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Abstract—In this paper, energy efficient uplink communica-
tions are investigated for battery-constrained mobile terminals
(MTs) with service quality requirements and multi-homing ca-
pabilities. A heterogeneous wireless medium is considered, where
MTs communicate with base stations (BSs) and access points
(APs) of different networks in overlapped coverage. Different
from the existing works, we develop a quality of service (QoS)-
based optimization framework for joint uplink bandwidth and
power allocation to maximize energy efficiency for a set of
MTs with multi-homing capabilities. The proposed framework
is implemented in a decentralized architecture, through coordi-
nation among BSs/APs of different networks and MTs, which
is a desirable feature when different networks are operated by
different service providers. A suboptimal framework is presented
with a reduced computational complexity as compared with the
optimal framework. Simulation results demonstrate the improved
performance of both the optimal and suboptimal frameworks
over a state-of-the-art benchmark.

Index Terms—Energy efficient communications, green com-
munications, multi-homing resource allocation, heterogeneous
wireless medium.

I. INTRODUCTION

The past decade has witnessed significant advances in the
design of mobile terminals (MTs) and the offered communica-
tion services for mobile users. Specifically, MTs are currently
equipped with processing and display capabilities that enable
them to support voice, video, and data calls. In addition,
MTs are capable of establishing simultaneous communications
with base stations (BSs) and access points (APs) of different
networks, through multiple radio interfaces and using the
multi-homing feature [2]. However, such an advancement
results in high energy consumption of the MTs. It has been
shown that there exists an exponential increase in the gap
between the MT demand for energy and the offered battery
capacity [3]. The operational time of an MT in between battery
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chargings is considered to be a significant factor in the user
perceived quality-of-service (QoS) [4], [5]. Energy efficient
(green) communication techniques have been proposed as a
promising solution to regulate the MT energy usage while
satisfying the user required QoS.

In literature, energy efficient techniques can be classified
into two broad categories based on the call traffic load. On-
off switching of the MT radio interface is adopted at a
bursty/low call traffic load to achieve energy saving [6] - [13].
At a continuous/high call traffic load, energy efficient radio
resource allocation is employed [14] - [20]. With overlapped
coverage from different networks, the wireless medium has
become a heterogeneous environment. Using its multiple radio
interfaces and through the multi-homing capability, an MT
is capable of establishing two modes of communications,
namely single-network and multi-homing access [2], [31] -
[33]. In a single-network access, the MT connects to the
best wireless network at its location, while in multi-homing
access, the MT connects to all wireless networks available at
its location. Hence, energy efficient radio resource allocation
is further classified into single-network [14] - [17] and multi-
homing [18] - [20] techniques, based on the number of utilized
radio interfaces at the MT. Multi-homing resource allocation
can achieve higher energy efficiency compared to the single-
network access, due to the potential disparity in: 1) wireless
channels between the MT and different BSs/APs and 2)
available radio resources at different BSs/APs. However, the
multi-homing feature is challenged by the incurred additional
energy cost to simultaneously activate multiple radio interfaces
of the MT, along with the associated signaling overhead.
Hence, efficient radio resource allocation is required for multi-
homing MTs to address the aforementioned challenges while
achieving the target benefits.

One limitation with the existing multi-homing energy effi-
cient radio resource allocation mechanisms in a heterogeneous
wireless medium is that these solutions focus only on optimal
power allocation to different radio interfaces of the MT, given
an allocated bandwidth. Hence, the main focus so far is on ex-
ploiting the diversity in fading channels and propagation losses
between the MT and different BSs/APs in order to enhance
the uplink energy efficiency. However, further improvement
can be achieved by exploiting the disparity in available radio
resources at the BSs/APs of different networks. This calls
for a joint optimization framework for bandwidth and power



allocation to maximize uplink energy efficiency for a set of
MTs with multi-homing capabilities. Furthermore, the exist-
ing resource aggregation schemes (e.g., carrier aggregation
in long-term evolution (LTE)-advanced [21] - [23]) assume
a scenario where all resources belong to the same service
provider. Hence, centralized resource allocation schemes can
be adopted. On the other hand, in a heterogeneous networking
environment, the aggregated resources are operated by differ-
ent service providers. Hence, novel decentralized mechanisms
should be investigated to enable coordination among MTs and
BSs/APs of different networks so as to satisfy the target QoS
in an energy efficient manner.

In this paper, we propose a QoS-based optimization frame-
work for joint uplink bandwidth and power allocation to max-
imize energy efficiency for MTs in a heterogeneous wireless
medium. Specifically, we summarize the contributions of this
work as follows:

e The energy efficient uplink communication problem is
formulated to jointly allocate uplink transmission band-
width and power to a set of MTs, with minimum re-
quired QoS and multi-homing capabilities, from a set
of BSs/APs with overlapped coverage. In dealing with a
multi-user system, we aim to maximize the performance
of an MT that achieves the minimum energy efficiency.
In addition, the heterogeneity of the wireless medium
is captured in the problem formulation, in terms of
different service areas, channel conditions, available radio
resources at BSs/APs of different networks, and different
maximum transmit power at the MTs.

o We show that the radio resource allocation problem is a
max-min concave-convex fractional program [34]. Using
a parametric approach, the problem is transformed into
a convex optimization problem that can be solved effi-
ciently through the Lagrangian decomposition approach.

« Based on the problem solution, we propose an optimal
framework for joint bandwidth and power allocation. The
framework is implemented in a decentralized architec-
ture, through coordination among BSs/APs of different
networks and MTs, which is desirable in case different
networks are operated by different service providers.

o To reduce the associated computational complexity and
signaling overhead, we propose a suboptimal radio re-
source allocation framework for joint bandwidth and
power allocation.

o The performance of the proposed optimal and suboptimal
frameworks is evaluated in comparison with a state-of-
the-art benchmark. The benchmark relies only on op-
timal power allocation to maximize the uplink energy
efficiency. Simulation results demonstrate the improved
performance of the optimal and suboptimal frameworks
in terms of the achieved total energy efficiency, minimum
energy efficiency, and total throughput, QoS satisfac-
tion, and reduced computational complexity and signaling
overhead of the suboptimal framework.

The rest of the paper is organized as follows. The related
work is reviewed in Section II. The system model is presented
in Section III. In Section IV, the uplink energy efficient

communication problem is formulated and the parametric
approach and the Lagrangian decomposition technique are
employed to find the optimal bandwidth and power allocation.
The decentralized optimal framework is outlined in Section
V. Signaling overhead and computational complexity studies
are presented in Section VI and a suboptimal framework is
developed. Also, a benchmark is presented for comparison.
Simulation results and discussions are given in Section VL
Finally, conclusions and future work are given in Section VIIL.
Table I summarizes the important mathematical symbols used
in this paper, and Appendices present the proofs of Proposition
1 and Theorem 1.

II. RELATED WORK

Uplink energy efficient radio resource allocation mecha-
nisms can be classified into single-network and multi-homing
access techniques, based on the number of utilized radio inter-
faces at the MT. Specifically, a single-network radio resource
allocation mechanism activates a single radio interface of the
MT at a time and connects to only one network at a time. On
the other hand, a multi-homing resource allocation mechanism
employs multiple radio interfaces of the MT and connects it
to multiple networks simultaneously.

In the single-network access mechanisms, energy efficient
uplink communication is investigated for a set of MTs within
one network with specific wireless access technology, e.g.,
orthogonal frequency division multiple access (OFDMA). The
carrier aggregation technique of an OFDMA network is em-
ployed in [14] to enable MTs to use multiple carriers to
achieve high data rate communications in the uplink with
an improved energy efficiency. In [15], a central scheduler
is developed to optimize the uplink energy efficiency across
an OFDMA network by allocating the system bandwidth
among MTs. In [16], subcarrier assignment, modulation, and
transmit power adjustment are investigated to optimize the
sum of users’ bit-per-joule in a multi-cell multi-user OFDMA
network. The users’ energy efficiency in a multi-cell uplink
OFDMA network is maximized in [17] through noncoop-
erative games for subcarrier allocation and transmit power
control. One drawback of single-network access mechanisms
is that they do not fully exploit the available resources in the
heterogeneous wireless medium in terms of diverse wireless
channel conditions between the MT and different BSs/APs and
radio resource availability at different BSs/APs.

In multi-homing access mechanisms, the MT multiple radio
interfaces are utilized to enhance energy efficiency. Coopera-
tion among MTs in transmitting their data packets to the BS
using their multiple radio interfaces is investigated in [18].
Specifically, using the short-range radio interfaces (e.g., via
the bluetooth technology), MTs exchange their data packets
among each other and then forward the data packets using
the cellular interface to the BS. In [19], MTs relay the
source message to the destination, using their multiple radio
interfaces, in a decode-and-forward fashion. In [20], uplink
energy efficiency is enhanced for an MT through multi-homing
communications with all available BSs/APs. However, the
mechanisms proposed in [18] - [20] mainly focus on exploiting



TABLE I
SUMMARY OF IMPORTANT SYMBOLS

Symbol Definition
Brnsm Bandwidth allocated from network n BS/AP s to MT m
Bns Total bandwidth available at network n BS/AP s
dnsm Distance between MT m and network n BS/AP s
Ansm Channel power gain between MT m and network n BS/AP s
L Lagrangian function
M Set of MTs in the geographical region
Mops Subset of MTs in the coverage area of network n BS/AP s
N Set of available networks in the geographical region
Ny One-sided noise power spectral density
Prsm Transmission power allocated by MT m to the radio interface communicating with network n BS/AP s
P, Total power consumption by MT m
P;E Total available power at MT m
P,Ts Maximum transmission power of MT m radio interface communicating with network n BS/AP s
Qgsm Fixed circuit power consumption of MT m radio interface communicating with network n BS/AP s
Q],?S,n Dynamic circuit power consumption of MT m radio interface communicating with network n BS/AP s
Rpsm Achieved data rate by MT m on its radio interface communicating with network n BS/AP s
R Total achieved data rate by MT m
R’;,‘Lin Minimum required data rate by MT m
Sn Set of BSs/APs of network n covering the geographical region
Nm Achieved energy efficiency by MT m
A Non-negative parameter used in transforming the concave-convex fractional program into a convex optimization program
bm Lagrangian multiplier for the required data rate constraint
Hm, Lagrangian multiplier for the minimum energy efficiency constraint
Vm Lagrangian multiplier for the total power consumption constraint
Bns Lagrangian multiplier for the total bandwidth allocation constraint
Wnsm Lagrangian multiplier for the maximum transmission power constraint
« Path loss exponent
p Power amplifier efficiency
Qnsm Average channel power gain between MT m and network n BS/AP s

the diversity in wireless channel conditions among the MT
and different BSs/APs and neglect the diversity in available
resources (e.g., bandwidth) at the BSs/APs, which can further
enhance the energy efficiency.

In this paper, we present an optimization framework to
jointly allocate uplink transmission bandwidth and power for
a set of MTs with multi-homing capabilities in a heteroge-
neous wireless medium. In literature, joint bandwidth and
power allocation has been investigated for OFDMA networks
through sub-carrier assignment and power control, e.g., [16]
and [17]. However, the related works are limited to single-
network access. Hence, the associated mechanisms cannot be
directly applied to the heterogeneous wireless medium due
to the following: 1) In a heterogeneous wireless medium, the
coverage area is partitioned into a set of service areas, each is
uniquely covered by a subset of networks, different from the
OFDMA single-network access, which is described by a single
service area and involves no coverage overlap among different
networks; 2) In OFDMA single-network access, the MT is
served by one BS while in a heterogeneous wireless medium,
the MT can be served by BSs/APs at different distances
(hence, the MT suffers from different path losses), which
affects the radio resource allocation decision; 3) In OFDMA
single-network access, no coordination is required among BSs
of different networks for resource allocation, different from
the heterogeneous wireless networks scenario. In this paper,
we formulate the problem to capture the heterogeneity of the
wireless medium, in terms of different service areas, channel
conditions, available radio resources at BSs/APs of different
networks, and different maximum power levels at the MTs.

In LTE-advanced networks, joint carrier component se-
lection and power control has been studied in the context
of carrier aggregation. Although carrier aggregation is simi-
lar in concept to multi-homing resource aggregation, multi-
homing supports simultaneous use of different radio access
technologies, unlike carrier aggregation. Furthermore, in LTE-
advanced, all contiguous or dis-contiguous) carrier compo-
nents are operated by the same service provider [21] - [23]. As
a result, in LTE-advanced networks, central resource allocation
can be adopted through a central resource manager. However,
in a heterogeneous wireless medium with multiple operators,
decentralized coordination among MTs and BSs/APs of dif-
ferent networks is required.

Moreover, aiming at optimal joint bandwidth and power
allocation, we deal with a multi-user system to account for
the MTs’ competition over the shared bandwidth, different
from [20] that studies only optimal power allocation and
hence deals with a single-user system. In this regard, we
aim to maximize the performance of the MT that has the
minimum achieved energy efficiency. To further reduce the
associated signaling overhead and computational complexity,
a suboptimal framework is presented.

III. SYSTEM MODEL

A geographical region is considered where a set, N' =
{1,2,..., N}, of wireless networks is available, as shown in
Figure 1. Different networks are operated in separate frequency
bands by different service providers, and as a result no
interference exists among these networks. Specifically, the set,
N, contains cellular networks with heterogeneous cell sizes



Femto-cell AP

Macro-cell BS

coverage

Fig. 1. The network coverage areas [2]

(e.g., macro, pico, and femto-cells) and overlapped coverage
areas. Each network, n € A/, has a set S,, = {1,2,...,5,} of
BSs/APs in the geographical region. Interference management
schemes (e.g., frequency reuse [24] - [27]) are implemented
for interference mitigation among BSs/APs within the same
network. Due to the overlapped coverage from BSs/APs of
different networks, the geographical region is partitioned into
a set of service areas. A unique subset of BSs/APs covers
each service area. The total bandwidth available at network n
BS/AP s is denoted by B,s. A cooperative networking sce-
nario is considered where different networks in A/ cooperate
in radio resource allocation through signaling exchange over
a backbone [2].

A set of MTs M = {1,2,..., M} performs uplink multi-
homing video transmission in the geographical region'. Let
M, s € M denote the subset of MTs which lie in the
coverage area of network n BS/AP s. Using the multiple radio
interfaces and through the multi-homing capability, each MT
can communicate with multiple BSs/APs simultaneously. The
bandwidth allocated on the uplink from network n BS/AP s to
MT m is denoted by Bj,sm, where By s = 0 for m ¢ M.
Let P, represent the transmission power allocated by MT
m to its radio interface communicating with network n BS/AP
s. Denote p as the power amplifier efficiency. Hence, the
MT transmission power consumption on each radio interface
is given by Pysm/p [29]. The MT circuit power consump-
tion for each radio interface has two components. The first
component is a fixed circuit power consumption for each
MT radio interface and is given by QF_ . which captures
the power consumption of the radio frequency (RF) chain,
i.e., digital-to-analog converter, RF filter, local oscillator, and
mixer. The second component is a dynamic part that refers
to the digital circuit power consumption and scales with the
allocated transmission bandwidth (as bandwidth increases,

IThe video packets streamed among the multiple radio interfaces in
transmission can be achieved using a packet scheduling algorithm as in [28].

more computations and base band processing are required).
The dynamic component is expressed as [30]

D f anm
Qnsm = QD + Tnsm (1)
ref
where Q]rgf denotes the reference digital circuit power con-

sumption for a reference bandwidth B¢ and 0,4, iS a
proportionality constant. For m ¢ M., Phsm = QF. =
QP =0.Denote QF  + Qfgf by Qnsm and opsm/ Bret by
Cnsm- Hence, the MT total power consumption for each radio

interface is given by
P?’LSﬂ'l

nsm

pr -

nsm

+ Qnsm + Cnsmanm~ (2)

Due to technology limitation, each MT radio interface has a
maximum transmission power of PES. The maximum power
constraint at MT m is given by PEL. The MT target service
quality can be obtained using a minimum data rate of R™®
for MT m.

The channel power gain between MT m and network n
BS/AP s is denoted by h,, s, which captures both the wireless
channel Rayleigh fading and the path loss®. Let d,,s,, denote
the distance between MT m and network n BS/AP s. The
associated path loss is given by d,5,,, where « is the path loss
exponent. Let x,4,, be a Rayleigh random variable associated
with the link between MT m and network n BS/AP s. The
channel power gain between MT m and network n BS/AP s
is given by

Rpsm = /f'nsmd;gm- 3)

The one-sided noise power spectral density is denoted by Ng.

IV. PROBLEM FORMULATION

In this section, the joint bandwidth and power allocation
problem is formulated to maximize energy efficiency for a set
of MTs with QoS requirements given by R™". In the next
section, we present an optimal decentralized energy efficient
radio resource allocation framework, based on the problem
solution.

According to Shannon formula, the data rate achieved by
MT m using the radio interface communicating with network
n BS/AP s is given by?

Pnsm hnsm )
NOanm ’

The total achieved data rate by MT mis R, =3 > . Rpom,
which should satisfy the required QoS, i.e.,

Ym. (5)

The total allocated bandwidth by network n BS/AP s should
not be larger than the total available bandwidth, i.e.,

Z Brsm < Bps,
meMays

Rysm = Bnsm 10g2(1 + V’I’L, S, m. 4)

R, > R™n,

Vn, s. (6)

2The power consumed in the channel state information (CSI) reporting
is negligible as compared with the power consumed in the actual data
transmission.

3The data rate formula in (4) can be modified to account for the spectral
efficiency of different technology standards.



Given the technical limitation on the maximum transmission
power for each radio interface, we have

Posm < PY,  ¥n,s,m. (7)

The MT total power consumption includes both data trans-
mission and circuit power consumption for all active radio
interfaces, i.e., for MT m, P, = > > PI . The total
power consumption for MT m, P,,, should satisfy the MT
maximum power constraint, i.e.,

P, <Pl = vVmeM. (8)

Define the energy efficiency of MT m, 7,,, as a ratio of
the total achieved data rate to the total power consumption,
ie., N, = R,,/Pp,. The objective is to maximize the min-
imum achieved energy efficiency n,, for m € M. This is
obtained through joint bandwidth and power allocation from
all networks in A/ to all MTs in M, while satisfying the
required minimum transmission rates and the total bandwidth
and power constraints. Hence, the problem is formulated as

B nsI}: ?‘P)E1< m {"fl%l./l\l/l nm}
s.t. (5) — (8), ©)

anmypnsm > 07 Vn,s,m.

Problem (9) is classified as a max-min fractional program [34].

Proposition 1. Problem (9) is a concave-convex fractional
program.

Proof. See Appendix A.

From Proposition 1, (9) can be transformed into a convex
optimization problem, for a given parameter A\, using a para-
metric approach [34]. The optimal value of A, which results
in the optimal bandwidth and power allocation for (9), can be
obtained through an iterative algorithm.

A. The Parametric Approach

For a non-negative parameter A = 7%1/{14 Nm, (9) can be
transformed into

P\ =

in{R,,, — \P,
Jnax o { min {Rm — AP 1}

sit. (5) — (8),
B?’LS’HH Pnsm Z 07

(10)
Vn, s, m.

The optimal solution of (9) can be determined by finding a
root of equation F'(A\) = 0, which can be obtained using a
Dinkelbach-type algorithm, as given in Algorithm 1 [35].

Algorithm 1 Dinkelbach-type Procedure

Initialization: {B),5,,, (1), Prsm(1)} > 0 Vn,s,m, A(1) =
min 7, ¢ = 1;
me
while F(\(i)) # 0 do

Solve (10) for optimal { B, (%), Prsm(2)};

\(i R N

(¢ +1) = min g (9);

14— 1+ 1;
end while
Output: B, s, Pusm Y1, s, m.

Algorithm 1 converges to the optimal solution of (9) in a
finite number of iterations [35].

In the following, we focus on solving (10), as it constitutes
an important step in Algorithm 1. Letting 6 = mijr\l/1 {Rm —
me

AP}, (10) can be re-written as

max 0
BTLS"T’]JP’VLS’I‘ITV
s.t. 0 <R, —AP,, VYm (11)
() = (8),
anma Pnsm > 0, VTL, S, m.

Since (11) has a linear objective function and convex
constraints, it is a convex optimization problem [36]. The
Lagrangian function for (11) can be expressed as

L=00- Y pm)+ Y L+ > Y Lns, (12
memM memM neN ses,
where L., and L, are given by
neN seS,
Prsm T
: ( + Qnsm + Cnsmanm) + Wnsm (Pns - Pnsm)
- (rmem,min + Vmpg;,}y (13)
Lns = 5ns{an - Z anm}7 (14)

meMns

where p,, is a Lagrangian multiplier for the first constraint in
(11), and ¢y, Brss Wnsm» and v, are Lagrangian multipliers
for constraints (5) - (8), respectively.

In the following, we maximize L to find the optimal
bandwidth and power allocation for a given value of .

B. Power Allocation to the MT Different Radio Interfaces

In this subsection, the optimal allocated power at the MT
different radio interfaces is derived, given the bandwidth
allocation B, 5y, V1, s, m, ¢p,, and i, ¥Ym. Using the Karush-
Kuhn-Tucker (KKT) conditions [36], we have

- m t+ Om _7)\m+Vm _Wnsmzo-
9P, (Hm + & )8Pnsm p( 1 )
(15)
From (4) and (15), we have
N
Prjsm _ anm[ - Hm + (bm _ 0 ]-&-7
In@2){;Am +v5) +whgnt  fnsm
Vn,s,m  (16)

where [-]T is a projection on the positive quadrature to account
for P,sm > 0. The optimal values of wy;,,, and v}, can be
obtained by solving the dual problem using a gradient descent

method [36]. Hence, we have

wnmn(i + 1) = [w"9m(z) - El(P;{s - P’ILSHL(Z.))]+7 (17)
P .
V(i 1) = [ (i) —ea(PF = 7 57 (~em@
neN ses, p
+ Qnsm + CnsmBnsm })] " (18)

where ¢; and e» are sufficiently small step sizes. From (17)
and (18), the optimal values of w,,s,, and v, ensure that the
optimal transmission power allocated for each radio interface



satisfies the maximum transmission power constraint and the
total power allocated by the MT satisfies its maximum total
power constraint. An iterative algorithm can be used to update
Wnsm and vy, until the optimal P, value Vn, s is found, as
shown in Algorithm 2, where € is a small tolerance value.

the total allocated bandwidth by each BS/AP satisfies its total
available bandwidth. An iterative algorithm can be used to
update [3,s until the optimal B,,s,, value Vn,s,m is found
for a given value of P, 4, Vin, @m, and p,, ¥Ym, as shown in
Algorithm 3.

Algorithm 2 Power Allocation to Each Radio Interface for
Every MT m
Input: B,,s,, Y1, S, im, Om, and A;
Initialization: w5, (1) >0 and v,,,(1) >0, =1, J =1,
while J =1 do
for n € N do
for s € S, do
L]Jr.

Rnsm
wnsm(i + ]-) = [Wnsm,(i) - El(P;"l:q -
end for
end for
V(i 41) = [V (D) = £2(Ph = pepr Ses, {220 +
Qnsm + Cnsmanm})]+;
if | Prsm (i) — Prsm(i — 1)] < € then
J=0;
else
1— 1+ 1;
end if
end while
Output: Py Vn,s.

Hom+@m _
@ L i +2m (D) T omam T

anm[

Prsm(i))]F5

C. Bandwidth Allocation at Every Network BS/AP

In this subsection, the optimal allocated bandwidth at differ-
ent BSs/APs to each MT is derived, given the allocated power

P, and v, calculated in the previous subsection, ¢,,, and
Lo, YT
Applying the KKT conditions, we have
aL a-Rnsm * _
m — (Nm +¢m) aanm - Cnsm(ANJm + Vm) - ﬂns — O
19)
Hence, we have
a]%nsm -1 :um + ¢m
= , Vn,s. 20

From (4) and (20), the bandwidth allocation solution can be
found, using the Newton’s method, as the positive real root of

log,(1 + P:{smhnsm) _ Pl smhnsm
NoBjsp, In(2)(No By, + Prrgmbnsm)
_ Cnsm()‘ﬂm + I/:n) + Brs
Hom + Om .
(21)

In addition, the optimal value of 3, can be obtained by
solving the dual problem using a gradient descent method,
i.e.,

ﬂns(z+1) = [an(i)_f’:fi(an_ Z anm(z))]+7

mEMns

vn, s

(22)
where €3 is a sufficiently small step size. The Lagrangian
multiplier (5,5 is calculated at each BS/AP to guarantee that

Algorithm 3 Bandwidth Allocation at Each Network BS/AP to

Each MT
Input: P}, .

Initialization: 3,5(1) >
while J =1 do
Find B, . (i) as the positive real root of (21);

ﬂns(i + 1) = [ﬂne(l) - EB(an - ZWEMnS anm(l))]+,
if | Bpsm (1) — Brsm (i — 1)| < € then
J =0;
else
t— 1+ 1;
end if
end while
Output: B

nsm

Vn, s,m, vy, Gm, and fim;
0,i=1,J=1;

Vn, s.

V. OPTIMAL UPLINK ENERGY EFFICIENT RADIO
RESOURCE ALLOCATION FRAMEWORK WITH QOS
GUARANTEE

In this section, the optimal values of ¢,,, and (., ¥Ym, which
result in the optimal solution of (11) at a given A value, are
derived. Also, a summary of the joint bandwidth and power
allocation framework is presented.

A. Finding the Optimal p., for a Given ¢,
Applying the KKT conditions, we have

oL
00 0 23)
From (12), we have
> pm =1 (24)
meM

To account for (24), we modify the power and bandwidth
allocation expressions in (16) and (21), as follows. Using (24),
we re-write (16) as

IJ/’VTL

* _ Zm Hm + ¢m NO +
Pnsm - anm[ 1 Lm ¥ ¥ - ] )
ln(z){;()‘m + Vm) + wns’rn} hnsm
vn, s, m. (25)
Hence, we have
* Hm + (Em NO
Pnsm = anm[ 1 ~x ~ - h ]+7
IH(Q){;()\IU‘M + Vm) + wnsm} nsm
Vn,s,m  (26)
where am = (bm Zm Homs Dm = VUm Zm Hms and I}nsm =
Wnsm D m Hm- Similarly, from (21) and (24), we have
P h P h
1 1 nsm "NsSmy nsm:’"nsm
Og2( * NOB;ELsm ) ln(2)(NOB;kLsm + Pﬁsmhnsm)
_ Cnsm (AMm + V) + B
P + Om
(27)



where gns = Bns D Mm-The optimal p,, values can be
obtained by solving the dual problem using a gradient descent
method, and we have

pan (i+1) = [pim (1) =4 (Ron (1) = AP (1) —0)]

where ¢4 is a sufficiently small step size. An iterative algorithm
can be used to update p,, to find the optimal P,,, and
B sm values Vn, s, m, for a given value of ¢,, Vm and A.
Define f,, = {Rm — APy, }. Theorem 1 gives the termination
condition for the update of fy,.

Theorem 1. At the optimal point, for each m with ¢,,, > 0,
either f,, = 6* or f,, > 6* and p}, = 0.

Proof. See Appendix B.

From Theorem 1, at optimality, MTs with py, > 0 have
equal f,, value, which is denoted as #* (i.e., optimal value of
0 for the given ¢,,, Vm values). Other MTs with p), = 0 must
have f,, values greater than 0*.

Vm (28)

B. Finding the Optimal ¢,

The optimal ¢}, values can be obtained by solving the dual
problem using a gradient descent method, i.e.,

Gm (i +1) = [P (i) — e5 (R (i) — R™)]T,

where €5 is a sufficiently small step size.

At optimality, the radio resource allocation process termi-
nates when all MTs have R, > Rf‘nin.

Algorithm 4 gives the optimal solution of (11) for a given
value of A. In Algorithm 4, we iterate over P,,;,, and B,
until convergence to find the optimal joint bandwidth and
power allocation solution that maximizes the minimum energy
efficiency in the region and satisfies the required QoS by all
MTs.

vm  (29)

Algorithm 4 Joint Bandwidth and Power Allocation for a Given
A

Input: \;
Initialization: ¢,, > 0 and w,, > 0 Vm, P,s, and B, s,
Vn,s,m,i=1 K =1,

while K =1 do
Every MT broadcasts to all serving BSs/APs its ¢, (%)
value;
Initialization: J = 1;
while J =1 do

Every MT broadcasts to all serving BSs/APs its 7,,,
fm (%), and Py s, (7) values;
Every BS/AP determines 6, (i) = m}/rll fm(3);

me

ns

All BSs/APs exchange information regarding 6,,,(%)
and determine 6(i) = minf,,(4);

if for every m, fn (i) = 0(i) or fm (i) > 0(i) for m
with i, (7) = 0 then
J =0;
else
All BSs/APs update i, (%) for all MTs according to
(28);
All BSs/APs exchange their information to find
> Wm (%) and broadcast this value to all MTs;

All BSs/APs allocate bandwidth to all MTs using
Algorithm 3 (by replacing 3,,5(), vm (i), and ¢, ()
by Bns(%), Um(i), and ¢, (3), respectively);
All MTs allocate power to their radio interfaces
using Algorithm 2 (by replacing ¢, (i), vm (i), and
Wnsm (1) BY ém(i), Um(i), and @psm (i), respec-
tively);
end if
end while
if For every m, |R,, (i) — Ry, (i — 1)| < € then
K =0;
else
All MTs update ¢,, (i) value using (29);
1— 1+ 1;
end if
end while
Output: B}

*
nsm? Pnsm’

Vn, s, m.

C. Summary of the Proposed Optimal Framework

Using Algorithms 1 - 4, the decentralized uplink energy
efficient radio resource allocation framework is summarized
in the following 10 steps:

Step 1. The BSs/APs start with initial bandwidth allocation
to all MTs in service and initialize a u,, value for every MT.
The MTs start with initial power allocation to their different
radio interfaces. Every MT calculates its initial 7, value and
broadcasts it along with an initial ¢,, value to the serving
BSs/APs.

Step 2. The BSs/APs exchange their information to find the
value \ = Héle\l/l Nm,» as shown in Algorithm 1.

Step 3. The BSs/APs check a termination condition (as
shown in Algorithm 1): F(\) = 0? If the condition is true,
the framework is terminated; otherwise, go to step 4.

Step 4. Every MT broadcasts to its serving BSs/APs its
fm and Py, values. All BSs/APs exchange their information
regarding their minimum f,,, and find § = minf,,, as shown
in Algorithm 4. "

Step 5. The BSs/APs check a termination condition (as
shown in Algorithm 4): f,,, = 0 Vm with y,,, > 0 and f,,, > 6
Vm with p,, = 0? If the condition is true, go to step 9;
otherwise, all BSs/APs update the p,, values, as shown in
Algorithm 4. Also, all BSs/APs exchange their information to
find >, 1 and broadcast this value to all MTs.

Step 6. All BSs/APs allocate their radio resources (e.g.,
bandwidth) to all MTs in service using Algorithm 3.

Step 7. All MTs perform power allocation to their radio
interfaces using Algorithm 2.

Step 8. Go to step 4.

Step 9. Every MT checks its total achieved data rate R,,.
If R,, did not converge, the MTs update their ¢,, value and
broadcasts it to all serving BSs/APs, as shown in Algorithm
4. Go to step 4.

Step 10. If R, converges, every MT transmits its 7,,, value
to all serving BSs/APs. Go to step 2.



VI. SUBOPTIMAL UPLINK ENERGY EFFICIENT RADIO
RADIO RESOURCE ALLOCATION FRAMEWORK

In this section, we discuss the signaling overhead required
by the optimal framework. Furthermore, we perform a com-
plexity analysis study. A suboptimal framework is proposed
to reduce the associated signaling overhead and computational
complexity. Finally, a benchmark is presented for comparison
purposes.

A. Signaling Overhead and Computational Complexity

The optimal radio resource allocation framework requires
that the serving BSs/APs obtain information regarding the CSI,
hnsm, in order to perform the resource allocation. Let the
time be partitioned into time slots of equal duration. Assume
that the CSI remains fixed during each time slot and changes
from one time slot to another. Hence, the CSI information
should be updated (reported) every time slot. In addition,
information regarding variables update (A and 6 exchanged on
the backbone among BSs/APs and A, ¢,, and ., exchanged
among MTs and BSs/APs over the air interface).

Let Ip denote the number of iterations required for the con-
vergence of the Dinkelbach-type procedure given in Algorithm
1. The computational complexity of the optimal radio resource
allocation algorithm is determined by the complexity of solv-
ing the dual problem. The complexity of the gradient method
is polynomial in the number of dual variables [37]. Hence, the
computational complexity is given by O(IpM?3" S,). The
optimal framework has an online computational complexity
that is quadratic in the number of MT M. In a system with
a large M, the online computational complexity will be high,
which could make it infeasible for the algorithm to run within
every time slot of fixed CSL

To further reduce the associated signaling overhead and
computational complexity, in the following we present a
suboptimal framework.

B. Suboptimal Framework

In the optimal framework, every time the CSI changes,
the radio resource allocation has to be updated. This incurs
high signaling overhead over both the backbone connecting
the BSs/APs and the air interfaces. In order to reduce the
associated signaling overhead and computational complexity,
a two-step suboptimal framework is proposed. The first step
is executed only once during an initialization phase and is
to set the values of the variables A\, ¢,,, and pu,,. The
variables are calculated based on the average channel gain,
Qnsm = E{hnsm}, where E{-} denotes the expectation. The
second step updates the radio resource allocation given the
time slot CSI. The two steps are explained in details next.

1) Initialization Phase: In this step, we aim to find the
values of A, ¢,,,, and pi,,, to be used in the second step. Denote
X\, Gm, and fi,, as the values calculated based on the average
channel gain 2,,4,,. In the following, we find A, J)m, and [i,,
that maximize the minimum average energy efficiency while
satisfying the average QoS constraints. The average achieved

data rate for MT m communicating with BS/AP s of network
n is given by [38]

toe Prsmh
E Rnsm :/ anm lo 1+ LA
{ } o ga( NoBoam )
1 hnsm
! Qnsm eXp(* Qnsm )dhnsm
anm NOanm

~ In(2) exp(ﬂnsmpmm)

NOanm
Qnsmpnsm

B ( ) (30)

where Fy(x fo exp(—z)r~'dz is the exponential inte-
gral. From Lemma 2.1 in [38] we have
20 sm P,
]E Rnsm Z nsm 1 1 nsm+ nsm . 3]
{ } ogy(1+ “NoBour ) (31)

Since the radio channels fade independently, and using the
bound given in (31), the average 7,, is given by

Dn Qs

nsm Qpsm Pnsm
1Og2(1 + : NoBrnsm )

]E{nm} = (32)
Zn Z {ﬁ?::: + Qnsm + Cnsm nsm}
and the average QoS constraint is given by
nsm QnsmP’nsm i
>y log,(1 W) =Ry (33)
neN seS, 02nsm
Hence, we aim to solve
i E m
poax - {minEina )
s.t. (6) — (8),(33), (34)

BTLSW’L? PTLSTTL Z 07 vn) 87 m.

The optimization (34) can be solved in a way similar to (9).
Hence, using a similar analysis as in Section I'V.C., the optimal
power allocation of (34) is given by solving

P* _ anm [ M + ng N NO ]+
2 @2 M + ) + Bt Do
Vn,s,m. (35)

Also, using an analysis similar to that in Section IV.B., the
optimal bandwidth allocation of (34) is given by

P,;;Smﬂnsm stansm
logy (1 + B )~
NO% 1H(2)(N mm + PnemQ"Sm)

_ Cnsm(/\/im + V) + ﬂ;s
P + Om

(36)

Therefore, \, ¢y, and fi,, are found by solving Algorithms 1 -
4 while replacing the optimal power and bandwidth allocations
in Algorithm 2 and Algorithm 3 by (35) and (36), respectively.
The values of A, ¢,,, and fi,, are then exchanged among MTs
and BSs/APs to be used in the next step.

2) Resource Allocation Update Phase: This phase takes
place when the CSI changes every time slot. In this step,
the power and bandwidth allocations are updated given the
channel gain h,,,,, in the current time slot using Algorithm 2
and Algorithm 3 while replacing A, ¢,,, and ji, by A, .,
and fi,,, respectively, as calculated in the initialization phase.



Although the suboptimal framework relies on the average
CSI in the initialization phase, this is used only to reduce
the amount of signaling required to update the dual variables.
In the resource allocation update phase of the suboptimal
framework, the CSI information should be updated (reported)
every time slot.

As compared with the optimal framework described in
Section V, the suboptimal framework has a reduced compu-
tational complexity. Only Algorithm 3 is executed at each
BS/AP and Algorithm 2 is executed at each MT for resource
allocation update. Almost no signaling exchange takes place
during the resource allocation updates, except for the allocated
B, sm values that are provided to each MT and the CSI
information that is updated once at each time slot. While
the initialization phase of the suboptimal framework incurs
the same computational complexity O(IpM?3" S,), this
is only executed once during the call setup. The resource
allocation update phase that takes place every time slot has
a computational complexity of O(M S, ), different from
the optimal framework. Hence, the resource allocation update,
which is executed within every time slot of fixed CSI, has an
online computational complexity that is linear in M, which is
more feasible.

C. Benchmark

The most relevant state-of-the-art research (e.g., [20]) inves-
tigates power allocation in a heterogeneous wireless medium
for energy efficiency. Hence, given some bandwidth allocation
from different networks, every MT independently allocates
transmission power to its radio interfaces in order to maximize
its own energy efficiency. That is, every MT solves

oSy m
1. > min
s.t R,, > RmT 37)
PnsmSPnsa VH,S
Pm S P’,};

Similar to (9), (37) is a concave-convex fractional program.
Hence, a parametric approach can be used to transform (37)
into a convex optimization problem. As a result, we have

G\ = ma>§0 {Rm — AmPn}
> min
s.t. R, > R, (38)
Pom < P, Vns
P, < PL.

A Dinkelbach-type algorithm, similar to Algorithm 1, can
be used to find the optimal solution of (38). Algorithm 5 gives
the power allocation for the benchmark.

Algorithm 5 Benchmark: Power Allocation at MT m

Input: B, Vn, s;
Initialization: P, ;,,(1) > 0 Vn, s, A (1) =, i1 = 1;
while G(\(i1)) # 0 do
Initialization: ¢,,(1) >0, K = 1,
while K =1 do
Initialization: v,,(1) >0, J =1, ix = 1;

while J =1 do
for n € N do
for s € S,, do
Pnsm ig) =
B ([ 2) 1+¢M(i2)
nsm ln@){%()‘(7;1)+Vm(i2))+wnsm(iZ)}

No I+
Prnsm 1
wnsm(iQ + 1) =
Pnsm(iZ))}Jr;
end for
end for
vn(ia + 1) = [vm(iz) — ea(P) -
ZnGN Zsesn{w + Qnsm + Cnsmanm}’>]+;
if ‘Pnsm(ig) — Pnsm(ig — 1)‘ <e then
J =0;
else
ig < ig + ].;
end if
end while
if |Rm(22) — Rm(ig — 1)| <e then
K =0;
else
G iz + 1) = [pm(ia) — e3(Rin(i2) — R
end if
end while
11— 11+ 1;
end while
Output: P, ,,, Vn,s.

The benchmark has a computational complexity of
O(Ip ), Sn). The benchmark computational complexity is
not a function of M since it requires no coordination for
resource allocation among MTs. Instead, each MT indepen-
dently allocates its transmission power to maximize its own
energy efficiency. However, this comes at the cost of reduced
energy efficiency and achieved throughput as compared with
the suboptimal framework, as will be shown later.

[wWnsm(i2) — 51(P7Fzrs -

VII. SIMULATION RESULTS AND DISCUSSIONS

This section presents simulation results for the proposed
framework for energy efficient uplink joint radio resource
allocation. The simulation setting is shown in Figure 2. We
consider a geographical region that is covered by a micro BS
(indexed as 1) and two femto-cell APs (indexed as 2 and 3,
respectively)*. The micro BS has a coverage area of 1.5 Km,
while each femto AP has a coverage area of 20 m. Due to
overlapped coverage among the BS and the two APs, three
service areas can be distinguished. In the first and second
areas, MTs can get service from both the micro BS and one
femto AP. In the third service area, MTs can get service only
from the micro BS. The simulation parameters are given in
Table II, adopted from [29], [30], [39], [40], and [41]. In
the simulation, the optimal framework requires a total of 5
iterations for the Dinkelback-type algorithm (Algorithm 1) to

4Adding more cells will only impact the associated computational com-
plexity and signaling overhead, which has been quantified through complexity
analysis using the O-notation.



Service area 3

Service area |

Fig. 2. The simulation setting. Three service areas can be distinguished,
namely, service areas 1, 2, and 3.

TABLE II
SIMULATION PARAMETERS
Parameter Value
B1 10 MHz
Ba3 5 MHz
No —174 dBm/Hz
pTL. 501.2 mW
Qnsm 100 mW
Rmin Uniformly distributed in [0, 50] Mbps
a 4
o 0.35
¢ 20 x 10~2 W/Hz

converge. Hence, in the following results, we set a maximum
limit of 12 iterations in the optimal framework for Algorithm
1, while no maximum limit is imposed for the benchmark .

Two simulation cases are considered. In the first case, each
service area has 5 MTs, and we show the performance of
the optimal and suboptimal frameworks (using Algorithms
1 - 4 and the two phases in Section VLB, respectively) as
compared with the benchmark (using Algorithm 5). In the
second case, each service area has 10 MTs. In this case, we
show the results of the suboptimal framework as compared
with the benchmark, due to computational complexity. In each
of the following results, we vary the total power consumption
at MTs, PL = [0.5,3] on the x-axis. The total available
power is used in both data transmission and circuit power
consumption. Over this range (P} = [0.5, 3]), we aim to inves-
tigate the performance of the proposed optimal and suboptimal
frameworks compared with the benchmark in two situations.
The first situation (P = [0.5,1.5]) represents comparable
transmission and circuit power consumption values (due to low
total available power). The second situation (PY = (1.5,3])
represents large available transmission power compared with
circuit power consumption (due to high total available power).
Simulation results are averaged over 100 runs.

Figures 3a and 3b show the minimum and average achieved
energy efficiency versus PJL, respectively. Given the simu-
lation settings, energy efficiency is improved with Pgl, as
the MTs can enhance the achieved throughput at a slight
increase in power consumption. With low total available
power, lower energy efficiency is achieved due to the com-
parable values of transmission power consumption (which is
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Fig. 4. The average achieved throughput versus the total power available at
any MT.

translated into a useful term, i.e., throughput) and circuit power
consumption (which does not contribute into the achieved
throughput). With more total available power, more power
can be consumed for data transmission which is translated
into higher throughput and enhanced efficiency. As shown in
the figures, the proposed optimal and suboptimal frameworks
outperform the benchmark. This is mainly due to two reasons.
Firstly, the proposed frameworks jointly optimize bandwidth,
among MTs, and power allocation, at each MT, to maximize
energy efficiency, unlike the benchmark, which optimizes only
power allocation. Hence, in the new frameworks, bandwidth
and power allocations are performed according to channel
conditions at different radio interfaces of different MTs and
the available energy at each MT. This results in the improved
performance in Figures 3a and 3b. Secondly, the proposed
frameworks aim to maximize the minimum energy efficiency
in the geographical region, unlike the benchmark where every
MT aims to maximize its own energy efficiency independent
of other MTs. This results in the improved performance of the
proposed frameworks in Figure 3a. The optimal framework has
improved performance over the suboptimal framework due to
the fact that the optimal framework calculates its dual variables
at every time slot using the actual CSI, whereas the suboptimal
framework is based on the average CSI. However, overall the
suboptimal framework has an improved performance over the
benchmark with a reduced signaling overhead and computa-
tional complexity, as will be shown in Figure 6. Furthermore,
as the number of MTs increases in the system, lower energy
efficiency is achieved. This is mainly due to the increased
competition on the radio resources at the BS and APs, which
lead to reduced bandwidth allocation per user, and hence a
lower energy efficiency is achieved.

Figure 4 shows the average achieved throughput versus
PT. Given the simulation settings, an improved throughput
can be achieved, since more available power can be used to
enhance the data rate for each MT. In addition, the proposed
frameworks can achieve a higher total throughput than the
benchmark. This is mainly because the proposed frameworks
allocate bandwidth among MTs, and power at each MT,
based on the channel conditions at MTs, different from the
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Fig. 5. The average achieved satisfaction index versus the total power
available at any MT.

benchmark that allocates bandwidth to MTs independent of
their channel conditions. Again, the suboptimal framework
achieves a lower throughput than the optimal framework as
its dual variables are based on the average CSI. Furthermore,
a reduced throughput is achieved with an increased number
of MTs due to the increased competition on the available
bandwidth at the BS and APs.

Figure 5 shows the average satisfaction index of MTs
versus P},;. The satisfaction index captures the ability of
the radio resource allocation frameworks to satisfy the QoS
requirements of the MTs. Specifically, the satisfaction index
is defined as [37]

R,
R%in
where 1, = 1 if a is satisfied, and 0 otherwise. As shown in
Figure 5, the optimal framework always achieves a satisfaction
index of 1. Overall, the suboptimal framework has an im-
proved satisfaction index over the benchmark. This is mainly
due to the improved achieved throughput of the suboptimal
framework as compared with the benchmark, as shown in
Figure 4. While the suboptimal framework and benchmark
satisfy the minimum required data rates of the MTs, the

SI == E{]lRm ZRg]Lin + ]lRm<Rr711uLin } (39)
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Fig. 6. The number of iterations versus the total power available at any MT.

suboptimal framework achieves much higher throughput than
the benchmark due to the CSI-based bandwidth allocation,
which leads to higher satisfaction index.

Figure 6 shows the computational complexity of the radio
resource allocation frameworks, in terms of total number of
iterations per user per time slot, versus PL. The number of
iterations includes the required iterations for all dual variables



to converge. As shown in Figure 6a, the number of iterations
for the optimal framework (in case 1) is above 2000. On the
other hand, as shown in Figure 6b, the suboptimal framework
and the benchmark has a close number of iterations (around
18 for the suboptimal framework and around 14 for the bench-
mark). It should be noted that for the suboptimal framework
and the benchmark, all such iterations are executed at the
MTs (and BS/APs for the suboptimal framework), and hence
do not require information exchange over the air interface.
Hence, while the suboptimal framework has performance
close to the benchmark in terms of computational complexity
and signaling overhead, it has higher energy efficiency and
throughput than the bechmark and much reduced computa-
tional complexity in comparison with the optimal framework.
Furthermore, as the number of MTSs increase, the number of
iterations is increased due to the competition among MTs for
the available bandwidth.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a joint bandwidth and power
allocation framework to maximize energy efficiency in a het-
erogeneous wireless medium. MTs are equipped with multiple
radio interfaces, support the multi-homing capability, and have
minimum required data rates. The proposed framework jointly
allocates bandwidth among MTs from different BSs/APs,
and transmission power to the radio interfaces of each MT,
so as to maximize the minimum energy efficiency in the
heterogeneous network. A desirable feature of the proposed
framework is that it can be implemented in a decentralized
manner among BSs/APs of different networks and MTs. A
suboptimal framework is also presented to reduce the as-
sociated signaling overhead and computational complexity.
Simulation results demonstrate the improved performance of
the optimal and suboptimal frameworks over a state-of-the-
art benchmark in terms of the minimum and total achieved
energy efficiency, and the total achieved throughput and the
reduced computational complexity and signaling overhead of
the suboptimal framework.

In our future work, to assess the percentage improvement in
the achieved energy efficiency, we will compare the proposed
frameworks with general multi-homing algorithms [2] that
aim to satisfy average/peak data rates in absence of energy
consumption consideration. Moreover, in a multi-user system
model, fairness issues should be addressed. A future extension
of this work is to consider a max-min fair (lexicographic max-
min) radio resource allocation. Furthermore, for practical im-
plementation, a discrete set of data rates should be supported
by each radio interface. We will investigate a mixed integer
non-linear program (MINLP) that maximizes energy efficiency
while supporting a discrete set of data rates for each radio
interface. In addition to joint bandwidth and power allocation
for each user, sub-channel selection within each BS will also
be investigated for frequency selective fading channels.

APPENDIX A
PROOF OF PROPOSITION 1

In order to prove that (9) is a concave-convex fractional

program, we prove the concavity of R,,. Let c; = ﬁ and

Rpsm

cy = . We first prove the concavity of R, in the
decision vanables B,sm and P,g,,. The Hessian matrix of
R, sm can be expressed as

2 p2
AP,
- 1 . 01;2“,:”1 C1C§Pnsm
(Bpsm + c2Ppsm)? | c163Phsm  —c1¢3Brsm

As both Hy; and Hss are negative and the second principal
minor of H is 0, H is negative semidefinite [36]. Thus,
R, s 1s concave in both B,,,, and P,,,. As R,, is a sum
of concave functions, R, is also concave [36]. Since the
numerator of 7,,, i.e., R,,, is concave, the denominator is
convex, and the constraints constitute a convex set in B,,sm
and P, 4, (9) is concave-convex fractional program [34].

APPENDIX B
PROOF OF THEOREM 1

Let 0* = minfm = f'rn’- Thus’ vm 7& m/’ fm > 0*. Let
m

M denote the subset of MTs with fm > 0%. From KKT
conditions, we have at optimality

/’Lm{ Z Z nsm )‘ nsm + Qnsm + Cnsm nsm)) - 9*}
neN seS, P
=0, Vm.
(40)
Hence, for m € /W iy, = 0, and we have two cases:
1) ¢ = 0: From (20), B ,,, = 0 and thus by (26) Py, =
0, leading to fi, = O = =AY, > Qnsms
2) ¢, > 0: From (26) and (27), we have
m N
P;Lksm = anm[ y? - < V’
111(2){% + wnsm} Nnsm
Vn,s,m (41)
P h P h
10 1 + nsm "nsmy nsm'“nNsm
g2( NOanm ) In (2)(N0Bn9m + P;;smhnsm)

— C”LSme + 5’:25

(42)

Using (41) and (42), f,, can be determined in this case.
For ¢, > 0, if 0* > f,, fmn < frr Ym € M. However,

Ym # m/, f, cannot be less than f,, . Hence, at the optimal
point, f,, Ym € M must have the same value, which is equal
to 6. Otherwise, at optimal point, for m with 6* < f,,, ur, =
0.
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