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Electron spin resonance with a scanning tunneling microscope (ESR-STM) combines 

the high energy resolution of spin resonance spectroscopy with the atomic scale 

control and spatial resolution of STM. Here we describe the upgrade of a helium-3 

STM with a 2D vector-field magnet (Bz = 8.0 T, Bx = 0.8 T) to an ESR-STM. The 

system is capable of delivering RF power to the tunnel junction at frequencies up to 

30 GHz. We demonstrate magnetic field sweep ESR for the model system 

TiH/MgO/Ag(100) and find a magnetic moment of (1.004 ± 0.001) μB. Our upgrade 

enables to toggle between a DC mode, where the STM is operated with the regular 

control electronics, and an ultrafast-pulsed mode that uses an arbitrary waveform 

generator for pump-probe spectroscopy or reading of spin-states. Both modes allow 

for simultaneous radiofrequency excitation, which we add via a resistive pick-off tee 

to the bias voltage path. The RF cabling from room temperature to the 350 mK stage 

has an average attenuation of 18 dB between 5 and 25 GHz. The cable segment 

between the 350 mK stage and the STM tip presently attenuates an additional 𝟑𝟒−𝟑+𝟓 dB from 10 to 26 GHz and 𝟑𝟖−𝟐+𝟑 dB between 20 and 30 GHz. We discuss our 

transmission losses and indicate ways to reduce this attenuation. We finally 

demonstrate how to synchronize the arrival times of RF and DC pulses coming from 

different paths to the STM junction, a prerequisite for future pulsed ESR 

experiments.  
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I. Introduction 

Atomic resolution topography measurements, manipulation of single atoms, and 

spectroscopic characterization at the single atom and chemical bond level are the unique 

features of scanning tunneling microscopy (STM) and, more generally, scanning probe 

microscopy (SPM). The spectroscopic energy resolution of an STM is limited by the 

Fermi-Dirac distributions of tip and sample. This stimulated the development of dedicated 

low-temperature SPMs, operating well below the boiling point of liquid helium [1–5]. 

These advanced low-temperature STMs achieve effective electron temperatures of few 

dozen mK, corresponding to a spectroscopic energy resolution of several μeV, ideal for the 

research of superconductivity and topological materials. Note that at these temperatures, 

broadening by the P(E) function has to be considered [6]. Electron-spin resonance based 

STMs [7] push this energy resolution to the 100 neV range. Similar to nuclear magnetic 

and electron-spin resonance, the energy resolution of an ESR-STM does not depend on 

temperature, and the accessible energy range is presently only limited by the available 

photon energy in the tunnel junction. The excellent energy resolution combined with 

atomic scale control is particularly useful in the study of magnetic interactions between 

individual surface supported spins [8–10]. The introduction of pulsed ESR-STM would 

enable coherent operations on the spin-manifold and quantum gate control. So far this was 

not achieved since the atoms that exhibit ESR-STM signals have unfavorable ratios of Rabi 

rate to coherence time (T2) [7,9], and could be studied only by continuous wave (cw) ESR. 

The exploitation of atomic clock-transitions [11,12] that increase coherence times was 

recently suggested for a singlet-triplet transition in a coupled Ti-dimer on MgO [10]. 

However, the imminent advent of pulsed ESR-STM requires the introduction of additional 

technical upgrades to properly combine RF and DC pulses. In anticipation of adatom 

systems that may exhibit long enough T2 or fast enough Rabi rates, we present in this paper 

also the required upgrade for pulsed ESR, although we don’t apply it. 
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In this work we describe the upgrade of a 3He low-temperature 2D vector field STM 

(Bz = 8.0 T, Bx = 0.8 T) for ESR measurements. We first review the pre-upgrade state of 

the system, we then discuss the cabling (RF and DC) in the vacuum parts of the system, 

and we discuss our ambient cabling schematics. Following the technical description, we 

characterize the RF transmission at room temperature and in-situ by the rectifying effect 

of a nonlinear STM junction. We conclude by showing the ESR capability of our upgrade 

using the model system of TiH on MgO ultrathin films grown on Ag(100) and demonstrate 

how we align the arrival times of RF and DC pulses as a preparation for upcoming pulsed 

ESR experiments. We expect that our upgrade can easily be extended to other STMs. 

II. The existing STM 

Our existing low-temperature STM [13] operates at temperatures down to 350 mK, 

the cooling being provided by a single-shot helium-3 cryostat (Janis, STM-UHV-He3), 

equipped with a superconducting 8 T out-of-plane solenoid (1914.1 Gauss/A), and a 0.8 T 

in-plane split-pair magnet (227 Gauss/A). The STM has four temperature modes: (1) a 

single-shot mode reaching 350 mK with a hold time of ~12 hours, (2) a single-shot mode 

that begins at 1.5 K and warms to 2.5 K over the course of 20 hours, (3) a 4.3 K mode, and 

(4) a 48 K mode. In order to reinitialize mode 1, the charcoal pump needs to be heated to 

above 30 K, which warms the STM to beyond 20 K and releases hydrogen, contaminating 

the sample [14]. Mode 2, on the other hand can be refreshed without exceeding 4.3 K, 

which is why we typically measure in that mode.  

The STM is rigidly attached to the inner cryostat (insert), which is mounted onto a 

vertical translator. Thereby, the STM can be lifted into the position located at the center of 

the solenoid for measurements requiring a magnetic field, or lowered and thereby exit the 

solenoid for sample transfer and deposition of adsorbates. An opening in the two concentric 
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radiation shields, the outer at solid N2 and the inner at liquid He temperature, permits in-

situ deposition of atoms using a commercial e-beam evaporator (Focus, EFM-3T). 

Samples are prepared in a second ultra-high vacuum (UHV) chamber separated 

from the one of the cryostat by a gate valve. That chamber is equipped with typical sample 

preparation facilities: a sputter gun, effusion cell, e-beam evaporator, leak valves for gas 

dosing, and a fast-entry load lock. The samples can be cooled and heated in the manipulator 

to temperatures between 40 and 2000 K. Samples are transferred with this manipulator into 

the STM. 

III. ESR and Electrical Pump-Probe 

Upgrade 

A. UHV Cabling (RF and DC) 

In this section, we describe the vacuum cabling from the UHV interface to the tip 

of the STM for the RF and DC lines. We discuss our choice of materials and outline our 

thoughts concerning RF attenuation and thermal anchoring. Figure 1 shows the cabling 

schematics across the bath-cryostat and a photo of the final assembly of the cabling at the 

STM level. Note that before this upgrade, the bias voltage Vb was applied to the sample, 

but in view of the anticipated RF transmission losses through multiple point-contacts in the 

sample-holder and sample receptacle, we decided to invert our wiring and connect the RF 

line carrying the bias voltage to the tip. The sample is thus connected to virtual ground of 

the transimpedance amplifier (Femto, DLPCA-200).  

We replace the flexible stainless steel coaxial cables that had been fed via the same 

cable conduit through the cryostat and that were formerly used for tunnel current (It), z-
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piezo (z), and bias voltage (Vb), by semi-rigid (SR) coaxial cables according to the wiring-

schematics shown in Figure 1a. The ambient to UHV interface for the SR cables is a 4-port 

SMA RF feedthrough (Allectra, 242-SMAD18G-C40-4). In order to achieve acceptable 

RF transmission while keeping the thermal load on the cryostat minimal, we chose a 

stainless steel SR coax line with a silver coated center conductor for Vb (Coax Co., SC-

119/50-SSS-SS: 11.6 dB/m at 20 GHz and 300 K). For It, and z, stainless steel SR coax 

lines (Coax Co., SC-119/50-SS-SS: 33.3 dB/m at 20 GHz and 300 K) are sufficient because 

these lines carry low-bandwidth signals. The latter two lines are SR only down to the 4.3 K 

stage due to space requirements of attenuators and SubMiniature A (SMA) connectors.  

We equipped the ~1.5 m SR coax lines with non-magnetic SMA connectors at both 

ends (Coaxicom, gold coated CuBe) using Sn96Ag4 solder and a relatively aggressive flux 

agent (a custom mixture of watery hydrochloric acid and zinc chloride) to remove the 

passivation layer. We re-soldered fresh connectors whenever the resistance between the 

center conductor and the shield was smaller than 1 GΩ. We then buffered the flux with a 

watery alkaline solution (Merck, Extran AP 13), further cleaned the solder-joints with 

isopropyl alcohol, methanol, and finally pumped each cable-end and its connectors with a 

turbo pumping station to a pressure better than 5x10-7 mbar to remove residual moisture. 

Note that we could only add connectors onto one side of the SR lines prior to feeding the 

cables through the 3.7 mm diameter cable conduit of the helium-insert. We subsequently 

soldered SMA connectors to the open SR cable end and used sacrificial rubber plugs that 

we had slipped onto the cable as a seal for the pumping/drying routine explained above. 

The soldering of the latter connectors was rather challenging and resulted in a 1 in 5 yield 

only.  

We bridged the stretch from 4 K to the mK-stage for Vb by a ~50 cm SR cable that 

we wound into non-touching loops to accommodate the overhead length (see Figure 1b), 

which we require to establish a large enough temperature gradient. The It and z signals 

were connected (Huber&Suhner, SMC series) to the mK-stage via flexible stainless steel 
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cables (Lakeshore, CC-SS). The final part of Vb wiring to the tip of the STM was realized 

with a ~15 cm flexible silver coated copper coax line (Elspec, Gefl AWG 38) which was 

equipped with an angled SMA connector to allow ex-situ tip changes. We glued a Cr-tip 

and the flexible coax line to a homebuilt Macor tip holder using conductive silver epoxy 

(Epotek, H27D). Neither the coarse motion in the x, y, z directions, nor the scanner tube 

are negatively affected by the coaxial cable due to the large loop radius representing a 

connection of comparably low stiffness. 

Having the finite cooling budget of our cryostat in mind, and noting that the heat 

transfer of the RF line is dominated by the micron thick Ag coating of the center conductor, 

we thermalized all SR cables using 0 dB attenuators (Vb: XMA Corp. 2782; It and z: 

Pasternack, PE7091-0) at the 4 K and mK stage. We also coated the attenuators with 

vacuum grease (M&I Materials, Apiezon N) and tightly fit them into aluminum (4 K) and 

copper (mK-stage) holders to improve the clamping force at low temperature due to the 

larger thermal expansion coefficient of Al and Cu vs stainless steel. Note that our cryostat 

chamber is not baked in order to protect the magnetic field coils; therefore, the use of 

vacuum grease does not lead to outgassing. To accommodate the strain from thermal 

contraction, we wound the SR lines into horizontal loops of ~6 cm diameter around the 4 K 

stage.  

B. Integration of RF and AWG into STM circuit 

In this section, we describe the integration of the RF generator and arbitrary 

waveform generator (AWG) into the standard STM circuitry, which is sketched in Figure 2. 

The default position of the relay connects the bias voltage of the STM control electronics 

(Nanonis, RC4/SC4) to the Vb line used for regular STM topographic/spectroscopic 

measurements and for continuous wave (cw) ESR. The sync path shown in Figure 2 

synchronizes a lock-in amplifier to the internal modulation of the RF generator for ESR 

sweeps. For instance, we typically chop the RF output (pulse modulation) at a frequency 
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of 887 Hz, well inside the bandwidth of the IV-converter, to measure the modulated 

tunneling current. We combine the RF power and the DC/pulse lines via a 20 dB pick-off 

tee (Tektronix, PSPL5370) before connecting them to the UHV feedthrough. The voltage-

drop from the pick-off port (450 Ω) is negligible compared to the GΩ resistance of the 

tunnel junction. The RF generator output is protected by a DC block (Pasternack, PE8224) 

that also serves to galvanically separate the RF generator from the STM apparatus, which 

might be required for certain grounding schemes. Note that a regular bias tee couples the 

DC path through an inductor, which acts as a low-pass for fast DC pulses, incompatible 

with our requirements. 

We feed the DC pulses from the AWG (National Instruments, USB-6366) via the 

relay switch to the tip of the STM as shown in Figure 2. This mode allows all-electronic 

pump-probe spectroscopy [15,16] and also enables pulsed ESR operation, which uses a 

combination of RF and DC pulses. We will describe the pulse alignment required for this 

mode and for which we use the TTL trigger line also shown in Figure 2 in the section below.  

We have further added 40 dB low-pass RF filters on all DC and piezo scanner lines 

(Mini-circuits, VLFX-105+) to prevent leaking of RF power into our control electronics 

and to prevent RF noise from the FPGA clock polluting our DC lines. The passband of the 

RF filters has a negligible effect on the ~10 ns rise time of DC pulses (here limited by our 

AWG electronics), which we verified separately. The filter on the Vb line may be 

exchanged to suit other passband needs.  

We placed the RF generator (Keithley, N5183B) outside of the acoustically isolated 

lab and connected it to the STM apparatus via a 3 m flexible RF test-cable (Teledyne, 

2.92 mm FlexCore). We removed the outer polymer jacket to soften the cable and clamped 

it at two points between rubber pads to absorb the clicks from the mechanical step 

attenuator that occur when RF power ranges are switched. For all other signal and piezo 

lines we use low-noise coaxial cables (Huber&Suhner, G_01130_HT) to prevent pickup 

from slipping shields (triboelectric effect). 
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IV. RF Performance 

A. RF transmission 

We next characterize the RF attenuation for the RF cabling for each SR coax 

segment using our Schottky diode rectifier (Pasternack, PE8014). Figure 3 shows the 

attenuation of the Vb and 𝐼𝑡 lines measured at room temperature. The total attenuation 

through the cables from the RF generator to the mK-stage via the ~2 m 𝑉𝑏 line is about 

22 dB at 20 GHz. After cooling, we expect less attenuation due to the improved electrical 

conductivity at low temperature, which would represent the maximal achievable 

transmission for this system. Note, the attenuation of the stainless-steel SR lines 𝐼𝑡 and 𝑧 

exceeds the 50 dB detection limit beyond 17 GHz. As mentioned above, only one side of 

the last segment of the RF cabling between the tip and the mK-stage is equipped with a 

connector, which allowed testing of its performance only a-posteriori, that is, by measuring 

RF transmission via the tunnel junction. To that end, we use the rectifying effect of a 

nonlinearity in the IV-characteristic to quantify the effective RF amplitudes in the tunnel 

junction, as described by Paul and co-workers [17]. Such a nonlinearity could be a spin-

flip excitation [18], a vibration [19], a rotational excitation [20–22], or any sufficiently 

sharp feature in the IV-characteristic. By setting the DC bias to V0, the center of the 

nonlinearity, while applying RF power, the junction rectifies the AC part of the current 

leading to a net increase in tunnel current [17]. To first order, the increase of the tunneling 

current is proportional to the RF amplitude allowing to calibrate the transmitted RF voltage 

from the measured broadening of the IV-characteristic [17]. 

Figure 4a shows the broadening of an inelastic conductance step of a Ti cluster on 

MgO upon RF application (PRF = -1 dBm, f = 16.4 GHz) demonstrating RF transmission 

in the tunnel junction. The observed broadening of the inelastic step at ~6.7 mV 

corresponds to an effective RF voltage of (1.9 ± 0.6) mV, which indicates an attenuation 
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of ~43 dB (-1 dBm corresponds to ~282 mV). We measure the frequency dependent RF 

transmission in the two sweeps shown in Figure 4b and c from 10 to 26 GHz at a source 

power of 5 dBm and from 22 to 30 GHz at 10 dBm, respectively. We find a series of local 

transmission maxima of 40 to 49 dB attenuation. They are separated by regions of 

relatively poor transmission. We document the individual frequencies exhibiting high 

transmission for later ESR field-sweep measurements. The average attenuation from the 

generator to the junction is 52−3+5 dB between 10 and 26 GHz, and 56−2+3 dB between 20 and 

30 GHz. 

From the technical specifications of the RF line and our aforementioned room 

temperature characterization in Figure 3, we attribute a combined loss of ~5 dB to the 

ambient RF cable, DC block, bias-tee, and RF feedthrough. In view of the effective ~22 dB 

attenuation coming from the SR coaxial cable connecting the 300 K and mK-stages, the 

overall attenuation is relatively high. The majority of the remaining 25 to 29 dB of power 

is lost to the tip cable and its SMA connector. This most likely originates from the 90 

degree angle between the pin inside the SMA connector and the tip cable (indicated by the 

dashed yellow line in Figure 1b) and which is evidenced by the ~686 MHz oscillations 

seen in Figure 4d that match the calculated reflections of an unterminated ~15 cm long cable 

(FEP velocity factor ~0.7). We suspect that the subtle increase in the STM temperature 

(Figure 4d), when applying RF powers above a 10 dBm level, is also mostly due to that last 

junction. This cable/connector assembly is a candidate for replacement when the tip is 

changed in the future and should bring the system to within few dB to its ~22 dB 

attenuation potential.  

B. ESR demonstration 

To test the ESR capability of our apparatus, we investigate hydrogenated Ti 

adatoms (TiH) on MgO/Ag(100) [9], which is a prototypical spin ½ particle with a 

magnetic moment of 1 μB [9]. Note that our ESR measurements involve a magnetic field 



10 

 

sweep, whereas previous STM-ESR experiments were carried out at constant external 

magnetic field [7–9,23,24]. The method presented here has the advantage of requiring no 

calibration of the transfer function [7,17], which could lead to transfer function related 

spurious peaks [7]. 

The magnetic field-sweep carried out here leads to deformations of the STM body 

that require adjustments of the scan-piezo positions in order to remain on the same surface 

spot. Figure 5a reveals a ~2 nm lateral displacement after a field-sweep from Bz = 0 T to 

550 mT and Figure 5b shows the simultaneously recorded z-trace indicating deformations 

in the z direction on the order of 1.5 nm. The overall x, y, z-displacements may reach several 

nanometers. However, they are sufficiently gradual and the field increments are small 

compared to the values discussed above, therefore lateral and vertical drifts can readily be 

compensated by atom-tracking during the field-sweep. The relative position of the tip with 

respect to the Ti adatom apex can thereby be held constant. Our field-sweeping routine 

during an ESR experiment is sketched in Figure 5c. It involves atom-tracking, the sequential 

application of the n-frequencies and a magnetic field increment/decrement. Note that our 

routine allows choosing the number of field-increments before executing a feedback-loop 

and atom-tracking cycle, indicated by the dashed boxes in the schematics of Figure 5c. The 

related overhead time due to the two latter steps is thus short with respect to the effective 

averaging time at each frequency. We typically use a dwell time of 500 ms per frequency 

and an atom-tracking time of 1-5 s every 5-10 field-increments. As pointed out above, the 

RF generator is pulse-modulated at typically 887 Hz for lock-in detection throughout the 

ESR-sweeps. 

We finally show the ESR sweeps of hydrogenated Ti (TiH) on MgO from 700 to 

500 mT in Figure 6. The different Ti species are identified by their distinct apparent heights, 

as shown in Figure 6a, and by their characteristic conductance spectra [9]; TiH has inelastic 

steps at about ±80 mV, while the spectrum of Ti is devoid of clear conductance steps as 

seen in panel b. We monitor the ESR signal for 3 frequencies in Figure 6c and for 5 
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frequencies in Figure 6d. We have vertically offset the baselines according to their frequency 

value (increasing from bottom to top). The sweeps reveal distinct resonances at changing 

field values for different frequencies, mapping the Zeeman splitting between the two spin 

ground states. Note that some of the larger peaks of the sweep in Figure 6c-d are artifacts 

due to a large lock-in amplifier time-constant leading to a memory effect from the 

respective previous frequencies. A larger settling time for each frequency step evidently 

reduces these artifacts. Nonetheless, the real ESR peaks are easily identified because we 

know the order in which the frequencies have been applied (see sequence # in Figure 6c-d).  

We fit each resonance to a Lorentzian and mark the magnetic field positions in 

Figure 6c-d, onto which we map linear Zeeman trends. The slope 𝑘 = ∆𝑓 ∆𝐵⁄  for TiH is 

(28 ± 1) GHz/T. The near perfect Zeeman fit to the ESR sweep in Figure 6d, tentatively 

labelled Ti, yields a slope of (28.10 ± 0.04) GHz/T. These two slopes yield magnetic 

moments of 𝑚 = 𝑘/2𝜇0 = (1.00 ± 0.04) μB and (1.004 ± 0.001) μB, respectively. The value 

for TiH is in excellent agreement with the measurements of Yang and co-workers [9]. Note 

that the magnetic field was applied mostly in-plane in Refs. [7–10,23,24], whereas the field 

points along the out-of-plane direction in our system. Our measurements thus confirm the 

textbook like spin ½ character of TiH, which is devoid of a magnetic anisotropy energy 

and which was similarly reported for the Kondo system Ti/Cu2N [25]. Note that we verified 

the spectroscopic signature of TiH before and after an ESR sweep for both measurements 

in Figure 6c-d. While the spectrum for Figure 6c remained identical and reminiscent of TiH, 

we noticed a change from TiH to Ti after the ESR sweep Figure 6d. A change of atomic 

species during the ESR sweep is excluded, as it would lead to a distinct jump in all ESR 

traces. A transformation thus occurred either before the first data point of the ESR sweep 

or between completion of the ESR sweep and prior to the tunneling spectroscopy 

measurement. The magnetic moments of both ESR sweeps are identical within the error 

bars and thus likely stem from the same type of TiH spin. However, we cannot exclude that 

our ESR sweep in Figure 6d represents a measurement of pure Ti after all. Titanium on MgO 

was found to be a spin-1 system via tunneling spectroscopy [9] whose gas phase magnetic 
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moment would agree with our value of 1.004 μB. If this were the case, our data would 

indicate the independent conservation of orbital and spin moment quantum numbers upon 

adsorption on MgO. 

The average full-width at half-maximum (FWHM), Γ, of the resonances for the 

ESR sweep in Figure 6d is (3.0 ± 0.5) mT. From the frequency-dependent RF transmission 

displayed in Figure 4b-c, we correlate the effective RF-drive amplitude to their respective 

widths, as displayed in Figure 6d. Since the Rabi flop rate, Ω, is proportional to VRF [7], we 

follow the formalism of Refs. [7,23] to extract the effective phase coherence time, 𝑇2∗, 

without requiring knowledge of T1 and Ω, via the relation Γ = √1 + 𝑇1𝑇2∗Ω2 𝜋𝑇2∗⁄ . We find 

a zero-RF drive Γ of (2.5 ± 0.2) mT and a corresponding coherence time of 𝑇2∗ of (4.5 ± 

0.4) ns. This represents a lower bound for the intrinsic T2 because additional broadening 

mechanisms related to the vibrational stability of the tip [7], magnetic fluctuations [23], 

and decoherence by tunneling electrons [23] have not been accounted for.  

For different ESR sweeps, the Zeeman trends show zero field intercepts in the range 

of -30 to +65 mT. We attribute these offsets to the tip-stray field originating from the 

magnetic atoms adsorbed onto the tip apex [9,26,27]. As expected, we observe that the 

stray field is unique for every micro-tip. Although the tip-field influences the resonance 

frequency, our magnetic field-sweep routine is insensitive to that effect because we use the 

same micro-tip for the entire sweep and we fix the tip-atom distance via atom-tracking. 

The magnetic field-sweep ESR described here notably allows measuring the magnetic 

dipole-dipole coupling between ESR active spins and nearby magnetic moments. Unlike 

in frequency-sweep ESR [8], the magnetic dipole field of a coupled spin would be 

measured directly via the shift of the resonance position without requiring prior calibration 

of the ESR sensor moment. 
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C. RF and DC pulse alignment 

Pulsed ESR measurements enable advanced insights into surface supported spins 

and their magnetic interactions using Rabi oscillations, Ramsey fringes, spin-echoes, and 

other quantum operations. These experiments rely on the exact timing between RF pulses 

for coherent driving and DC pulses for spin-projections. However, the propagation times 

of electric signals depend on cable length as well as material dependent factors, which need 

to be accounted for. We demonstrate here a method to calibrate and control the temporal 

alignment of RF and DC pulses with nanosecond precision. In order to measure their 

temporal alignment, we apply RF and DC voltages to a nonlinear IV-characteristics and 

exploit 𝐼(𝑉𝐷𝐶 + 𝑉𝑅𝐹) ≠ 𝐼(𝑉𝐷𝐶) + 𝐼(𝑉𝑅𝐹), which is frequently used in time-resolved 

experiments [15,28]. We demonstrate the measurement principle by using a Schottky RF 

diode rectifier (Pasternack, PE8014) to emulate a nonlinear IV-tunnel junction.  

The RF and DC pulses originate from different generators and travel along separate 

paths before they are combined in the pick-off tee from where they advance on the same 

cable to the diode (or tunnel-junction, see Figure 2). The simultaneous arrival of RF and DC 

pulses leads to a distinct current owing to the nonlinear IV-relationship and thus allows 

finding the trigger delay for which RF and DC pulses overlap.  

In order to determine this delay, we create two DC pulse trains; one serves as the 

5V-TTL reference that triggers the RF generator to initiate RF pulses. The other DC pulse 

train is applied to the diode and corresponds to the voltage pulses used for measuring spin-

projections. We set the pulse-width of both pulses to tDC = 5 µs and repeat them with a 

period of 94.9 µs, as sketched in Figure 7. We offset the TTL and DC pulses by one-half 

period. The TTL trigger initiates an RF pulse of variable trigger delay tdelay and length tRF 

= 500 ns that we want to overlap with the DC pulse. Upon sweeping tdelay, we observe a 

distinct change in the diode current when the DC and RF pulses start to merge/overlap, 

seen as a dip in the differentiated signal at about 47 µs in Figure 7. Similarly, when the 
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overlap of DC and RF pulses ends, the signal shows a distinct peak. The position of the 

first dip allows us to find the delay time at which the RF pulse exactly precedes the DC 

pulse, which, for instance, represents the alignment scheme of RF and DC pulses in a Rabi 

oscillation experiment. The distance between peak and dip is exactly 5 µs, which is also 

the DC pulse length. Further, the widths of the dip and peak scale with the length tRF of the 

RF pulse. 

In order to demonstrate the influence of different path lengths on the propagation 

time, we have introduced an additional 10 m cable to the trigger line to delay the arrival 

time of the RF executing trigger and consequently also the RF pulse (see loop in Figure 2 

and inset in Figure 7). Since the TTL and the DC pulses are created at the same location in 

the AWG, the DC pulse gains a head start with respect to the RF pulse at the pick-off tee, 

which is seen as an earlier arrival (green) in the overlap signal in Figure 7. We find a delay 

of (45 ± 2) ns between the 10 m and 0 m trigger cases, as seen by the overlaid Gaussian 

fits to the respective dips in Figure 7. The effective signal propagation velocity is (0.74 ± 

0.03) c, in good agreement with the cable specifications. Our pulse-alignment 

measurements also indicate an attractive way to permanently introduce a time-delay into 

the TTL trigger line to compensate for different Vb and RF cable lengths without 

compromising the latter two signal qualities. The TTL signal level is more resilient than 

the typically used smaller signal amplitudes on the DC and RF side.  

 

V. Summary and Outlook 

We have described the upgrade of an existing low-temperature (0.35 K, 8 T) STM into an 

ESR capable device. Our work shows RF transmission from ambient to the tip of the STM 

up to 30 GHz at cryogenic temperatures. We demonstrate the ESR capabilities of our 

upgraded apparatus on the model system TiH on MgO. We find a magnetic moment for 
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TiH of (1.00 ± 0.04) μB, in excellent agreement with previous work [9] and a value of 

(1.004 ± 0.001) µB for an ESR sweep using 5 monitoring frequencies and recorded above 

an adsorbate either representing TiH or pure Ti. Our ESR field-sweeping method provides 

direct insight into the magnetic field dependent Zeeman energy of the spin ground states. 

It should enable the calibration-free measurement of nearby magnetic stray-fields via shifts 

of their resonance position. We illustrate our cabling concept that allows the simultaneous 

application of fast DC and RF pulses, which may be used for future pulsed ESR 

investigations. We further demonstrate a method to align the arrival times of DC and RF 

pulses with nanoseconds precision, which are traveling along paths of different propagation 

times. We identify potential pitfalls that compromise effective RF transmission and 

highlight ways how they can be overcome to achieve an RF attenuation close to the 22 dB 

potential of our apparatus. 

Methods 

The MgO layer is grown by exposing an atomically clean Ag(100) single crystal to 

an Mg flux from an effusion cell in an oxygen partial pressure of ~1x10-6 mbar at a sample 

temperature of 773 K and using a cooling rate of 15 K min-1 [29,30]. Iron and Ti atoms are 

dosed from a commercial e-beam evaporator onto the sample in the STM position. Upon 

deposition, some Ti adatoms are hydrogenated from the residual gas [9,14] while others 

remain pure Ti. The tip is etched electrochemically from 0.5 mm x 0.5 mm rods of bulk Cr 

following recipes described in Refs. [31,32]. However, due to several tip-indentations into 

the clean Ag(100) parts of the surface, our tip-apex is most likely Ag terminated. Therefore 

we transfer individual Fe atoms by vertical atom manipulation (-400 pm, 550 mV) from 

the sample to the tip in order to spin-polarize it [33]. The spin-polarization is tested on Fe 

by 2-state switching [34]  or on Ti via asymmetric conductance steps [9]. 
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Figure Captions 

Figure 1 | Schematics and view of the upgraded STM system. a, Cabling schematics 
inside the vacuum chamber to the tip of the STM. The red color sketches the path of the 
RF line, Vb, which is made from a stainless steel semi-rigid (SR) coaxial line with silver-
coated center conductor. The two other lines, z, and It, are made from a SR stainless steel 
coaxial line up to the 4K stage and are then continued by a flexible stainless steel coaxial 
cable. b, Photo of the STM showing the Vb, z, and It lines. The Vb line connecting the 4 K 
and the mK-stage is wound into a loop to reduce the heat-transmission. The dotted angle 
indicates the 90° SMA connector that connects the flexible coaxial cable to the tip of the 
STM.  

 

Figure 2 | Ambient side wiring schematics. Integration of RF and arbitrary waveform 
generator (AWG) into the STM circuit. The pick-off tee and relay permits the application 
of fast DC pulses from the AWG onto the RF path for pump-probe spectroscopy or pulsed 
ESR experiments. The low-pass filter has a selectable passband. The trigger adjust allows 
compensation of different propagation times in RF and DC lines, as described in the text.  

  

Figure 3 | Transmission characteristics of semi-rigid cables. The silver coated ~2 m SR 
line, Vb, has an average room-temperature attenuation of 18 dB from 5 to 25 GHz. It 
bridges the thermal gradient between the ambient 300 K to the UHV mK part of the STM, 
as seen in the inset to the right. The weak ~220 MHz oscillations in the Vb line are due to 
small reflections at the mK-stage and map to a cable length of ~47 cm, in agreement with 
the length of the segment connecting the 4 K to the mK-stage. The ~1.5 m stainless SR for 
z and It lines have a much larger attenuation that quickly drops below the diode detection 
limit around 17 GHz.  

 

Figure 4 | Quantifying RF transmission to the STM tip. a, Differential conductance steps 
at V0 = 6.7 mV of an adsorbate on MgO used for RF rectification. The application of RF 
power leads to a step broadening of about 2 mV for a source power of -1 dBm at 16.4 GHz. 
The arrow denotes V0 , the center of the nonlinearity, used for RF rectification. b, and c, 
Transmission of RF power to the STM junction at constant source power of 5 dBm and 
10 dBm, respectively, measured via the rectifying effect of the nonlinearity at V0 . (V0 = 
6.7 mV, It = 100 pA, Δf = 5 MHz, tdwell = 250 ms). d, Frequency dependent temperature 
increase of the STM body at 20 dBm source power with respect to the 4.3 K base 
temperature (Δf = 5 MHz, tdwell = 1 s). 
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Figure 5 | STM deformation and atom-tracking sequence during a magnetic field-
sweep. a, STM image before and after sweeping the magnetic field Bz from zero to 550 mT. 
The sweep results in a lateral displacement of about 2 nm indicated by the apparent shift 
of the Fe and Ti atom positions marked by the dashed circles. b, The vertical tip-height is 
monitored during a field-sweep by tracking a Ti adatom. A permanent height-change of 
~400 pm is noted. (Vb = 150 mV, It = 10 pA). c) Timing diagram during an ESR field-
sweep showing atom-tracking and the engagement of the feedback loop. The atom is 
tracked at every jth field increment and the ESR signal is recorded for a set of frequencies 
that have good transmission. 

 

Figure 6 | ESR sweeps on TiH on MgO/Ag(100). a, Topography of Fe, Ti, and TiH showing 
different apparent heights on MgO. b, Spectroscopy used to further identify Ti and TiH. c, 
ESR sweep on TiH, monitored at 3 frequencies, showing resonances and their 
corresponding Lorentzian fits superimposed. The peak positions follow a Zeeman trend of 
slope (28 ± 1) GHz/T indicated by the straight line. d, ESR sweep on Ti monitored at 5 
frequencies shows a linear Zeeman trend of (28.10 ± 0.04) GHz/T. The order by which the 
frequencies have been applied is indicated at the right of either sweep and allows to identify 
spurious signals due to a memory effect of the lock-in amplifier. (V = 60 mV, I = 30 pA, 
20 dBm RF, TSTM ~ 2 K). e, Resonance width vs driving strength used to determine the 
effective coherence time, 𝑇2∗.  

 

Figure 7 | RF and DC pulse alignment. Measurement of the relative propagation times of 
DC and RF pulses via the rectifying effect of a nonlinearity, here demonstrated with an RF 
diode. A DC pulse of tDC = 5 µs and an RF pulse of tRF = 500 ns are applied at varying 
delays tdelay between the RF trigger and the DC pulse. When both pulses overlap, the diode 
current changes, which is used to find the delay time tdelay at which the pulse-overlap starts. 
Adding a cable of 10 m to the trigger line demonstrates the temporal resolution of the onset 
measurement, resulting in a shift of (45 ± 2) ns.  
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Figure 1: STM, one column 

  



21 

 

  

Figure 2: AWG cabling, one column 
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Figure 3: RT transmission, one column 
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Figure 4 rectification, one column 
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Figure 5: field-sweep, one column 
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Figure 6: ESR sweep, two columns 
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Figure 7: Pulse Alignment, one column 

 




