-E	33, 34	[16]

residues and catalytic mechanism. The growing number of threedimensional structures solved for glycosyl hydrolases and/or improved sequence comparison strategies have revealed the relationship between some glycosyl hydrolases families which can be grouped in clans (Table 2).

The grouping into class is also indicated in the electronic classification. Families 19, 22, 23 and 24 have been proposed to be related on the basis of weak local three-dimensional similarities [17]. However, since family 22 acts with a retaining mechanism while families 19 and 24 use the inverting mechanism, and since the mechanism of family 23 is not yet known, we feel it is safer to consider these families as independent until a stronger evidence for their grouping is available.

Bernard HENRISSAT* and Amos BAIROCH †

*Centre de Recherches sur les Macromolécules Végétales§, C.N.R.S., BP 53, 38041 Grenoble Cédex, France, and †Medical Biochemistry Department, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland

- ‡ To whom correspondence should be addressed.
- § Affiliated with the Université Joseph Fourier, Grenoble, France.
- 1 Henrissat, B. (1991) Biochem. J. 280, 309-316
- 2 Henrissat, B. and Bairoch, A. (1993) Biochem. J. 293, 781-788
- 3 Appel R. D., Bairoch A. and Hochstrasser D. F. (1994) Trends Biochem. Sci. 19, 258–260
- 4 Bairoch A. and Apweiler R. (1996) Nucleic Acids Res. 24, 21-25
- 5 Bairoch A. (1996) Nucleic Acids Res. 24, 221-222
- 6 Bairoch A., Bucher P. and Hofmann K. (1996) Nucleic Acids Res. 24, 189-196
- 7 Sinnott, M. L. (1990) Chem. Rev. **90**, 1171–1202
- Gebler, J. C., Gilkes, N. R., Claeyssens, M., Wilson, D. B., Béguin, P., Wakarchuk,
 W. W., Kilburn, D. G., Miller, Jr., R. C., Warren, R. A. J. and Withers, S. G. (1992)
 J. Biol. Chem. 267, 12559–12561
- Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.-P. and Davies, G. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 7090–7094
- 10 Davies, G. and Henrissat, B. (1995) Structure 3, 853-859
- 11 Jenkins, J., Lo Leggio, L., Harris, G. and Pickersgill, R. (1995) FEBS Lett. 362, 281–285
- 12 Divne, C., Stahlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles, J. K. C., Teeri, T. T. and Jones, T. A. (1994) Science 265, 524–528
- 13 Törrönen, A., Kubicek, C. P. and Henrissat, B. (1993) FEBS Lett. 321, 135-139
- 14 Dagnall, B. H., Paulsen, I. T. and Saier, Jr., M. H. (1995) Biochem. J. 311, 349-350
- 15 Romeu, A. and Henrissat, B. (1995) Biochem. J. 311, 350-351
- 16 Crennel, S. J., Garman, E. F., Laver, W. G., Vimr, E. R. and Taylor, G. L. (1993) Proc. Natl. Acad. Sci. U.S.A. **90**, 9852–9856
- 17 Holm, L. and Sander, C. (1994) FEBS Lett. 340, 129-132