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Abstract

Background: Haploidentical donor (HID) hematopoietic stem cell transplantation (HSCT) is an alternative treatment
method for severe aplastic anemia (SAA) patients lacking suitable identical donors and those who are refractory to
immunosuppressive therapy (IST). The current study evaluated the feasibility of upfront haploidentical HSCT in SAA
patients.

Methods: We conducted a multicenter study based on a registry database. One hundred fifty-eight SAA patients
who underwent upfront transplantation between June 2012 and September 2015 were enrolled.

Results: Eighty-nine patients had haploidentical donors (HIDs), and 69 had matched related donors (MRDs) for HSCT.
The median times for myeloid engraftment in the HID and MRD cohorts were 12 (range, 9–20) and 11 (range, 8–19)
days, with a cumulative incidence of 97.8 and 97.1% (P = 0.528), respectively. HID recipients had an increased
cumulative incidence of grades II–IV acute graft-versus-host disease (aGVHD) (30.3 vs. 1.5%, P < 0.001), grades
III–IV aGVHD (10.1 vs. 1.5%, P = 0.026), and chronic GVHD (cGVHD) (30.6 vs. 4.4%, P < 0.001) at 1 year but similar
extensive cGVHD (3.4 vs. 0%, P = 0.426). The three-year estimated overall survival (OS) rates were 86.1 and 91.3%
(P = 0.358), while the three-year estimated failure-free survival (FFS) rates were 85.0 and 89.8% (P = 0.413) in the
HID and MRD cohorts, respectively. In multivariate analysis, survival outcome for the entire population was
significantly adversely associated with increased transfusions and poor performance status pre-SCT. We did not
observe differences in primary engraftment and survival outcomes by donor type.

Conclusions: Haploidentical SCT as upfront therapy was an effective and safe option for SAA patients, with favorable
outcomes in experienced centers.
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Background
Aplastic anemia (AA) is a rare but potentially fatal dis-
order characterized by hypocellular bone marrow and
pancytopenia. Severe aplastic anemia (SAA) is a life-
threatening type for which allogeneic hematopoietic
stem cell transplantation (HSCT) and immunosuppres-
sive therapy (IST) are the principle treatment modalities.
Upfront matched related donor (MRD) HSCT is recom-
mended for patients with SAA younger than 35 years of
age [1] and, reportedly, results in long-term survival
rates over 80% [2–5]. Unfortunately, only about 30% of
patients have a matched sibling. According to current
therapeutic algorithms, IST with a combination of horse
antithymocyte globulin (ATG) and cyclosporin A (CsA)
is the preferred first-line treatment for patients without
a MRD, and HSCT from a haploidentical donor (HID)
should be delayed until one or two courses of IST have
failed [1]. However, approximately one third of patients
did not respond to IST and one third of responders
relapsed after initial therapy [5, 6]. In addition, clonal
evolution was also observed in 15% of cases [7]. Further-
more, only rabbit and porcine ATG are available in
China and are much less effective than horse ATG [8].
As such, IST has a high failure rate, which may impact
patient quality of life due to the necessity for further
treatment.
A study in the Asian Pacific observed that transplant-

ation from alternative donors achieved comparable out-
come to that from MRD, with a 5-year OS of 83.7 and
90.6% in pediatric patients [9]. Another study from
European Cooperative Group for Bone Marrow Trans-
plantation (EBMT) also demonstrated survival outcomes
for upfront-unrelated donor HSCT similar to those of
MRD HSCT in pediatric SAA (2-year OS of 96 and
91%) [10]. In recent years, remarkable improvement has
also been made in HID SCT [11–13], primarily due to
optimal conditioning regimens, improved supportive
care, and advances in medications. However, published
data on HID SCT for SAA are limited and mostly
restricted in mixed variety line of therapy. In addition,
the option of upfront HID SCT has never been investi-
gated in a comparative manner. We previously developed
a novel protocol and successfully used a salvage therapy
for SAA patients [14]. To further assess the therapeutic
effect and safety of upfront HID SCT for the treatment of
SAA, we conducted a multicenter retrospective study
based on data from a registry database.

Methods
Patients
Based on the Chinese Bone Marrow Transplantation
Registry (CBMTR) registry database, 11 transplant cen-
ters in China that used the same protocol for HID
HSCT in SAA patients were invited to join this study.

Between June 2012 and September 2015, a total of 158
consecutive patients with acquired SAA underwent
HSCT from a HID (n = 89) or MRD (n = 69) as upfront
treatment. Disease severity was defined as previously
described [15]. Patients with congenital bone marrow
disorders (Fanconi anemia, Diamond-Blackfan anemia,
and dyskeratosis congenital (DKC)) were excluded clin-
ically and by laboratory assays. Trephine biopsy and
chromosome tests were routinely performed. The
chromosome breakage and gene test was used to
exclude Fanconi anemia. Telomerase RNA component
(TERC) mutation analysis was used to detect hidden
forms of DKC, which was performed when congenital
forms were suspected based on patient history and clin-
ical analysis. The study was approved by the institutional
review board of each of the eleven participating institu-
tions, and written informed consent was obtained from
all subjects in accordance with the principles of the
Declaration of Helsinki.

Conditioning regimen
Conditioning therapy in haploidentical transplantation
consisted of the following: 0.8 mg/kg intravenous (i.v.)
busulfan (BU) four times daily on days −7 and −6;
50 mg/kg i.v. cyclophosphamide (CY) once daily on days
−5, −4, −3, and −2; and 2.5 mg/kg i.v. ATG (rabbit,
Sangstat product Lyons, France) once daily for four
consecutive days from days 5 to 2.
In matched related SCT, patients received either CY +

ATG (CY: 50 mg/kg/day and ATG 2.5 mg/kg/day
(rabbit)) or CY + ATG+ fludarabine (Flu) regimen. The
three-drug conditioning consisted of 120–200 mg/m2

total Flu combined with 100–200 mg/kg total modified
CY and 10–12.5 mg/kg total ATG.

Stem cell mobilization and collection
The majority of patients received granulocyte colony-
stimulating factor (G-CSF)-primed bone marrow (BM)
combined with G-CSF-primed peripheral blood (PB)
hematopoietic stem cell (HSC). Donor stem cell
mobilization was performed using subcutaneous G-CSF
(Filgrastim, Kirin, Japan or Granocyte, Chugai, Japan) at
5 μg/kg/day from day -3 until the last day of collection.
BM grafts were harvested on day 1. The target mono-
nuclear cell (MNC) count from BM was 2–4 × 108/kg
recipient weight. On day 2, peripheral blood stem cells
(PBSCs) were collected by apheresis using a COBE Blood
Cell Separator (Gambro BCT, Lakewood, CO, USA). The
target MNC count from BM and PB was 6–8 × 108/kg
recipient weight. An additional harvest of PBSCs was
performed on day 3 if the target MNC count was not
achieved.
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GVHD prophylaxis, management, and supportive care
In the HID cohort, all patients received CsA, MMF, and
short-term MTX as acute graft-versus-host disease
(aGVHD) prophylaxis [16]. CsA (1.5 mg/kg, q 12 h, i.v.)
was administered from day −9 with a target trough con-
centration of 150–250 ng/mL. It was switched to oral
administration when recipient bowel function returned
to normal. From day −9, MMF (0.5 g q 12 h, 0.25 g q
12 h in pediatric patients) was administered orally,
which was tapered to half on day +30 and discontinued
on day +60. MTX (15 mg/m2) was administered intra-
venously on day +1, followed by a dose of 10 mg/m2 on
days +3, +6, and +11 (in MRD HSCT, MTX +1, +3, and
+6). In the MRD cohort, MMF dosage was tapered upon
engraftment.
Acute and chronic GVHD (aGVHD and cGVHD) were

diagnosed and graded according to international criteria
[17, 18]. With regards to the treatment of aGVHD, the
effective concentration of CsA was resumed, and 1–2 mg/
kg/day methylprednisolone equivalents were administered
as first-line therapy. For steroid-refractory aGVHD,
second-line treatments such as tacrolimus (FK506), MMF,
and CD25 monoclonal antibody (CD25 mAb) or MTX
were administered.
G-CSF (5 μg/kg/day) was administered subcutaneously

from day +6 until myeloid engraftment in the HID but
not in the MRD cohort. Viral surveillance included
screening for cytomegalovirus (CMV) and Epstein-
Barr virus (EBV) by polymerase chain reaction twice
weekly. Preemptive ganciclovir (DHPG) or foscarnet
therapy was initiated for positive CMV polymerase
chain reaction findings. Other infection prevention
and supportive care were provided in accordance with
previous articles [19, 20].

Definitions and evaluation
Myeloid and platelet engraftment were defined as previ-
ously described [21]. Full donor chimerism (FDC) was
defined as the presence of >95% donor hematopoietic
cells. Patients who did not reach neutrophil counts
>0.5 × 109/L for three consecutive days after transplant-
ation were considered to have had primary graft failure.
Patients with initial engraftment in whom recurrent pan-
cytopenia with obviously hypocellular BM and without
moderate to severe acute GVHD were considered to have
had secondary graft failure [22]. OS was defined as the
time from the date of HSCT to death from any cause or
last follow-up. Failure-free survival (FFS) was defined as
survival with response. Death, primary or secondary graft
failure, and relapse were considered treatment failures.
GFFS (GVHD-free, failure-free survival) was defined as
grades III–IV acute GVHD, extensive chronic GVHD, and
treatment failures as the above. Transplantation-related
mortality (TRM) was defined as death without relapse.

Regimen-related toxicity was evaluated according to
Seattle Toxicity Criteria [23]. Performance status was
graded according to Eastern Cooperative Oncology Group
(ECOG) scoring.

Statistical analysis
The last follow-up for all surviving patients was April
30, 2016. Patients lost to follow-up were censored at the
time of their withdrawal. Differences in the distribution
of various parameters for the two groups were compared
using chi-square or Student’s t tests as appropriate. Ana-
lyses of OS, FFS, and GFFS were performed using the
Kaplan–Meier method, with differences compared by
log-rank tests. Cumulative incidences of engraftment
and GVHD were estimated in the competing risk model,
with early death as the competing event. Univariate and
multivariate analyses were performed to determine
whether any of the selected factors were predictive of
the endpoints. In multivariate analysis, all factors with
P < 0.1 in univariate analysis were evaluated in the Cox
regression model with a backward stepwise model
selection approach. Significant factors (P < 0.05) were
considered to be independently predictive of the out-
comes. All statistical analyses were performed using
SPSS Version 13.0 and R software package (version
2.6.1; http://www.r-project.org).

Results
Basic characteristics
Table 1 shows the patient and transplant characteristics
of the 158 patients. All patients had no IST or had only
CsA as IST for a limited time before transplantation. All
cases underwent transplantation within 4 months after
definite diagnosis. The two cohorts were similar with
regard to male/female ratio, interval between diagnosis
and transplant, red blood cell (RBC) transfusions, and
ECOG scores prior to transplant. HID patients were
younger than patients in the MRD cohort (median age
22 years [range, 4–51 years] vs. 33 years [range, 7–
61 years], respectively; P < 0.001). Recipients of mis-
matched transplants had more male donors than did the
recipients of matched transplants. Approximately 90%
of patients in the HID group received grafts from BM
and PB, compared to 63.2% in the MRD cohort. The
graft compositions in the two groups were similar
except that the matched patients had higher CD34 cell
counts (4.5 [range, 1.5–30.2] × 106/kg vs. 3.6 [range,
0.5–18.8] × 106/kg, respectively; P = 0.001).

Engraftment
In the HID group, 87 of 88 (98.9%) cases who survived
more than 28 days achieved myeloid engraftment at a
median of 12 days (range, 9–20 days). In the MRD
cohort, 67 evaluable patients engrafted at a median of
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Table 1 Patient and graft characteristics

Variable Haploidentical N = 89 Matched related N = 69 P

Age (years), median (range) 22 (4–51) 33 (7–61) <0.001

Children, no. (%) 33 (37.1%) 7 (10.1%) <0.001

Adult, no. (%) 56 (62.9%) 62 (89.9%)

Male/female, no. 57/32 39/30 0.337

SAA/VSAA, no. 69/20 58/11 0.305

Disease course (months), median (range) 0.507

Interval from SAA diagnosis to SCT 1.5 (1–4.0) 1.0 (1–3.0)

Previous transfusion

Median units of RBC (range) 7.0 (0–30) 8.0 (2–34) 0.115

Median units of PLT (range) 13.5 (0–90) 10.0 (2–90) 0.036
aECOG pre-SCT, median, (range) 1 (0–3) 1 (0–2) 0.568

Donor-patient sex match, no. (%) 0.042

Male-male 40 (44.9%) 17 (24.6%)

Male-female 19 (21.3%) 15 (21.7%)

Female-male 19 (21.3%) 22 (31.9%)

Female-female 11 (12.4%) 15 (21.7%)

Donor type, no. (%) <0.001

Sibling 25 (28.1%) 69 (100%)

Parent 57 (64.0%) –

Child 5 (5.6%) –
bOthers 2 (2.2%) –

HLA type, no (%) <0.001

6/6 4 (4.5%) 69 (100%)

5/6 6 (6.7%) –

4/6 21 (23.6%) –

3/6 58 (65.2%) –

ABO matched, no. (%) 0.414

Matched 49 (55.1%) 44 (63.8%)

Minor mismatched 18 (20.2%) 13 (18.8%)

Major mismatched 14 (15.7%) 10 (14.5%)

Different 8 (9.0%) 2 (2.9%)

Graft type, no. (%) <0.001

BM + PB 78 (87.6%) 43 (63.2%)

BM only 9 (10.1%) 3 (4.4%)

PB only 2 (2.2%) 22 (32.4%)

Median MNCs, ×10^8/kg (range) 9.9 (3.4–32.0) 10.5 (4.6–26.4) 0.817

Median CD34+ count, ×10^6/kg (range) 3.6 (0.5–18.8) 4.5 (1.5–30.2) 0.001

Median CD3+ count, ×10^8/kg (range) 1.8 (0.1–6.7) 2.1 (0.1–7.7) 0.530

Median CD4+ count, ×10^8/kg (range) 1.0 (0.1–3.5) 1.1 (0.1–5.0) 0.337

Median CD8+ count, ×10^8/kg (range) 0.7 (0.1–3.0) 0.8 (0.1–2.7) 0.147
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11 days (range, 8–19 days). The cumulative incidences
of 28-day engraftment were 97.75 ± 0.03% and 97.10 ±
0.05% (P = 0.528, Additional file 1: Figure S1a) in the
mismatched and matched groups, respectively. Eighty-
six and 66 patients had platelet engraftments in the HID
and MRD groups at 15 days (range, 6–91 days) vs.
14 days (range, 7–36 days), with cumulative incidences of
platelet engraftment of 96.63 ± 0.05% and 95.65 ± 0.08%,
respectively (P = 0.989, Additional file 1: Figure S1b).
One HID patient failed to achieve primary engraftment
and underwent a second transplant from the original
donor; however, he experienced primary graft failure
again. One patient in the MRD cohort experienced
secondary graft failure on day +45 and refused further
therapy.

GVHD
The cumulative incidence of grades II–IV aGVHD at
100 days were 30.34 ± 0.24% and 1.45 ± 0.02% after HID
and MRD transplants, respectively (P < 0.001, Additional
file 1: Figure S2a). The cumulative incidence of grades
III–IV aGVHD at 100 days were 10.11 ± 0.10% and 1.45
± 0.02% (P = 0.026, Additional file 1: Figure S2b). Multi-
variate analysis identified no significant factors in II–IV
aGVHD, and HID was the only independent factor asso-
ciated with III–IV aGVHD (Table 2).

Eighty-three and 65 patients in the HID and MRD
cohorts, respectively, with survival longer than 100 days
after transplantation were evaluable for the incidence of
cGVHD. HID patients had a higher three-year cumula-
tive incidence of cGVHD than did the MRD patients
(39.30 ± 0.54% vs. 8.35 ± 0.13%, P < 0.001, Additional file
1: Figure S3a). However, the two groups had similar
three-year incidences of extensive cGVHD (3.42 ± 0.04%
vs. 2.03 ± 0.04%, P = 0.426, Additional file 1: Figure S3b).
During the follow-up, three mismatched and one
matched patients with extensive cGVHD received sys-
temic therapy.

Infectious complications and immune reconstitution
The most common infection was the reactivation of
CMV, which occurred in 46 (51.7%) HID and 30 (43.5%)
MRD patients (P = 0.306), at a median of 30 (range, 16-74)
and 28 (range, 11-49) days post-transplantation. Only one
HID patient developed CMV enteritis on day +33 and
recovered after administration of antiviral drugs com-
bined with an infusion of CMV-specific cytotoxic T
lymphocytes (CMV-CTL). Twenty-five (28.1%) and 15
(21.7%) suffered EBV viremia in the HID and MRD-
SCT groups (P = 0.363). The median times to EBV
viremia in the two cohorts were 41 (range, 26–73) and
34 (range, 18–89) days, respectively. One HID and one
MRD case developed EBV-associated post-transplant
lymphoproliferative disorders (PTLD) on days +76
and +68, respectively.
The outcomes of immune reconstitution are shown in

Fig. 1. CD3, CD4, and CD19 concentrations were com-
parable between the two cohorts from 6 months post-
SCT. Furthermore, equivalent levels of immunoglobulins
A, G, and M (IgA, IgG, IgM) were achieved at 1 year.

Transplantation-related mortality
During a median follow-up of 22.6 months (range, 7.1–
47.6), 12 and 6 were in the HID and the MRD groups,
respectively, with a median time to death of 96.5 (range,
2–345 days) and 51 days (2–244 days). Analyses of TRM
revealed that GVHD and infection were the major
causes of death in the two groups. In the HID cohort,
six patients (6.74%) died of infection (two fungal, one
EBV-associated PTLD, and three serious bacterial

Table 1 Patient and graft characteristics (Continued)

Median follow-up among alive patients, mo. (range) 21.4 (7.1–47.6) 26.0 (7.5–47.6) 0.258

Neutrophil engraftment, median (range) 12 (9–20) 11 (8–19) 0.151

Platelet engraftment, median (range) 15 (6–91) 14 (7–36) 0.484

BM bone marrow, PB peripheral blood, MNC mononuclear cell
*Patient age, previous transfusion of platelet, donor-recipient sex match, graft type, and infused CD34 cells differed significantly between the two groups (P < 0.05).
There were no other significances between group differences
aECOG (Eastern Cooperative Oncology Group scale) is used to evaluate patients’ performance status
bOther donor types were from cousins

Table 2 Multivariate analysis of adverse factors associated with
survival outcomes and GVHD

Outcome Hazard ratio (95% confidence interval) P value

Overall survival

Previous RBC (>10) 6.8 (1.9–23.8) 0.003

ECOG (>2) 2.9 (1.1–7.9) 0.032

Failure-free survival

Previous RBC (>10) 5.4 (1.8–16.3) 0.003

ECOG (>2) 3.0 (1.2–7.5) 0.022

II–IV aGVHD

HID 1.3 (0.9–1.8) 0.181

III–IV aGVHD

HID 1.6 (1.2–2.2) 0.006

HID haploidentical donor, aGVHD acute graft-versus-host disease, cGVHD
chronic graft-versus-host disease
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infections), four (4.49%) died of GVHD (three severe
aGVHD and one extensive cGVHD), one (1.12%) of
regimen-related toxicity (RRT), and one of primary
graft failure. Six (8.70%) patients died of TRM in the
MRD cohort, which included three (4.35%) of infection
(two fungal and one bacterial), one (1.45%) due to
severe aGVHD, one from RRT, and one from secondary
graft failure.

Survival outcomes and follow-up
The three-year probabilities of overall survival (OS) were
86.1 ± 3.7% and 91.3 ± 3.4% after HID and MRD-related
donor transplants, respectively (P = 0.358, Fig. 2). The
three-year FFS was also not significantly different in the
upfront HID HSCT cohort (85.0 ± 3.9%) vs. the MRD
controls (89.8 ± 3.7%) (P = 0.413, Fig. 3). Increased RBC
transfusions, longer SAA courses, and poorer perform-
ance scores significantly predicted survival outcomes in
univariate analysis (Additional file 1: Table S1). In
multivariate analysis, the risks of mortality did not dif-
fer significantly by donor type (Table 2), but mortality
was significantly higher in patients receiving increased
RBC transfusions and in those with poor performance
scores. The estimated GFFS at 1 year was also similar
(80.8 ± 4.2% and 88.4 ± 3.9%, P = 0.282, Fig. 4) in mis-
matched and matched patients.
As of April 30, 2016, all of the 140 surviving patients

(77 HID and 63 MRD patients) achieved transfusion

independence. Among the 120 patients (63 HID and 57
MRD) who were followed up for more than 1 year, 100%
alive patients break away from transfusion. 87.9 vs.
88.2% had normal WBC count, 90.9 vs. 88.2% had nor-
mal platelet (PLT) count, and 93.9 vs. 91.2% cases
attained hemoglobin above 100 g/L in the HID and
MRD groups, respectively. In addition, 86.8% of HID
and 86.7% of MRD patients achieved Karnofsky Per-
formance Status Scale (KPS) scores ≥90.

Fig. 1 Immune reconstitution. Reconstitution of CD3, CD4, and CD19 lymphocytes were comparable from 6 months post-SCT. Equivalent levels
of immunoglobulins A, G, and M (IgA, IgG, IgM) were achieved at 1 year between two cohorts

Fig. 2 Overall survival of two cohorts: HID, 3-year OS of 86.1% ± 3.7%;
MRD, 3-year OS of 91.3% ±3.4% (P = 0.358)
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Discussion
Allo-HSCT from MRD leads to long-term survival in
over 80% of patients, with most survivors having a nor-
mal performance status [24–27]. In general, HSCT with
sustained engraftment restores bone marrow function
and precludes the late complications such as relapse and
clonal evolution observed with IST. More than two
thirds of patients lack an MRD; however, a HID is a
readily available for nearly all patients. Indeed, trans-
plantation from HID has benefited from the same
improvements as has transplantation from matched sib-
lings, and great progress has been made in both engraft-
ment and survival in HID [28]. Furthermore, rabbit
ATG is markedly inferior to horse ATG as a first-line
treatment for SAA [8]. Thus, both the unavailability of
horse ATG and poor economic status which afforded

either IST or SCT have prompted interest in the feasi-
bility of upfront HID HSCT in developing countries
such as China. Hence, we conducted a study based on
registry data regarding the feasibility of upfront HID
SCT. To the best of our knowledge, we are the first to
compare outcomes of consecutive patients undergoing
upfront HID SCT with upfront allo-HSCT using MRD.
Data from our study demonstrated that comparable
engraftment and survival outcomes were achieved in
both cohorts.
Graft failure is a central problem in HSCT for SAA,

occurring more frequently than in other hematological
malignancies. In the initial attempts with MRD-SCT,
using CY alone as conditioning regimen and MTX alone
for GVHD prophylaxis, the rates of GF with MRD-SCT
were over 30% [29]. Higher GF rates of 70% were also
observed in early experience with HID SCT [30]. How-
ever, the current situation is considerably different. CY
with ATG for conditioning followed by post-grafting
CsA plus MTX resulted in an engraftment rate of 95%
in matched siblings [24]. Similarly, several studies on
HID transplants reported incidence of GF ranging from
0 to 25% due to recent advances in ex vivo depletion of T
cells or unmanipulated in vivo regulation [21, 28, 31–35].
Our findings showed that the HID cohort without in
vitro T cell depletion had myeloid (97.75 vs. 97.10%)
and platelet (96.63 vs. 95.65%) engraftment rates com-
parable to those of the MRD cohort. As analyzed in our
previous research [21], the reasons for these encouraging
engraftment outcomes in mismatched transplants may be
multifactorial, including adding BU to CY + ATG for
intensified conditioning [36, 37], using G-CSF-mobilized
grafts [38] and combining CsA, MTX, and MMF as
GVHD prophylaxis.
As SAA is a non-neoplastic hematologic disorder,

another goal of transplantation is to avoid acute or
chronic GVHD after successful engraftment. Although
higher proportions of patients with II–IV (30.34 vs.
1.45%) and III–IV aGVHD (10.11 vs. 1.45%) in the HID
than in the MRD cohorts, the incidences of aGVHD
were comparable to those of recent studies involving ex
vivo T cell depletion haploidentical transplants, re-
ported II–IV aGVHD rates of 30–33% [11, 12, 28, 31].
Unexpectedly, univariate analysis showed that older age
(≥18 years) and PB graft were associated with a reduced
incidence of II–IV aGVHD in our total cohort. How-
ever, it is important to realize that adult and PB graft
were significantly more common in the matched group,
and no significant factors were identified in multivariate
analysis. Although we found that risks of severe aGVHD
differed significantly by donor type, the incidence of severe
aGVHD-related TRM was not obviously higher in the HID
cohort. PTCY or CD25mAb may reduce the incidence of
severe GVHD, which should be assessed in future studies.

Fig. 4 GVHD, failure-free survival of two cohorts: HID, 1-year GFFS of
80.8% ± 4.2%; MRD 1-year GFFS of 88.4% ± 3.9% (P = 0.282)

Fig. 3 Failure-free survival of two cohorts: HID, 3-year FFS of 85.0%
± 3.9%; MRD, 3-year FFS of 89.8% ± 3.7% (P = 0.413)
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Extensive cGVHD has a major impact on quality of life
in HSCT recipients [39]. The incidence of extensive
cGVHD was similar between the HID and MRD HSCT
cohorts in our study. However, limited GVHD may also
affect quality of life post-transplantation. We assessed
quality of life during the follow-up period; most patients
with limited cGVHD rated their quality of life as excellent
and their symptoms as minimal or mild. Our study dem-
onstrated that nearly 90% of patients in both cohorts who
survived for more than a year achieved KFS scores above
90. Further long-term follow-up is necessary to confirm
this positive performance status. Besides, similar 1-year
GFFS in two cohorts also supported that patients alive
had comparable survival rates without ongoing morbidity.
Infection was also a major barrier to the wider applica-

tion of HID SCT. However, delayed immune reconstitu-
tion within 6 months post-transplantation was observed
in our HID cohort. The possible reasons were as follows:
first, an intensified immunological suppression condi-
tioning regimen was used in the mismatched patient
group to promote engraftment and prevent GVHD; sec-
ond, additional immunological suppression therapy was
administered because of higher incidences of aGVHD in
the HID cohort. Encouragingly, the incidence of viral
infection was similar between the two groups. In the
HID and MRD cohorts, CMV reactivation occurred in
51.7 and 43.5% of patients, but only one mismatched
patient developed disease. EBV viremia was detected in
28.1 and 21.7% of patients in each group and lympho-
proliferative disorder in 1.1 and 1.4%, respectively. Ganci-
clovir was commonly administered as prophylaxis,
intensive surveillance was performed twice weekly, and
preemptive treatment was administered promptly once
viremia was detected, which may have helped to decrease
the incidence of lethal virus infection.
We have observed comparable survival (three-year OS

of 86.1 vs. 91.3%, FFS of 85.0 vs. 89.8%) after HID and
MRD transplantations, with increased RBC transfusions
and poor ECOG being the adverse factors. Consistent
with other reports [22, 40], heavily transfused patients
have worse outcomes, including increased graft failure
and poor survival. In our data, increased transfusions
had no influence on either engraftment or GVHD. One
possible explanation is that iron deposition brought by
transfusions decreased organ function prior to SCT.
Passweg et al. also observed that poor performance
scores affected outcomes after transplantation [41]. All
of these findings point to the need for reducing such
delays pre-transplantation, which may reduce the need
for multiple transfusions and the incidence of pre-
treatment infections, thus improving performance status
at transplantation and improving OS rates.
Our study has several limitations, including the poten-

tial for selection bias; the fact that the patients in the

HID cohort were younger than those in the MRD cohort
and that the donor-recipient sex match and graft source
differed significantly between groups implied that com-
parisons between GVHD rates in these groups were not
feasible. As age has been shown to influence outcomes
[42], we also stratified our population into pediatric and
adult patients and observed similar outcomes in pediatric
HID vs. MRD and adult HID vs. MRD. Despite these
limitations, our data offer compelling comparative evi-
dence of the value of HID SCT as a front-line treatment
in developing countries.
HID SCT has several obvious advantages compared to

other alternative donors. First, donors are available for
nearly all patients; second, SCT can be performed imme-
diately, which is particularly crucial for patients with
vSAA who need prompt therapy; and third, continued
donor access is available for rescuing graft failure or for
treating infections.

Conclusions
In summary, our findings show that upfront HID HSCT
is a safe and feasible choice for patients without suitably
matched donors. Our data indicates that there might be
a change in the SAA treatment algorithm in developing
countries, and upfront HID HSCT might be considered
alongside IST for patients lacking matched donors in
specialized centers. Further prospective multicenter
research is needed to confirm that.
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