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Abstract—Base stations with a large number of transmit anten-
nas can potentially serve a large number of users at high rates.
However, the receiver processing in the uplink relies on channel
estimates, which are known to suffer from pilot interference. In
this paper, making use of the similarity of the uplink received
signal in CDMA with that of a multi-cell multi-antenna system,
we perform a large system analysis when the receiver employs
an MMSE filter with a pilot contaminated estimate. We assume
a Rayleigh fading channel with different received powers from
users. We find the asymptotic signal to interference plus noise ratio
(SINR) as the number of antennas and number of users per base
station grow larger while maintaining a fixed ratio. Through the
SINR expression we explore the scenario where the number of
users being served are comparable to the number of antennas at
the base station. The SINR explicitly captures the effect of pilot
contamination and is found to be the same as that employing a
matched filter with a pilot contaminated estimate. We also find
the exact expression for the interference suppression obtained
using an MMSE filter, which is an important factor when there
are a significant number of users in the system as compared to
the number of antennas. In a typical set up, in terms of the five
percentile SINR, the MMSE filter is shown to provide significant
gains over matched filtering and is within 5 dB of MMSE filter
with perfect channel estimate. Simulation results for achievable
rates are close to large system limits for even a 10-antenna base
station with 3 or more users per cell.

Index Terms—Massive MIMO, MU-MIMO, large scale antenna
systems (LSAS), pilot contamination, channel estimation, land
mobile radio cellular systems, OFDM, multi-user detection, large
system analysis.

I. INTRODUCTION

C ELLULAR systems with large number of base station an-

tennas have been found to be advantageous in mitigating

the fading effects of the channel [3] while increasing system

capacity. It is shown in [3] that in an infinite antenna regime,

and in a bandwidth of 20 MHz, a time division duplexing

Manuscript received September 6, 2013; revised December 25, 2013 and
April 7, 2014; accepted April 14, 2014. Date of publication April 28, 2014;
date of current version August 8, 2014. The associate editor coordinating the
review of this paper and approving it for publication was T. J. Lim.

N. Krishnan is with Qualcomm Technologies Inc., San Diego,
CA 92121 USA (e-mail: narayank.winlab@gmail.com).

R. D. Yates and N. B. Mandayam are with the Department of Electrical and
Computer Engineering (ECE), Rutgers University, Piscataway, NJ 08854 USA,
and also with Wireless Information Network Laboratory (WINLAB), Rutgers
University, North Brunswick, NJ 08902 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2014.2320914

system has the potential to serve 40 single antenna users with

an average throughput of 17 Mbps per user. However, any

advantages offered by multiple antennas at the base station can

be utilized only by gaining the channel knowledge between the

base station and all the users. This requires training data to

be sent from the users. In a typical system the time-frequency

resources are divided into Physical Resource Blocks (PRBs) of

coherence-time coherence-bandwidth product. For each user, it

is necessary and sufficient to estimate the channel in every PRB.

Thus, some resources (time slots or equivalently frequency

channels) are used for channel estimation and the rest are used

for transmission in uplink or downlink. However, in [2], it

has been shown that the number of pilot symbols required is

proportional to the total number of users in the system. Hence,

as the system scales with the number of users, the dedicated

training symbols may take up a significant portion of the PRB.

As this is undesirable, only a part of the coherence time is

utilized to learn the channel. In this case, the pilot sequences

in different cells overlap over time-frequency resources and, as

a consequence, the channel estimates are corrupted. This pilot

interference is found to be a limiting factor as we increase the

number of antennas [5].

It is shown in [3] that in the limit of large number of

antennas, the SINR using a matched filter receiver is limited

by interference power due to pilot contamination. While the

result assumes a regime with finite number of users, we can

also envision a regime where the number of users may be

comparable to the number of antennas such as a system with

50 antenna base stations serving 50 users simultaneously. In

this paper, we do a large system analysis of uplink multi-cell,

multi-antenna system when the receiver employs an MMSE

filter to decode the received signal. We investigate the SINR

in a regime where the number of users per cell is comparable

to the number of antennas at the base station. The MMSE filter

which is designed to maximize the SINR is evaluated when we

have a pilot corrupted channel estimate. We let the number of

antennas and the number of users per base station grow large

simultaneously while maintaining a fixed users/antennas ratio

α and observe the SINR for the above two cases as a function of

α. To do so we make use of the similarity of the uplink received

signal in a MIMO system to that of the received signal in a

CDMA system [11].

Much of the research in large MIMO systems with Rayleigh

channel can be borrowed from the considerable literature for

CDMA systems. The channel vector with i.i.d entries for the
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large MIMO system is analogous to the signature sequence in

a CDMA system so that antennas contribute to the processing

gain. For example, the uplink analysis of an asymptotic regime

[11] with both users and signature sequences tending to infinity

translates directly to results in a large MIMO system when

signatures are replaced by antennas. In both systems it is

observed that the asymptotic analysis is a good approximation

for practical number of antennas (signatures) and users. While

in a CDMA system we assume that the signature sequences

are known, there are practical limitations in learning a mobile

radio multi-antenna channel (antenna signatures) in a multi-

cellular system, as shown in [3]. In this paper, we explore this

limitation when users simultaneously estimate the channel and

the estimates are subject to pilot contamination. We focus our

results in the regime α > 0.1 as opposed to recent works such

as [3], [8], [14], [16] which are found to be approximately in

the regime of 0 ≤ α < 0.1. Further, we compare the results of

the asymptotic SINR expression so obtained with that of the

performance of the matched filter.

A. Related Work

A similar large system analysis in the context of a Network-

MIMO architecture was presented in [20]. The authors con-

cluded that high spectral efficiencies can be realized even

with 50 antennas in their architecture, paralleling the existing

literature results in CDMA systems. In [16], the results obtained

suggest to scale the transmission power by the square root of

the number of base station antennas, as opposed to scaling by

the number of antennas. This assumes that the transmission

power during training and data are same. In general we take the

approach in [1] where the transmission power can be different

for the training and data symbols during a coherence time. Joint

channel estimation and multi-user detection was considered in

[25] for a single cell multi-user MIMO DS-CDMA systems.

For fixed number of transmit antennas per user and receive

antennas per base station, the authors employ replica method

for CDMA large system analysis to obtain lower bounds on

achievable rate for different feedback based receiver strategies.

Mathematically, our model can be viewed as an extension of the

linear receiver scheme considered in their model to a multi-cell

scenario.

In the MU-MIMO literature the asymptotic SINR is also

called the “deterministic equivalent” of the SINR. Recent work

in [10] finds the deterministic equivalent of SINR with dis-

tributed sets of correlated antennas in the uplink. Authors in

[14], have done a considerable work in providing the determin-

istic equivalent for beamforming/maximum ratio combining

and regularized zero forcing/MMSE in the downlink/uplink

with a generalized channel model taking into account the effect

of pilot contaminated channel estimate. They find the number of

antennas required to match a fixed percentage of the rate of an

infinite antenna regime. Also, the number of extra of antennas

required for the matched filter to equal the rate obtained out

of the MMSE filter is shown, implicitly showing the interfer-

ence suppression capability of MMSE filter. We derive in our

work the exact amount by which the MMSE filter suppresses

the interference for a Rayleigh fading channel and provide

some fresh engineering insights in the regime with α > 0.1.

Additionally, we derive those results under a stochastic rather

than a deterministic received power model as presented in

[14, Sec. 4]. A summary of the results is given in Section I-B.

There have been significant attempts to mitigate pilot con-

tamination in the recent works in “Massive MIMO” systems

which are, however, specific to the case when antennas far

exceed the number of users served i.e., α < 0.1. In [8], time

shifted pilot schemes were introduced to reduce pilot con-

tamination. There, simultaneous transmission of pilots was

avoided by scheduling only a subset of base stations to transmit

uplink pilots. Simultaneously, other base stations transmit in

the downlink to their users and it is shown that the interference

created by these downlink transmission can be cancelled with

a large number of antennas at the base station estimating the

channel. Pilot contamination is now restricted to base stations

in a group that simultaneously transmit uplink pilots. However,

this requires that the number of antennas far exceed the number

of users. In their recent work, authors in [18], [19] show

that pilot contamination can be avoided using subspace based

channel estimation techniques. They show that the eigenvalues

corresponding to the other-cell interference subspace can be

separated from the in-cell users in a regime where α is below

a threshold. Their analyses assume an ideal power controlled

situation with strict user scheduling and antennas far exceeding

the number of users. By contrast, we examine the operating

regime in which 0.1 < α and determine the effect of pilot

contamination on interference and interference suppression

capability of MMSE receiver. Also, even with power control,

pilot contamination is prevalent when linear MMSE channel

estimation is employed.

B. Contributions of Our Work

We develop a large system asymptotic expression for the

SINR in a Rayleigh fading environment when using an matched

filter and MMSE filter with a pilot contaminated channel esti-

mate for a arbitrary user in the system. The SINR expression is

dependent on the number of users and the number of antennas

only through their ratio α. If P̃signal, P̃contam, P̃inter(c) and σ2

represent the signal power, interference power due to pilot

contaminated estimate, the filter dependent interference power

for a linear filter c and the noise variance, respectively, we show

that the expression for asymptotic SINR for both matched filter

and MMSE filter can be generalized to

SINR(c) =
P̃signal

σ2 + P̃contam + αP̃inter(c)
. (1)

If ĉMF and ĉMMSE denote the matched filter and the MMSE filter

with a pilot contaminated estimate, then the following result

summarizes our contribution:

• From the expression for SINR it is derived that the total

interference is the sum of two terms. The first term given

by P̃contam is due to employing pilot contaminated channel

estimate and the second is the filter dependent interference

term αP̃inter(c) due to comparable K and M . Also, the the
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filter dependent term contributes to interference only when

α �= 0.

• We show that P̃inter(ĉ
MF)− P̃inter(ĉ

MMSE) = C(α) ≥ 0,

where C(α) is called the interference suppression term.

We find a closed form expression for C(α) showing the

interference suppression capability of the MMSE filter

when α > 0.

• It is derived that P̃contam(ĉ
MF) = P̃contam(ĉ

MMSE) =
P̃contam. The contribution of the pilot contaminated chan-

nel estimate to the pilot interference given by P̃contam is

same for both matched filter and MMSE filter.

• Although the filter ĉMMSE depends on the pilot contami-

nated channel estimate of all the K users in a cell to its

base station, the P̃contam is independent of K or M or α
for all values of α > 0 and therefore is the same as what

was found at α = 0.

As per the authors’ knowledge, these contributions have not

been reported yet in the literature.

We validate the theoretical results with simulations. We

show that even a system with 50 base station antennas each

serving some number of users sufficiently qualifies for the term

large system as the users’ SINRs are close to the asymptotic

limit. Simulation results for achievable rates are close to theory

for even a 10-antenna base station with 3 or more users per

cell. The following summarizes the key contributions through

simulation:

• The theoretical results are derived assuming that the same

set of in-cell orthogonal training signals are repeated

across the cells. However, we also show through simu-

lations that in the case of independently generated but

non-orthogonal training signals(with orthogonal in-cell

training), the resulting SINR performance is close to the

asymptotic limit.

• In an example seven cell set up, the MMSE filter per-

forms the best in the absence of pilot contamination.

We also show an intermediate regime where the MMSE

filter with pilot contamination obtains around 7 dB

gain over the matched filter with a pilot contaminated

estimate.

• In terms of the five percentile SINR, the MMSE receiver is

shown to provide significant gains over matched filtering.

Also, in most of the operating points α, the performance

of the MMSE receiver with pilot estimate is within 5 dB

of the MMSE filter with perfect estimate.

• We also show that the achievable rates are within a

1 bit/symbol of the MMSE filter with perfect estimate

when the number of users are comparable to the number

of antennas.

II. SYSTEM MODEL

We consider a system similar to that in [3] with B non-

cooperating base stations and K users per base station. We

assume that all KB users in the system are allocated the same

time-frequency resource by a scheduler. Also, each base station

is equipped with M antennas. The channel vector representing

the small scale fading between user k in cell j and the an-

tennas in base station l is given by a M × 1 vector h
(l)
jk . The

entries of h
(l)
jk are assumed to be independent zero mean i.i.d

Gaussian random variables with variance 1/M corresponding

to the scaling of transmit power by the number of receiver

antennas at the base station. This corresponds to an ideal and

favorable propagation medium with rich scattering. A large

scale fading coefficient, which represents the power attenuation

due to distance and effects of shadowing between base station l

and kth user in jth cell is given by β
(l)
jk . We assume that β

(l)
jk < 1

as we do not expect the received power to be greater than what

is transmitted. This is constant across the antennas of the cell l.

Accordingly, overall channel vector is given by

√

β
(l)
jkh

(l)
jk .

A. Uplink Transmission

We assume that all users’ transmission are perfectly syn-

chronized. Also, while a user’s transmission is intended for its

own base station, other base stations also hear the transmission.

Defining qjk as the symbol transmitted by user k in cell j, w(l)

as the M × 1 noise vector with zero mean circularly symmetric

Gaussian entries such that E[w(l)w(l)H ] = σ2I, the received

signal at base station l is given by,

y(l) =

B
∑

j=1

K
∑

k=1

√

β
(l)
jkh

(l)
jk qjk +w(l). (2)

Here, the signal-to-noise ratio (SNR) of the received signal per

receive dimension is given by 1/σ2M . To utilize the advantages

offered by multiple antennas, the base station has to have an

estimate of the channel to all users prior to detection of uplink

signals. In a system employing an OFDM physical layer with

time-frequency resources, we can divide the resources into

physical resource blocks (PRBs) contained in the coherence-

time coherence-bandwidth product. Although the channel vec-

tor h
(l)
jk of each user has to be relearned by the base station

at the start of PRB, once learnt for a subcarrier it remains the

same for all subcarriers within that PRB. Let the number of

coherent symbols be given by Tc and coherent subcarriers be

Nc. We define a Resource Element(RE) to be a subcarrier at

a symbol time. Therefore, if we fix the number of resource

elements used for estimation to be T such that T ≤ TcNc, a

total of T user’s channel can be learnt. This observation was

noted in [3]. We would like to point out that it is relevant here

as the number of users that can be supported depends on total

available coherent resource elements NcTc. Depending on its

value the number of users per cell K that could be supported

can be comparable to M . We define the load on the system as

α = K/M throughout this paper. For example, in a single cell

set up even in very conservative scenarios of short coherence

time with Tc = 7 symbols and frequency selective channel with

Nc = 14, around 49 users per cell can be supported at α = 0.5
if half the resources are used for channel estimation. This is also

illustrated in Fig. 1. Therefore, it is worthwhile to investigate

not only the M ≫ K scenario but also the case when M and

K large and comparable.
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Fig. 1. PRB is composed of 98 orthogonal Resource Elements (RE) and
12 RE for training. The first user in the first base station transmits pilots ψ11 in
the first RE and remain silent for the rest of training duration. Similarly, other
users in the first cell transmit pilots during the RE allocated for its training.
If orthogonal pilots are allocated for all the users in the system, a typical
7 cell system 14 users per cell would consume all the coherent RE without
any time for data transmission. In our model we let the training symbols of
other cell users ψjk for all j and k simultaneously during ψ1k leading to pilot
contamination problem.

B. Limitations in Gaining Channel Knowledge

During each coherence time, users in a cell spend some

pilot symbol times in each PRB for channel estimation at the

base station and then data transmission ensues until the end

of the block. At base station l, the number of channel vectors

h
(l)
jk that needs to be learnt is equal to the number of users

in the system which is KB. To accomplish that, the number

of pilots required must at least be KB symbol times for the

pilot sequences to be orthogonal across the users in the system.

However, such a system will not be scalable as there exists

some large B for which the product KB will occupy all the

coherent resource elements. In the example illustrated in Fig. 1

a 7 cell system with 14 users per cell would end up using all

the coherent resource elements if orthogonal channel training

is provided for all the users in the system. This is clearly

undesirable as pilot training is consuming a significant part

of PRB.

In one of the approaches taken in [3], the base station is

concerned with only knowing the channel to its own K users

and spends only K resource elements for channel estimation

instead of KB. Every base station similarly spends K resource

elements for channel estimation for its K users. The pilot

signals are processed and an MMSE based channel estimate

of the channel is formed. MMSE channel estimation is the

commonly employed in multiuser MIMO systems [1], [4], [15].

Let Ψjk ∈ CK×1 denote the training sequence of user k in

cell j of duration K symbols. Also, assume that the in-cell

training sequences are orthogonal i.e., ΨH
jkΨjn = 0 if k �= n

and 1 otherwise. We assume that the training sequences across

the cells are independently generated and hence in general

ΨH
jkΨin �= 0 if i �= j and for all k and n. We assume a constant

average transmit SNR per symbol during a coherence time. If

ρd is the transmit SNR of data symbol and ρavg the average

transmit SNR per symbol then with K resource elements for

channel estimation we have

ρavg =
ρpK + ρd(TcNc −K)

TcNc
. (3)

If the transmit power of data symbols is scaled by the number

of antennas then ρd = 1/σ2M . Therefore, ρd → 0 for large

M and ρp ≈ ρavgTcNc/K. Therefore, in the constant average

transmit SNR per symbol model the pilot transmission is not

scaled by M which is the number of antennas at the base sta-

tion. With N ∈ CM×K denoting the additive complex Gaussian

noise matrix with i.i.d entries with variance 1/M , and ρp
denoting the SNR during pilot transmission, the received signal

at base station l across the K training resources is given by

Y(l) =
B
∑

j=1

K
∑

k=1

√

β
(l)
jkh

(l)
jkΨ

H
jk +

N(l)

√
ρp

. (4)

Since the transmission power of pilot symbols are not scaled

by the number of antennas we assume that noise variance

1/M for the entries of the N(l). This is required because

we have defined the entries of h
(l)
jk to be complex i.i.d with

variance 1/M .

Without loss of generality we assume that the receiving base

station is indexed l = 1 throughout this paper. Consequently,

to simplify the exposition we drop the superscript (.)(l) from

terms in (4) and denote Y(1) ∆
= Y, N(1) ∆

= N, β
(1)
jk

∆
= βjk,

h
(1)
jk

∆
= hjk. Hence, βjk and hjk represent the large scale fading

and the small scale channel vector between the user k in cell j

to cell 1. Also, in (2), if l = 1 then y(1) ∆
= y and w(1) ∆

= w.

The MMSE channel estimate for user k in the first cell is then

given by

ĥ1k = Y

⎛

⎝

I

ρp
+

B
∑

j=1

K
∑

k=1

βjkΨjkΨ
H
jk

⎞

⎠

−1

Ψ1k

√

β1k. (5)

Here, ĥ1k(
∆
= ĥ

(1)
1k ) is the channel estimate of the user k in

cell 1 to the base station 1. Although it is not common in

practice, we assume as in [3]–[5] that the in-cell pilots are

repeated across the cells, to get some analytic insight; this

implies that Ψjk = Ψik for all k. The MMSE channel estimate

[23] with pilot contamination when the in-cell orthogonal pilots

[4] are repeated across the cells is given by

ĥ1k =

√
β1k

β(k) + 1
ρp

⎛

⎝

B
∑

j=1

√

βjkhjk +
NΨ1k√

ρp

⎞

⎠ (6)

where, β(k) =
∑B

j=1 βjk and if h1k = ĥ1k + h̃1k, then h̃1k is

zero mean with covariance

E

[

h̃1kh̃
H
1k

]

=
1

M

(

∑B
j=2 βjk + 1/ρp

β(k) + 1/ρp

)

I.
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This estimate is used to design linear detectors to filter the

received signal. Later we show that even with actual training

given by (5) the SINRs are very close to when in-cell pilots

are reused across the cells. In a power controlled system with

β1k = 1, for all k = 1, . . .K, if the target average SNR is

ρavg = 20 dB, then in the example in Fig. 1, the SNR of

pilot transmission is given by ρp ≈ ρavgTc = 28 dB. As the

above example shows, even with a very conservative coher-

ence time Tc, the SNR of pilot transmission is high enough

such that
∑B

j=2 βjk ≫ 1/ρp unless all the other cell received

powers of interferers contributing to pilot contamination are

approximately 28 dB below the in-cell user. As we will see

in simulations, having other-cell received powers 30 dB below

in-cell corresponds to a situation in which pilot contamination

is insignificant. In general since ρp ≈ ρavgTcNc/K, we can

always design a system based on fixing a percentage of resource

elements in a PRB for training such that noise in the channel

estimate is not the significant contributor. Therefore, assuming

we have high enough pilot power, we ignore the additive noise

affecting the channel estimation to focus our results on the pilot

contamination problem. Therefore, with ρp → ∞ the channel

estimate is given by

ĥ1k =

√
β1k

β(k)

B
∑

j=1

√

βjkhjk. (7)

C. Linear Receivers

We assume that the received signal is projected onto a

linear filter c
(l)
lk ∈ CM×1 for the kth user in the lth cell. Since

the SINR analysis is identical for all users in the system we

focus only on user k = 1 in base station indexed l = 1. We

also drop the superscript (.)(1) for notational convenience.

Consequently, if coherent detection is employed then c = ĥ11.

Alternatively, using the channel estimates for all users of the

first cell, the MMSE filter for user 1 in the cell 1 is defined as

argminc E[|q11 − cHy|2|ĥ1k ∀k]. Defining

z =

B
∑

j=2

K
∑

k=1

√

βjkhjkqjk (8)

which represents the other cell interference and h1k = ĥ1k +
h̃1k the received signal can be rewritten as

y =
K
∑

k=1

√

β1kĥ1kq1k +
K
∑

k=1

√

β1k, h̃1kq1k + z+w (9)

where, h̃1k is the result of pilot contamination. The MMSE

filter is then given by the expression

ĉ =
(

E[yyH |ĥ1k∀ k]
)−1

E[yq∗11|ĥ1k∀ k]

=S−1
√

β11ĥ11, (10)

where

S =

(

K
∑

k=2

β1kĥ1kĥ
H
1k + (θ1 + θ2 + σ2)I

)

(11)

θ1I =E[zzH ] =

B
∑

j=2

[

1

M

K
∑

k=1

βjk

]

I, (12)

θ2I =

K
∑

k=1

β1kE[h̃1kh̃
H
1k]

=

B
∑

j=2

[

1

M

K
∑

k=1

βjk

(

β1k

β(k)

)

]

I. (13)

As seen from the expression for the filter in (10), the lack

of channel knowledge of other-cell users and only a partial

channel knowledge of in-cell users shows up as effective noise

terms θ1 and θ2, respectively. To obtain the expression we also

use the properties of the MMSE estimate that E[ĥh̃H ] = 0. In

an ideal situation, the channel estimation incurs no error and

ĥ1k = h1k for all k, then

c∗ =

(

K
∑

k=1

β1kh1kh
H
1k + (θ1 + σ2)I

)−1
√

β11h11. (14)

This is an optimistic scenario which will serve as a bench-

mark for the performance of the MMSE filter with pilot

contamination.

III. MMSE FILTER WITH PILOT

CONTAMINATED ESTIMATE

After processing the received signal using the linear filter c,

let Psignal, Pnoise(c), Pcontam(c), Pinter(c) denote the signal

power, noise power, pilot interference power and interference

power, respectively as a function of the filter c. It follows that:

Psignal(c) =β11c
Hh11h

H
11c (15)

Pnoise(c) =σ2cHc (16)

Pcontam(c) = cH

⎛

⎝

B
∑

j=2

βj1hj1h
H
j1

⎞

⎠ c (17)

Pinter(c) = cH

⎛

⎝

B
∑

j=1

K
∑

k=2

βjkhjkh
H
jk

⎞

⎠ c. (18)

The received SINR is then given by the expression

SINR =
Psignal(c)

Pnoise(c) + Pcontam(c) + Pinter(c)
. (19)

The motivation to define Pcontam(c) as in (17) is because

the user 1 of other cells is sending pilots in the same resource

element as the user 1 of the first base station. Hence, user 1

for j = 2, . . . B contribute to the interference in a different

way as compared to the rest of the users in the system. This

interference contribution is termed as pilot interference and is
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due to pilot contaminated channel estimate being used to design

linear filters. As per the definition the Pcontam(c) is dependent

on the linear filter c and could be different for ĥ11 and ĉ.

Define βj as the random variable representing the large scale

fading gain from an arbitrary user in the jth cell. Therefore, βjk

can be interpreted as the realization of βj for the user k and let

β =
∑B

i=1 βi. Next, we state the main theorem of the paper

which gives the expression of SINR for a large system when

an MMSE filter with a pilot contaminated estimate is used to

decode the received signal.

Theorem 1: As M , K → ∞, with K/M = α, the SINR at

the output of filter ĉ given in (10) converges almost surely to

ŜINR =

β11

1+
(
∑

B

j=2
βj1

)

/β11

σ2 +

(
∑

B

j=2
β2

j1

)

/β11

1+
(
∑

B

j=2
βj1

)

/β11

+ α (E[β]− C(α))
(20)

where, the constants C(α), η1, η2 are given by

C(α) =E

⎡

⎢

⎣

(

β2

1

β

)2

η1

1 +
β2

1

β
η1

⎤

⎥

⎦
+

η2
η1

E

⎡

⎢

⎣

β2

1

β

(

∑B
j=2

β2

j

β

)

1 +
β2

1

β
η1

⎤

⎥

⎦

+
η2
η1

E

⎡

⎢

⎣

β2

1

β

(

∑B
j=2

β2

j

β

)

(

1 +
β2

1

β
η1

)2

⎤

⎥

⎦
, (21)

η1 =

⎛

⎜

⎝
σ2 + αE[β]− αE

⎡

⎢

⎣

(

β2

1

β

)2

η1

1 +
β2

1

β η1

⎤

⎥

⎦

⎞

⎟

⎠

−1

, (22)

η2 =

⎛

⎝η−2
1 − αE

⎡

⎣

⎛

⎝

β2

1

β

1 +
β2

1

β
η1

⎞

⎠

2⎤

⎦

⎞

⎠

−1

. (23)

Proof: Proof given in Appendix B. �

We will see in a large system that Theorem 1 character-

izes the effect of pilot interference power and interference

averaging. Specifically, in order to put Theorem 1 into proper

perspective we state two propositions which are the results for

SINR of a large system with MMSE filter employing a perfect

estimate and a matched filter with pilot contaminated estimate,

respectively.

Proposition 2: As M , K→∞, with K/M=α, the SINR at

the output of filter c∗ given in (14) converges almost surely to

SINR∗ = β11η1 =
β11

σ2 + α
∑N

j=2 E[βj ] + αE
[

β
1

1+β
1
η∗

1

]

(24)

where, η∗1 = (σ2 + α
∑B

j=2 E[βj ] + αE[β1/(1 + β1η
∗
1)])

−1
.

Proof: We state the proposition without proof as it is

straightforward to obtain it from the large system analysis

techniques used for CDMA systems in [11], [13]. �

SINR∗ is the SINR with MMSE filtering with a perfect

channel estimate to its own users. This is best case scenario

as compared to the MMSE with a channel estimate. We do

not expect the SINR of MMSE filter with estimate to exceed

this SINR∗.

Proposition 3: As M , K → ∞, with K/M = α, the SINR

at the output of filter c = ĥ11 converges almost surely to

SINR =

β11

1+
(
∑

B

j=2
βj1

)

/β11

σ2 +

[
(
∑

B

j=2
β2

j1

)

/β11

1+
(
∑

B

j=2
βj1

)

/β11

+ αE[β]

] . (25)

Proof: Proof given in Appendix C. �

It is interesting to see that the expression for SINR converges

to a similar expression to the result in matched filtering ŜINR. If

P̃signal = β2
11/

∑B
j=1 βj1, P̃contam =

∑B
j=2 β

2
j1/
∑B

j=1 βj1 and

P̃inter(c) =

{

E[β], c = ĥ11

E[β]− C(α), c = ĉ
(26)

then we can define the expression for the asymptotic SINR with

matched filtering and MMSE filtering with pilot contaminated

channel estimate as

SINR(c) =
P̃signal

σ2 + P̃contam + αP̃inter(c)
. (27)

Here, P̃signal is the effective signal power, P̃contam is termed as

the pilot interference power and is the consequence of employ-

ing pilot contaminated channel estimate. In the same lines as in

[11], the filter dependent term P̃inter(c) is called the interference

averaging term and is relevant when α �= 0. Although, M → ∞
implying that the channel between the user 1 is asymptotically

orthogonal to channel between any other users in the system,

because K → ∞ with K/M = α, the contribution to sum

interference from all the users is non-zero and is given by

αP̃inter(c) for a linear filter c. If ν1 = (β11/β
(1))

2
, then the

following equations shows the relationships between the P̃signal

and P̃contam to that of definitions in (15) and (17):

Psignal(ĥ11)√
ν1

=
Psignal(ĉ)

P̃signal η21
= P̃signal (28)

Pcontam(ĥ11)√
ν1

=
Pcontam(ĉ)

P̃signal η21
= P̃contam. (29)

It is seen that for both the filters ĥ11 and ĉ, their respective

signal powers given by Psignal(ĥ11) and Psignal(ĉ) are just scaled

versions of P̃signal. Similarly, Pcontam(ĥ11) and Pcontam(ĉ) are

the scaled versions of P̃contam. The following can be concluded

for both matched filter as well as MMSE filter with a pilot

contaminated estimate:

• The contribution of the pilot contaminated channel esti-

mate to interference is given by P̃contam is same for both

matched filter and MMSE filter.

• The contribution of pilot interference is independent of α
and is equal to P̃contam for all values of α.

As trivial as the above comments may seem it is not obvious

for the filter ĉ from the definition of filter dependent pilot

interference power Pcontam in (17). This is because the matrix

S in filter ĉ is dependent upon the channel of all the users in the
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system through the pilot contaminated channel estimate ĥ1k for

all k = 1, . . . ,K. However, as we see in the Appendix B, the

contribution of the matrix S can be summed up into the constant

η1 for a large system. Further, the following relations can also

be obtained on the interference averaging term P̃inter(c) when

c = ĥ11 and c = ĉ

Pnoise(ĉ) + Pinter(ĉ)

P̃signal η21
=σ2 + αP̃inter(ĉ), (30)

Pnoise(ĥ11) + Pinter(ĥ11)√
ν1

=σ2 + αP̃inter(ĥ11). (31)

We have shown that P̃inter(ĥ11)− P̃inter(ĉ) = C(α) ≥ 0 im-

plying that interference suppression of amount C(α) can be

always achieved. The amount of interference suppression C(α)
is of course depended on α through (21).

The SINR expression in the limit of infinite antennas but

finite number of users per cell are obtained when we put α = 0
in (20) and (25) or in (27). This corresponds to a similar

expression as for downlink SINR in [5, eq. (16)]. Since the SNR

of the uplink received signal in (2) is given by SNR = 1/σ2,

it is seen that the SINR expression so obtained is limited by

the pilot interference powers at high SNRs and we obtain [3,

eq. (13)]. This need not necessarily be achieved by transmitting

at high power per symbol or equivalently by having σ2 → 0.

Had the transmission power of data symbols be not scaled by

the number of antennas, the SNR of the received signal would

be linearly increasing in M and when α = 0 we again obtain

[3, eq. (13)].

The deterministic equivalent for SINR in Rayleigh fading

for MMSE filter and the corresponding expression C(α) rep-

resenting the interference suppression power are our main

contribution of this paper. The terms E[β] and C(α) can be

computed offline for a system with the knowledge of large

scale fading distribution. It can also be estimated without the

knowledge of the large scale fading distribution from user

realizations over time. Depending on the value of E[β]− C(α)
and the operating point α a decision can be made whether to

use an MMSE filter or an matched filter. As we will see in

the next section, the interference suppression obtained with

an MMSE filter is necessary in increasing the outage SINR

and achievable rate of the system, when there are considerable

number of users as represented by the ratio α > 0.1. This is as

opposed to the regime in which antennas far outnumber users.

In this operating point α ≈ 0, and then MMSE filter itself may

not be necessary as pilot signals are the main contributor to

interference. This regime with α ≈ 0 has been well explored

in recent studies in [3], [8], [14], [16]. As mentioned earlier

most of our focus for performance analysis is on the regime

α > 0.1 although the results are perfectly valid for any α ≥ 0.

Across the users in the system the SINR is a random variable

by virtue of different received powers of both the signal and the

interferers contributing to pilot contamination. Also, the pilot

interference power is random by virtue of the choice of the

interferers contributing to pilot contamination.

Fig. 2. In the favorable case, the sum of the received powers of interferers
contributing to pilot contamination are very less as compared to that of the
desired user. User 1 in the center cell represents such a scenario. The SINR
with a pilot corrupted estimate is then comparable to that of perfect estimate.
On the other hand for user 2 in the center cell, the pilot interferers received
powers are comparable to that of the desired user and represents the worst case
scenarios.

IV. PERFORMANCE ANALYSIS

For the numerical evaluation, we consider hexagonal cells

with users uniformly distributed in each of the cells, as shown

in Fig. 2. We consider a scenario where 6 closest cells are inter-

fering with the center cell. We assume β1k = 1 so that received

powers from all the users within a cell are unity. We consider a

high SNR of 20 dB and the received powers from all the users in

other cells are assumed to take a constant value of βjk = 0.001,

or 0.01, or 0.1 for j �= 1. These represent the contribution of

other cell interference for three different idealized scenarios.

The interference from other cells is strong as βjk is close to

1. We consider the SINR for the user one in the center cell.

Figs. 3 and 4 plot the asymptotic SINR of the MMSE with a

pilot corrupted estimate given by ŜINR for the case of different

received powers. Although in theory the effect for small scale

fading vanishes only with infinite number of antennas it is seen

in Fig. 4 that even for a 50-antenna base station the actual SINR

realizations obtained through simulations are very near to the

asymptotic limit. We also plot SINR and SINR∗ as baseline for

performance comparisons. In Fig. 3, it is seen that SINR∗ is

already affected by other cell interference due βjk = 0.1 for

j �= 1. Hence, the ŜINR is not expected to perform better than

that and there is further 4 dB loss due to pilot contamination.

However, in the other extreme case when the other cell βjk’s

are close to zero, the channel estimate is already better and

the ŜINR performs close to SINR∗. Useful gains employing an

MMSE filter with pilot contaminated channel estimate can be

obtained when the other cell βjk’s are neither close to zero or

close to unity. In this example when the βjk = 0.01 for j �= 1,

around 7 dB gains are possible in comparison with matched

filter with pilot estimate when operating at α = 0.5 as seen

from Fig. 4. While there is a loss of 3 dB with respect to the

perfect MMSE due nature of channel estimate, the reader is

reminded that this is a worse case loss. The curves closes in
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Fig. 3. The plot shows the asymptotic SINR of the first user in the first cell
when MMSE filter with pilot contaminated estimate is used to decode the
received signal along with the baseline comparison criterion of MMSE with
a perfect estimate and matched filter with a pilot contaminated estimate for an
idealized seven cell set up. It is seen that when the other cell received power is
just 10 dB lower than that in cell users the MMSE filter with pilot contaminated
estimate performs close to its corresponding matched filter. This is because the
limitation is now the other cell interference which MMSE filter is not designed
to suppress. Hence, we do not expect the MMSE filter with pilot estimate to be
useful when βj > 0.1.

Fig. 4. The plot shows the asymptotic SINR of the first user in the first cell
when MMSE filter with pilot contaminated estimate is used to decode along
with the baseline comparison criterion of MMSE with a perfect estimate and
matched filter with a pilot contaminated estimate for an idealized seven cell set
up. In this case when the other cell received powers is 20 dB lower than that of
in-cell received powers significant gains are obtained as compared to a matched
filter with pilot contaminated estimate.

as we decrease α which represents the M ≫ K scenario and

also when α increases as in that case the limitation is now the

averaged interference term.

In Fig. 5 we plot the achievable sum rate for users in the first

cell with each users SNR being 20 dB. We assume large enough

coherence time so that the training time need not be taken into

account. This is because our focus is on the sum rate achievable

with variation in α. However, if necessary the sum rate can

be easily adjusted based on training overhead when coherence

time is a significant factor. We fix the number of antennas and

calculate the sum rate with varying α as αM log2(1 + ŜINR).

Fig. 5. The plot shows the sum rate of the users in first cell for different
operating points of α corresponding to a SNR of 20 dB. The three curves
correspond to three different received powers from other cell users. The
markers correspond to simulation with 50-antenna base stations and match the
theoretical predictions.

The three curves corresponds to the received powers of all users

from other cells being either βjk = 0.001, or 0.01, or 0.1 for

j �= 1 assuming unit received power from the in-cell users.

Sum rates of over 20 bits/symbol are achieved for users when

the other cell received powers are below 10 dB of the in-cell

received powers. Also, the simulation with 50-antenna base

station is seen to match the theoretical rates predicted for this set

up. The interference limited system has the flexibility to serve

a large number of users at low SINR or a few number of users

at a high SINR depending on the operating point α. The plot

suggest a optimal operating point α for which the sum rate is

maximum. For example when βj = 0.01 and α = 0.8 gives a

sum rate of around 88 bits/symbol. Larger α causes the ŜINR

to be lower so that the α term outside the log2 is ineffective to

increase sum rate while a lower α implies that less users are

served and hence lesser sum rate. When the other-cell received

powers are large, the curve flattens and the sum rate is constant

for most of the operating points α.

In Fig. 6, we plot the difference of achievable rate per user

between MMSE filter with a perfect estimate and MMSE filter

with a pilot estimate for different values of other cell interfer-

ence power. We do not take into account the training overhead

for comparison assuming we obtain the perfect estimate with

the same training time. We limit ourselves to βj < 0.1 since

ŜINR is already close to SINR otherwise. Also, in βj > 0.1
regime, there is significant other cell interference which both

the perfect estimate based and the pilot based MMSE filter are

not designed to suppress, thereby affecting the achievable rates.

We plot five different curves corresponding to system operating

points α. As seen earlier the total interference with filter ĉ

is given by P̃contam + αP̃inter(ĉ) and with c∗ the interference

power is given by α(
∑B

j=2 E[βj ] + E[β1/(1 + β1η
∗
1)]). When

α is small then the significant loss of rate with ĉ is due to

P̃contam as the filter dependent interference power for both filters

in negligible. On the hand, when α is large αP̃inter dominates

the P̃contam and since both the filter are affected by Pinter(c)
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Fig. 6. The plot shows the loss of rate due to pilot contamination when an
MMSE filter with pilot contaminated estimate is used to decode the received
signal as compared to perfect estimate MMSE filter. The different curves
correspond to different values of α from 0.2 to 1. It is seen that smaller the
α the MMSE filter with pilot contaminated estimate performs worse than the
ideal MMSE filter. However, the sum rate for users per base station is different.

the rate difference is small. Although when α = 1 there is

only a 0.4 bits/symbol difference the sum rate will be affected

differently. For example in a 50-antenna base station with

50 users at βj = 0.1 this could mean that sum rate with pilot

contaminated MMSE filter is 20 bits/symbol lower than that

perfect MMSE filter. On the other hand when α = 0.2, the sum

rate difference is 12 bits/symbol.

A. Effect of Pilot Contamination

Through a couple of typical possible realizations of user

positions, we explain the effect of pilot interference in ŜINR,

SINR and compare it with that of the SINR with a perfect

estimate. For illustration, in Fig. 2 consider only distance based

pathloss in large scale fading although the result holds when

shadowing is also present. This is applicable to both matched

filter and MMSE filter. Consider the first scenario when

∑B
j=2 βj1

β11
≪ 1 ⇒

∑B
j=2 β

2
j1

β11
≪ 1. (32)

This corresponds to the fact that sum of received powers of the

interferers are much less that that of desired user power. Under

these conditions the SINR of the received signal in (25) is

SINR ≈ β11

σ2 + α (E[β]− I)

where, I = 0 if matched filter is employed or I = C(α) if

MMSE filter ĉ is employed. As we will see in the next sec-

tion, typically scenarios show that the interference suppression

power C(α) is almost same as what could have been with a

filter c∗. Hence, the SINR of the filter with the corrupt channel

estimate is as good as the SINR with a perfect channel estimate.

In Fig. 2, the situation of user 1 in the center cell represents the

favorable scenario with the interferers contributing to the pilot

contaminated channel estimate are far such that the condition

Fig. 7. The plot shows the five percentile SINR of the first user in the first
cell for a seven cell set up in a non-idealized scenario. The received powers
from users can be different depending on their positions and shadowing and
hence the received SINR is random. The theoretical curves are matched with
simulation. The details are described in Section IV-B.

(32) is satisfied. On the other hand if gains of all the interferers

are comparable to that of the desired users, i.e.,

∑B
j=2 βj1

β11
≈ B − 1 (33)

then pilot interference contributes negatively to the SINR in

addition to interference averaging. This is represented by re-

alization of user 2 of the center cell in Fig. 2. Therefore, we

can conclude that, as compared to the linear filter with perfect

estimate, the filter with a pilot estimate has higher probability

that it is less than a given SINR.

B. Five Percentile SINR

In the earlier section we showed that pilot contamination

has the effect of reducing the outage SINR. In order to get

more intuition under practical scenarios of large scale fading

gains, we consider the seven cell model with cell radius is

R = 1 km, and assume a COST231 model for propagation

loss between the base station and the users. The noise power

is assumed to be −174 dBm and user transmit power of

23 dBm. We plot the five percentile of the SINR in Fig. 7 for

the perfect MMSE filtering given by SINR∗ and MMSE filter

with pilot contamination given by ŜINR, for varying values

of α. To that extend, we compute the interference terms E[β]
and C(α) offline by averaging over a sufficient number of user

positions. Also, η1 and η2 can be computed offline for different

values of α as they are constant for the system and dependent

on the large scale fading characteristics. Notice that ŜINR is

devoid of the small scale fading parameters. Also, for SINR∗

we compute the terms, η∗1 and the average interference E[β]−
E[β2

1η
∗
1/(1 + β1η

∗
1)]. It is found that E[β]− C = 38 dB and

E[β]− E[β2
1η

∗
1/(1 + β1η

∗
1)] = 36 dB. This shows that in terms

of the interference suppression the performance of both filters

c∗ and ĉ are almost same. In order to compare the theoretical

expression we also plot the five percentile SINR which is gen-

erated using simulations. These involves computing the SINRs
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TABLE I
TABLE SHOWS THE ACHIEVABLE RATE (BITS/SYMBOL) WITH MMSE

FILTERING FOR A 50 AND 10-ANTENNA BASE STATION SERVING

DIFFERENT NUMBER OF USERS. Rper CORRESPONDS TO RATE

WITH A PERFECT ESTIMATE AND Rpilot CORRESPONDS TO

THE PILOT CONTAMINATED FILTER

for various small scale fading channel realizations along with

large scale fading. For the simulation we use 50 antenna base

stations each serving a different number of users corresponding

to different α. The channel estimate is based on same in-cell

orthogonal training sequences being repeated across the cells.

Further, we also compare the five percentile SINR obtained

out of actual channel estimation. In order for that we assume

different independently generated in-cell orthogonal training

sequences which are non-orthogonal across the cells. We per-

form an MMSE estimation of the channel and generate MMSE

filter using the actual channel estimate given by (5).

It is seen through Fig. 7, that ŜINR in (20) matches the five

percentile SINR obtained through simulation and is typically

less by about 0.3 dB of the theoretical expression. This is true

for both in-cell pilot sequences being repeated across the cells

as well as different and independent pilot training sequences

across the cells. This also implies that the even a 50 antenna

base station is large enough for the theoretical predictions to be

effective in addition to being independent of the effect of small

scale fading in the resulting SINR. As we increase the number

of antennas the theoretical expression exactly matches the

SINR obtained through simulation. Also, the MMSE filter with

pilot contamination performs just 5 dB below the MMSE filter

with perfect channel estimate and this gap is unambiguously

a result of the pilot contaminated channel estimate. Also, it is

seen that even at α = 1, which implies a heavily loaded system

the five percentile ŜINR is −9 dB which is well within the

sensitivity of base station receivers.

Table I shows the achievable rates per symbol for a user in the

central cell using MMSE based detection with perfect estimate

and pilot contaminated estimate. The achievable rate is given by

R = E[log(1 + ŜINR)] which here is calculated by averaging

the instantaneous rate over 2× 103 realizations of user posi-

tions for user 1. This is the same for all users in the central

cell. Both theory and simulations based on 50 base stations

antennas serving different number of users agree to the numbers

shown in the table. It is seen that the difference between them

is approximately 1 bit/symbol for small α > 0.1 and closes in

when it increases. However, for α ≪ 1, the difference between

the rates increases as effect of pilot interference will never let

the SINR approach SNR.

Further, Table I, also shows the simulated results for the

achievable rate for a 10-antenna base station with 3 to 10 users.

It is seen that even for a 10 antenna base station, the simulated

results agree closely to the earlier results obtained from theory

in Table I. This highlights the usefulness of the large system

analysis in providing accurate predictions for achievable rates

for not necessarily large number of antennas but also contem-

porary MIMO systems. However, we would like to point out

that with more number of antennas we can serve more users at

the same rate given below.

V. CONCLUSION

In this paper, we found the expression for SINR for a large

system when a MMSE filter with a pilot contaminated estimate

is employed to decode the received signal. We validated the

expression through simulations and showed that a 50-antenna

base station serving different number of users is sufficient

enough to employ our large system results. We characterized

the effect of pilot contamination in that it has the effect of

reducing the five percentile SINRs as compared to the MMSE

with perfect estimate for all values of α. We also found an

explicit expression for the interference suppression power due

to MMSE filter and compared it with that of matched filter. We

showed that five percentile SINR of the MMSE with a pilot

contaminated estimate is within 5 dB of MMSE filter with a

perfect estimate. We also found that the results with actual

channel estimation match the theoretical results. In this paper,

we have assumed that the training time allocated to users is K
symbols. In future work, we wish to study the training overhead

for different values of training time and users depending on the

coherence time. We believe this can be done through a large

system analysis of training time versus the number of users per

cell. It would also be interesting to see if the considerable work

done by the authors in [14], in getting a generalized expression

for the deterministic equivalent of the SINR can be further sim-

plified into intuitive expressions for other channel models. This

will be of help in realizing engineering conclusions tailored for

different channels models like distributed antennas, correlated

antennas, distributed sets of correlated antennas [10] to name a

few. Also, recent work has proposed that pilot contamination

as an artefact of linear channel estimation techniques [18].

While they have provided a theoretical understanding in an

ideal situation, practical solutions applicable to a regime with

large number of users are still to be found. Algorithms from

multi-user detection for CDMA systems are a useful tool when

we have enough coherence time [21]. We are currently looking

into such adaptive algorithms that could be implemented for

short coherence time scenarios.

APPENDIX A

RESULTS FROM LITERATURE

In this section we briefly describe the necessary results from

literature to derive the asymptotic SINR expressions. These

results were used previously in the context of CDMA systems

in [11]–[13].
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Lemma 4 [13, Lemma 1]: If S is a deterministic M ×M
matrix with uniformly bounded spectral radius for all M . Let

q = (1/
√
M)[q1 q2 . . . qM ]T where qi’s are i.i.d complex

random variables with zero mean, unit variance and finite eight

moment. Let r be a similar vector independent of q. Then

qHSq → 1

M
trace{S}, (34)

qHSr → 0 (35)

almost surely as M → ∞.

Results in linear MMSE filters for large dimensions have

been obtained using Stieltjes transform result on symmetric ma-

trices in [11]–[13]. For completeness and clarity of understand-

ing of MMSE for multi-user MIMO with pilot contamination

we first define the Stieltjes transform of a random variable and

state the result without proof here.

Definition 5 [24, Sec. 2.2.1]: Let a real valued random vari-

able be given by the distribution G. Then, the Stieltjes transform

m(z) with complex argument z and positive imaginary part is

defined as

m(z) =

∫

1

λ− z
dG(λ). (36)

Theorem 6 [13, Theorem 6]: Let X ∈ CM×K be a matrix

with independent and identically distributed complex entries

each with variance 1/M . Also, let T ∈ CK×K be a random

Hermitian non-negative definite matrix independent of X such

that the empirical distribution of its eigenvalues converges to a

fixed distribution F as M → ∞. Then as K → ∞ and M →
∞ with K/M = α, almost surely the empirical distribution of

eigenvalues of XTXH converges to a non-random distribution

function G whose Stieltjes transform m(z) satisfies

m(z) =
1

−z + α
∫

p
1+pm(z)dF (p)

(37)

for z complex with positive imaginary part.

Next we state a corollary from [12] which is also a conse-

quence of Stieltjes transform result in Theorem 26.

Corollary 7: Where Theorem 26 is applicable

αE

[

p d
dzm(z)

(1 + pm(z))2

]

=

∫

λ

(λ− z)2
dG(λ). (38)

Proof:

αE

[

p d
dzm(z)

(1 + pm(z))2

]

(a)
= − α

d

dz
E

[

1− pm(z)

1 + pm(z)

]

,

=
d

dz
αE

[

pm(z)

1 + pm(z)

]

,

(b)
=

d

dz
(1 + zm(z)) ,

=
d

dz

∫

λ

λ− z
dG(λ), (39)

where (a) is due to dominated convergence theorem and (b) is

due to (37). �

APPENDIX B

PROOF OF THEOREM 1

Let the overall channel matrix representing the system be

defined as, H = [H1 H2 . . . HK ], where, Hi = [h1i h2i . . .
hBi]. Also, define the large scale fading coefficient vector to be

ai = [
√
β1i

√
β2i . . .

√
βBi]

T , and ei ∈ CB×1 as a unit vector

with 1 in the ith position for i ∈ {1, 2, . . . , B}. With the above

definitions the channel estimate ĥ1k = (
√
β1k/β

(k))Hkak and

ĉ = (β11/β
(1))S−1H1a1. Also, if νk = (β1k/β

(k))
2
, then the

signal power, noise power, and pilot interference power, are,

respectively given by

Psignal(ĉ) =β11ν1
∣

∣aH1 HH
1 S−1H1e1

∣

∣

2
(40)

Pnoise(ĉ) = ν1σ
2aH1 HH

1 (S−1)
2
H1a1, (41)

Pcontam(ĉ) = ν1

B
∑

j=2

βj1

∣

∣aH1 HH
1 S−1H1ej

∣

∣

2
. (42)

For further analysis let us define

Z = S−1

⎛

⎝

B
∑

j=1

K
∑

k=2

βjkhjkh
H
jk

⎞

⎠S−1 (43)

then the interference power is given by

Pinter(ĉ) = ν1a
H
1 HH

1 ZH1a1. (44)

Define a real block diagonal matrix D1 ∈ R(K−1)B×(K−1)B

and S1 ∈ CM×(K−1)B as

D1 =diag
{

ν2a2a
H
2 , ν3a3a

H
3 , . . . , νKaKaHK

}

, (45)

S1 = [H2 . . . HK ]. (46)

Then the matrix S can be rewritten as

S =
K
∑

k=2

νkHkaka
H
k HH

k + (θ1 + θ2 + σ2)I

=S1D1S
H
1 + (θ1 + θ2 + σ2)I. (47)

For the matrix D1 there are (K − 1)(B − 1) eigenvalues which

are equal to zero and K − 1 non-zero values given by β2
1k/β

(k),

for all k ∈ {2, . . . ,K}. Also, define βj as the random variable

representing the large scale fading gain from an arbitrary user in

the jth cell. Therefore, βjk can be interpreted as the realization

of βj for the kth user. Therefore, Theorem 26 takes the form

m(z) =

(

−z + αE

[

β2
1/β

1 + β2
1m(z)/β

])−1

(48)

where, the expectation is now over the joint distribution of the

βjs and β.
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Also, notice that the spectral radius of S is bounded

by (θ1 + θ2 + σ2)
−1

. Therefore, with β =
∑B

j=1 βj , θ̄1 =

α
∑B

j=2 E[βj ], θ̄2=α
∑B

j=2 E[βj(β1/β)] and using Lemma 4

we can conclude that

HH
1 S−1H1 → 1

M
trace{S−1}I = η1I, (49)

HH
1 (S−1)

2
H1 → 1

M
trace{S−2}I = η2I (50)

almost surely as M → ∞ where, if G is the non-random lim-

iting distribution of the eigenvalues λ of the matrix S1D1S
H
1 ,

then

η1 =

∫

1

λ+ θ̄1 + θ̄2 + σ2
dG(λ) (51)

η2 =

∫

1

(λ+ θ̄1 + θ̄2 + σ2)
2 dG(λ). (52)

From (51) and (52) and using the definition of Stieltjes trans-

form [24] we can find that η1 = lim−z→θ̄2+θ̄2+σ2 m(z), and

since m(z) is complex analytic η2 = lim−z→θ̄2+θ̄2+σ2(d/
dz)m(z). The values of η1 and η2 can then also be ob-

tained from solving (48) and its derivative. The equations are

given by

η1 =

⎛

⎜

⎝
σ2 + αE[β]− αE

⎡

⎢

⎣

(

β2

1

β

)2

η1

1 +
β2

1

β
η1

⎤

⎥

⎦

⎞

⎟

⎠

−1

, (53)

η2 =

⎛

⎝η−2
1 − αE

⎡

⎣

⎛

⎝

β2

1

β

1 +
β2

1

β
η1

⎞

⎠

2⎤

⎦

⎞

⎠

−1

. (54)

Similarly, to evaluate the expression for interference Pinter,

trace{Z} can be expanded as in (58), shown at the bottom of

the page where, in step (a) we use trace{qqH} = qHq and if

Sk =
∑

k �=1,k

νkHkaka
H
k HH

k + (θ1 + θ2 + σ2)I (59)

then in step (b) use matrix inversion lemma as

S−1 = S−1
k

(

I− νkHkaka
H
k HH

k S−1
k

1 + νkaHk HH
k S−1

k Hkak

)

. (60)

Notice that using Lemma 4, the terms HH
k S−1

k Hk
a.s.−→ η1I

and HH
k S−2

k Hk
a.s.−→ η2I and it appears repeatedly in (58).

Therefore, in the limit of infinite number of antennas, and for a

given α, using Lemma 4 we have

HH
1 ZH1

a.s.−→ trace{Z}
M

I (61)

and trace{Z}/M in turn converges to the expression in (63),

shown at the top of the next page. In (62), shown at the top of

the next page, the third term E[(β2
1/β)η2/(1 + (β2

1/β)η1)
2] is

equal to
∫∞
0 (λ/(λ+ θ̄1 + θ̄2 + σ2)2)dG(λ). This follows from

corollary 7.

Using equations (49), (50), (63) in expressions (40)–(42) and

(44) the SINR given in (19) converges almost surely to ŜINR as

in expression (20).

APPENDIX C

PROOF OF PROPOSITION 3

With ν1 = (β11/β
(1))

2
, using the matched filter given

by c = (
√
β11/β

(1))H1a1, the signal power, noise

power, pilot interference power is given by Psignal =

ν1|a1HH
1 H1e1|2, Pnoise = (ν1/β11)σ

2aH1 HH
1 H1a1, Pcontam=

(ν1/β11)
∑B

j=1βj1|aH1 HH
1 H1ej |2. Since, HHH

a.s.−→I as

M→∞, we have, Psignal
a.s.−→ν1β11, Pnoise

a.s.−→(ν1/β11)β
(1)σ2,

trace{Z} =trace

⎧

⎨

⎩

B
∑

j=1

K
∑

k=2

βjkS
−1Hkeje

H
j HH

k S−1

⎫

⎬

⎭

(55)

(a)
=

B
∑

j=1

K
∑

k=2

βjke
H
j HH

k (S−1)
2
Hkej (56)

(b)
=

B
∑

j=1

K
∑

k=2

βjke
H
j HH

k S−2
k

(

I− 2
νkHkaka

H
k HH

k S−1
k

1 + ν2ka
H
k HH

k S−1
k Hkak

+
ν2kHkaka

H
k HH

k S−1
k Hkaka

H
k HH

k S−1
k

(

1 + ν2ka
H
k HH

k S−1
k Hkak

)2

)

Hkej (57)

=

B
∑

j=1

(

K
∑

k=2

βjke
H
j HH

k S−2
k Hkej − 2

K
∑

k=2

βjk

νke
H
j HH

k S−2
k Hkaka

H
k HH

k S−1
k Hkej

1 + νkaHk HH
k S−1

k Hkak

+

K
∑

k=2

βjk

ν2ke
H
j HH

k S−2
k Hkaka

H
k HH

k S−1
k Hkaka

H
k HH

k S−1
k Hkej

(1 + νkaHk HH
k S−1

k Hkak)2

)

(58)
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trace{Z}
M

a.s.−→α
B
∑

j=1

E

⎡

⎢

⎣
βj

⎛

⎜

⎝
η2 − 2

(

β
1

β

)2

βjη1η2

1 + η1
β2

1

β

+

(

β
1

β

)4

βjβη2η
2
1

(

1 + η1
β2

1

β

)2

⎞

⎟

⎠

⎤

⎥

⎦

=α

B
∑

j=2

E[βj ]η2 + α

B
∑

j=1

E

[

βj

β1

β

]

η2 − αE

⎡

⎢

⎣

(

β
1

β

)2
∑B

j=1 βjη1η2

1 + η1
β2

1

β

⎤

⎥

⎦
− αE

⎡

⎢

⎣

(

β
1

β

)2
∑B

j=1 βjη1η2
(

1 + η1
β2

1

β

)2

⎤

⎥

⎦

=(θ̄1 + θ̄2)η2 + αE

⎡

⎢

⎣

β2

1

β
η2

(

1 +
β2

1

β
η1

)2

⎤

⎥

⎦
− αE

⎡

⎢

⎣

β2

1

β

(

∑B
j=2

β2

j

β

)

η1η2

1 +
β2

1

β
η1

⎤

⎥

⎦
− αE

⎡

⎢

⎣

β2

1

β

(

∑B
j=2

β2

j

β

)

η1η2
(

1 +
β2

1

β
η1

)2

⎤

⎥

⎦
(62)

=

∞
∫

0

λ+ θ̄1 + θ̄2

(λ+ θ̄1 + θ̄2 + σ2)
2 dG(λ)− αE

⎡

⎢

⎣

β2

1

β

(

∑B
j=2

β2

j

β

)

η1η2

1 +
β2

1

β
η1

⎤

⎥

⎦
− αE

⎡

⎢

⎣

β2

1

β

(

∑B
j=2

β2

j

β

)

η1η2
(

1 +
β2

1

β
η1

)2

⎤

⎥

⎦
(63)

Pcontam
a.s.−→ (ν1/β11)

∑B
j=2 β

2
j1. Using Lemma 4 in the

interference term we have

Pinter =
ν1
β11

aH1 HH
1

⎛

⎝

B
∑

j=1

K
∑

k=2

βjkhkh
H
k

⎞

⎠H1a1,

a.s.−→ ν1
β11

aH1

⎛

⎝

1

M
trace

⎧

⎨

⎩

B
∑

j=1

K
∑

k=2

βjkhkh
H
k

⎫

⎬

⎭

I

⎞

⎠a1,

=
ν1
β11

α

B
∑

j=1

βj1
1

K

⎛

⎝

B
∑

j=1

K
∑

k=2

βjkh
H
k hk

⎞

⎠ ,

=
ν1
β11

α

B
∑

j=1

βj1

⎛

⎝

B
∑

j=1

E[βj ]

⎞

⎠ . (64)

Rearranging the terms in (19) we get the expression for SINR.
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