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Uplink Performance Analysis of Multicell
MU-SIMO Systems with ZF Receivers

Hien Quoc Ngo, Student Member, IEEE, Michail Matthaiou, Member, IEEE,
Trung Q. Duong, Senior Member, IEEE, and Erik G. Larsson, Senior Member, IEEE

Abstract—We consider the uplink of a multicell multiuser
single-input multiple-output system, where the channel experi-
ences both small and large-scale fading. The data detection is
done by using the linear zero-forcing technique, assuming the
base station (BS) has perfect channel state information of all
users in its cell. We derive new, exact analytical expressions for
the uplink rate, symbol error rate, and outage probability per
user, as well as a lower bound on the achievable rate. This bound
is very tight and becomes exact in the large-number-of-antennas
limit. We further study the asymptotic system performance in
the regimes of high signal-to-noise ratio (SNR), large number of
antennas, and large number of users per cell. We show that
at high SNRs, the system is interference-limited and hence,
we cannot improve the system performance by increasing the
transmit power of each user. Instead, by increasing the number of
BS antennas, the effects of interference and noise can be reduced,
thereby improving the system performance. We demonstrate that,
with very large antenna arrays at the BS, the transmit power
of each user can be made inversely proportional to the number
of BS antennas while maintaining a desired quality-of-service.
Numerical results are presented to verify our analysis.

Index Terms—Multiuser SIMO, very large MIMO systems,
zero-forcing receiver.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) technology
can provide a remarkable increase in data rate and relia-

bility compared to single-antenna systems. Recently, multiuser
MIMO (MU-MIMO) configurations, where the base stations
(BSs) are equipped with multiple antennas and communicate
with several co-channel users, have gained much attention and
are now being introduced in several new generation wireless
standards (e.g., LTE-Advanced, 802.16m) [2]. This scheme is
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also known as space division multiple access (SDMA), which
provides high bandwidth efficiency and higher throughput than
time division multiple access. The goal of the SDMA scheme
is to improve the cell capacity (more users are simultaneously
served), while keeping the spectrum allocation unchanged.
SDMA normally requires that the number of BS antennas is
larger than the number of users that share the same spectrum.
In the uplink, the BS is able to decode the signal transmitted
from each user, while avoiding the signals transmitted from the
other users. The optimal SDMA scheme for the uplink is joint
multiuser detection. However, it is too complex for practical
implementation. More practical SDMA detection algorithms
are based on linear processing, including zero-forcing (ZF) or
minimum mean-square error (MMSE) [3].

MU-MIMO systems have been studied from many perspec-
tives including communication, signalling, and information
theory in both downlink and uplink scenarios [4]–[6]. All these
mentioned works have only investigated a single-cell scenario,
where the effects of intercell interference have been neglected.
However, co-channel interference, appearing due to frequency-
reuse, represents an important impairment in cellular systems.
Recently, there has been an increasing research interest in
the performance of MU-MIMO systems in interference-limited
multicell environments [7]–[11]. In fact, it has been shown that
the capacity of the MU-MIMO downlink can be dramatically
reduced due to intercell interference [7].

Many interference cancellation and mitigation techniques
have been proposed for multicell MU-MIMO systems, such
as maximum likelihood multiuser detection [9], [12], BS
cooperation [13], and interference alignment [14]. These tech-
niques, however, induce a significant complexity burden on
the system implementation, especially for large array con-
figurations. Therefore, linear receivers/precoders, in particular
ZF, are of particular interest as low-complexity alternatives
[15]–[18]. When the number of BS antennas is small, lin-
ear receivers/precoders do not perform well due to inter-
user interference. But when the number of BS antennas is
large, the channel vectors are nearly orthogonal and hence,
interference can be successfully handled by using simple linear
receivers/precoders. As a consequence, with very large antenna
arrays, optimal performance can be achieved even with simple
linear processing, like ZF (see e.g., [19], [20] for a more
detailed discussion). Very recently, there has been a great deal
of interest in multicell MU-MIMO systems, where several
BSs are equipped with very large antenna arrays [19]–[23]. In
this context, the asymptotic signal-to-interference-plus-noise
ratios (SINRs), when the number of BS antennas grows to
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infinity, were derived in [21] for maximum-ratio combining
(MRC) in the uplink and maximum-ratio transmission in the
downlink. In [23], using tools of random matrix theory, the
authors derived a deterministic approximation of the uplink
SINR with MRC and MMSE receivers, assuming that the
number of transmit antennas and number of users go to infinity
at the same rate. They also showed that the deterministic
approximation of the SINR is tight even with a moderate
number of BS antennas and users. However, since the limiting
SINR obtained therein is deterministic, this approximation
does not enable us to further analyze other figures of merit,
such as the outage probability or symbol error rate (SER).
More importantly, iterative algorithms are needed to compute
the deterministic equivalent results. In [20], lower bounds
on the uplink achievable rates with linear detectors were
computed, and the authors showed that MRC performs as
well as ZF in a regime where the spectral efficiency is of
the order of 1 bit per channel use per user. Nevertheless, it
was demonstrated that ZF performs much better than MRC at
higher spectral efficiencies.

Inspired by the above discussion, in this paper, we analyze
the performance of multicell multiuser single-input multiple-
output (MU-SIMO) systems, where many single-antenna users
simultaneously transmit data to a BS. The BS uses ZF to
detect the transmitted signals. Note that the MMSE receiver
always performs better than the ZF receiver. However, herein
we consider ZF receivers for the following reasons: i) an exact
analysis of MMSE receivers is a challenging mathematical
problem in a multicell MU-SIMO setup. This implication
can be seen by invoking the generic results of [24]; ii) the
implementation of MMSE requires additional knowledge of
the noise and interference statistics; iii) it is well-known that
ZF receivers perform equivalently to MMSE receivers at high
SINRs [25]; and iv) the performance of ZF bounds that of
MMSE from below, so the results we obtain represent achiev-
able lower bounds on the MMSE receivers’ performance. The
paper makes the following specific contributions:1

• We derive exact analytical expressions for the ergodic
data rate, SER, and outage probability of the uplink chan-
nel for any finite number of BS antennas. We also derive
a tractable lower bound on the achievable rate. Note that,
although these exact results involve complicated func-
tions, they can be more efficiently evaluated compared to
brute-force Monte-Carlo simulations, especially for large
configurations.

• Next, we focus on the ZF receiver’s asymptotic per-
formance, when the BS deploys a large antenna array.
These results enable us to explicitly study the effects of
transmit power, intercell interference, and number of BS
antennas. For instance, when the number of users per cell
is fixed and the number of BS antennas grows without
bound, intercell interference and noise are averaged out.
However, when fixing the ratio between the number of BS

1The work presented here is a comprehensive extension of our conference
paper [1]. The main novel elements over [1] are: i) a new tractable lower
bound on the achievable rate; ii) an analysis of SER and outage probability;
and iii) asymptotic system analysis in the regime where the number of transmit
antennas and number of users go to infinity with a fixed, finite ratio.

antennas and the number of users, intercell interference
does not vanish when the number of antennas grows
large. Yet, in both cases by using very large antenna
arrays, the transmit power of each user can be made
inversely proportional to the number of antennas with no
performance degradation.

Notation: The superscript H stands for conjugate transpose,
while [AAA]ij denotes the (i, j)th entry of a matrix AAA, and IIIn
is the n × n identity matrix. The expectation operation, the
Euclidean norm, and the trace operator are denoted by E {·},
‖ · ‖, and Tr (·), respectively. The notation

a.s.→ means almost
sure convergence. We use a

d∼ b to imply that a and b have the
same distribution. Finally, we use zzz ∼ CN (000,ΣΣΣ) to denote
a circularly symmetric complex Gaussian vector zzz with zero-
mean and covariance matrix ΣΣΣ.

II. MULTICELL MU-SIMO SYSTEM

In the following, we consider a multicell MU-SIMO system
with L cells. Each cell includes one BS equipped with N
antennas, and K single-antenna users (N ≥ K). We consider
uplink transmission, and assume that the L BSs share the same
frequency band. Conventionally, the communication between
the BS and the users is performed in separate time-frequency
resources. However, when the BS is equipped with more
antennas, more degrees of freedom are offered and hence,
more independent data streams can be transmitted. Therefore,
it is more efficient if several users communicate with the BS in
the same time-frequency resource [11], [21]. We assume that
all users simultaneously transmit data streams to their BSs.2

The N × 1 received vector at the lth BS (l = 1, ..., L) is

yyyl =
√
pu

L∑

i=1

GGGlixxxi +nnnl (1)

where GGGli ∈ C
N×K is the channel matrix between the lth BS

and the K users in the ith cell, i.e., glimk , [GGGli]mk is the
channel coefficient between the mth antenna of the lth BS and
the kth user in the ith cell;

√
puxxxi ∈ C

K×1 is the transmitted
vector of K users in the ith cell (the average power transmitted
by each user is pu); and nnnl ∈ C

N×1 is an additive white
Gaussian noise (AWGN) vector, such that nnnl ∼ CN (000, IIIM ).
Note that, since the noise power is assumed to be 1, pu can
be considered as the normalized “transmit” SNR and hence,
it is dimensionless. Here, we assume equal transmit power
for all users. This assumption does not affect our analytical
methodologies and the obtained results, and can provide a
lower bound on the performance of practical systems, where
power control is being used.

The channel matrix, GGGli, models independent small-scale
fading, path-loss attenuation, and lognormal shadow fading.
The assumption of independent small-scale fading is suffi-
ciently realistic for systems where the antennas are sufficiently

2It arguably would be more practical to consider asynchronous transmis-
sion. Unfortunately, if we consider the impact of asynchronous transmission,
the system model becomes too complicated for analysis. Note that our
synchronous-transmission results can be regarded as an upper bound of what
is actually achieved in practice [26].
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well separated [27]. The channel coefficient glimk is given by

glimk = hlimk

√

βlik, m = 1, 2, ..., N (2)

where hlimk is the small-scale fading coefficient from the
kth user in the ith cell to the mth antenna of the lth BS.
The coefficient hlimk is assumed to be complex Gaussian
distributed with zero-mean and unit variance. Moreover,

√
βlik

represents the path-loss attenuation and shadow fading, which
are assumed to be constant over the index of the BS antenna,
m, and over many coherence intervals. This assumption is
reasonable for a collocated BS antenna array since the distance
between users and the BS is much greater than the distance
between the BS antennas. More importantly, the validity of
this assumption has been demonstrated in practice even for
large antenna arrays [28].

We assume that the BS has perfect channel state information
(CSI) of all users in its cell. This assumption is reason-
able in an environment with low or moderate mobility, so
that long training intervals can be afforded.3 Moreover, the
results obtained under this assumption serve as bounds on
the performance for the case that CSI is imperfect due to
estimation errors or feedback delay. We further assume that
the transmitted signals from the K users in the lth cell are
detected using a ZF receiver. As such, the received vector yyyl
is processed by multiplying it with the pseudo-inverse of GGGll

as:

rrrl =GGG†
llyyyl =

√
puxxxl +

√
pu

L∑

i6=l

GGG†
llGGGlixxxi +GGG†

llnnnl (3)

where GGG†
ll ,

(

GGGH
llGGGll

)−1

GGGH
ll . Therefore, the kth element of

rrrl is given by

rrrl,k =
√
puxxxl,k +

√
pu

L∑

i6=l

[

GGG†
ll

]

k
GGGlixxxi +

[

GGG†
ll

]

k
nnnl (4)

where xxxl,k is the kth element of xxxl, which is the transmitted
signal from the kth user in the lth cell, while [AAA]k denotes the
kth row of a matrix AAA. Note that since we use ZF receivers,
intracell interference is completely canceled out. From (4), the
SINR of the uplink transmission from the kth user in the lth
cell to its BS is defined as

γk ,
pu

pu
∑L

i6=l

∥
∥
∥

[

GGG†
ll

]

k
GGGli

∥
∥
∥

2

+
∥
∥
∥

[

GGG†
ll

]

k

∥
∥
∥

2 . (5)

Proposition 1: The SINR of the uplink transmission from
the kth user in the lth cell to its BS can be represented as

γk
d∼ puXk

puZl + 1
(6)

3In multiuser systems with very large antenna arrays at the BS, a standard
way to obtain the CSI is to use uplink pilots. If the coherence interval is short,
non-orthogonal pilot sequences must be utilized in different cells. As a result,
the channel estimate in a given cell is contaminated by the pilots transmitted
from users in other cells. This effect is known as “pilot contamination” [11].
By contrast, here, we assume that the coherence interval is long enough so
that all cells are assigned orthogonal pilot sequences and hence, the pilot
contamination effect disappears.

where Xk and Zl are independent RVs whose probability
density functions (PDFs) are respectively given by

pXk
(x) =

e−x/βllk

(N −K)!βllk

(
x

βllk

)N−K

, x ≥ 0 (7)

pZl
(z) =

%(Al)∑

m=1

τm(Al)∑

n=1

Xm,n (Al)
µ−n
l,m

(n− 1)!
zn−1e

−z
µl,m , z ≥ 0

(8)

where Al ∈ C
K(L−1)×K(L−1) is given by

Al ,





















DDDl1

. . . 000

DDDl(l−1)

DDDl(l+1)

000
. . .

DDDlL





















withDDDli is a K×K diagonal matrix whose elements are given
by [DDDli]kk = βlik; % (Al) is the number of distinct diagonal
elements of Al; µl,1, µl,2, ..., µl,%(Al) are the distinct diagonal
elements in decreasing order; τm (Al) is the multiplicity of
µl,m; and Xm,n (Al) is the (m,n)th characteristic coefficient
of Al which is defined in [31, Definition 4].

Proof: Dividing the denominator and numerator of (5) by
∥
∥
∥

[

GGG†
ll

]

k

∥
∥
∥

2

, we obtain

γk =
pu

∥
∥
∥

[

GGG†
ll

]

k

∥
∥
∥

−2

pu
∑L

i6=l ‖YYY i‖2 + 1
(9)

where YYY i ,
[GGG†

ll]kGGGli

‖[GGG†

ll]k‖
. Since

∥
∥
∥

[

GGG†
ll

]

k

∥
∥
∥

2

=

[(

GGGH
llGGGll

)−1
]

kk

,
∥
∥
∥

[

GGG†
ll

]

k

∥
∥
∥

−2

has an Erlang distribution with shape parameter
N −K + 1 and scale parameter βllk [32], then

∥
∥
∥

[

GGG†
ll

]

k

∥
∥
∥

−2
d∼Xk. (10)

We next show that YYY i and Xk are independent. Conditioned
on
[

GGG†
ll

]

k
, YYY i is a zero-mean complex Gaussian vector with

covariance matrix DDDli which is independent of
[

GGG†
ll

]

k
. Since

the PDF of a Gaussian vector is fully described via its
first and second moments, YYY i is a Gaussian vector which is
independent of

[

GGG†
ll

]

k
and, in turn, of Xk. Then,

∑L
i6=l ‖YYY i‖2

is independent of Xk, and is the sum of K (L− 1) statis-
tically independent but not necessarily identically distributed
exponential RVs. Thus, from [33, Theorem 2], we have that

L∑

i6=l

‖YYY i‖2
d∼Zl. (11)

From (9)–(11), we can obtain (6).

III. FINITE-N ANALYSIS

In this section, we present exact analytical expressions for
the ergodic uplink rate, SER, and outage probability of the
system described in Section II. We underline the fact that
the following results hold for any arbitrary number of BS
antennas, provided that N ≥ K.
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〈Rl,k〉 = log2 e

%(Al)∑

m=1

τm(Al)∑

n=1

N−K∑

p=0

Xm,n (Al)µ
−n
l,m (−1)

N−K−p

(n− 1)! (N−K − p)!

[

−e
1

βllkpu In−1,N−K−p

(
1

βllk
,

1

βllkpu
,

1

µl,m
− 1

βllk

)

+

N−K−p
∑

q=1

(q − 1)! (−1)
q
p−n
u

(βllkpu)
N−K−p−q

Γ (n)U

(

n, n+N + 1−K − p− q,
1

µl,mpu

)]

(13)

Im,n (a, b, α) ,
m∑

i=0

(
m

i

)

(−b)m−i

[
n+i∑

q=0

(n+ i)
q
bn+i−q

αq+1am−q
Ei (−b)− (n+ i)

n+i
eαb/a

αn+i+1am−n−i
Ei

(

−αb
a

− b

)

+
e−b

α

n+i−1∑

q=0

n+i−q−1
∑

j=0

j! (n+ i)
q (n+i−q−1

j

)
bn+i−q−j−1

αqam−q (α/a+ 1)
j+1



 . (14)

〈Rl,k〉 = log2 e

K(L−1)
∑

m=1

N−K∑

p=0

∏K(L−1)
n=1,n6=m (1− µl,n/µl,m)

−1

(N −K − p)! (−1)
N−K−p

µl,m

[

−e
1

βllkpu I0,N−K−p

(
1

βllk
,

1

βllkpu
,

1

µl,m
− 1

βllk

)

+

N−K−p
∑

q=1

(q − 1)! (−1)
q

βN−K−p−q
llk

e
1

µl,mpu µN+1−K−p−q
l,m Γ

(

N + 1−K − p− q,
1

µl,mpu

)]

(15)

A. Uplink Rate Analysis

From Proposition 1, the uplink ergodic rate from the kth
user in the lth cell to its BS (in bits/s/Hz) is given by

〈Rl,k〉 = EXk,Zl

{

log2

(

1 +
puXk

puZl + 1

)}

. (12)

By using (7) and (8), we can obtain the following analytical
representation for the uplink ergodic rate [1]:

Proposition 2: The uplink ergodic rate from the kth user in
the lth cell to its BS is given by (13) at the top at the page,
where U (·, ·, ·) is the confluent hypergeometric function of the
second kind [34, Eq. (9.210.2)], and Im,n (a, b, α) is given by
(14), shown at the top of the page.

Proof: The proof can be found in [1, Section III-A].
In practice, users are located randomly within cells, such

that large-scale fading coefficients for different users are
different. This results in all diagonal elements of Al being
distinct. The following corollary corresponds to this practically
important special case.

Corollary 1: If all diagonal elements of Al are distinct,
the ergodic rate in (13) reduces to (15), shown at the top
of the page, with Γ(a, x) =

∫∞

x
ta−1e−tdt being the upper

incomplete gamma function [34, Eq. (8.350.2)].
Proof: For this case, substituting % (Al) = K (L− 1),

τm (Al) = 1, and

Xm,1 (Al) =

K(L−1)
∏

n=1,n6=m

(

1− µl,n

µl,m

)−1

into (13), and using the identity U (1, a, x) =
exx1−aΓ (a− 1, x) [35, Eq. (07.33.03.0014.01)], we can
obtain (15).

In addition to the exact result given by Proposition 2,
we now derive an analytical lower bound on the ergodic
achievable rate which is easier to evaluate:

Proposition 3: The uplink ergodic rate from the kth user in
the lth cell to its BS is lower bounded by

〈Rl,k〉 ≥ log2

(

1 + puβllk exp

(

ψ(N −K + 1)

−pu
%(Al)∑

m=1

τm(Al)∑

n=1

µl,mnXm,n(Al) 3F1 (n+1, 1, 1; 2;−puµl,m)









(16)

where ψ(x) is Euler’s digamma function [34, Eq. (8.360.1)],
and pFq(·) represents the generalized hypergeometric function
with p, q non-negative integers [34, Eq. (9.14.1)].

Proof: See Appendix A.
Remark 1: From (6), we have that

lim
pu→∞

γk
d∼ Xk
∑L

i6=l ‖YYY i‖2
. (17)

The above result explicitly demonstrates that the SINR is
bounded when pu goes to infinity. This means that at high
SNRs, we cannot improve the system performance by simply
increasing the transmitted power of each user. The reason is
that, when pu increases, both the desired signal power and the
interference power increase.

B. SER Analysis
In this section, we analyze the SER performance of the

uplink for each user. Let Mγk
(s) be the moment generating

function (MGF) of γk. Then, using the well-known MGF-
based approach [27], we can deduce the exact average SER
of M -ary phase-shift keying (M -PSK) as follows:

Proposition 4: The average SER of the uplink from the kth
user in the lth cell to its BS for M -PSK is given by

SERk =
1

π

∫ Θ

0

Mγk

(
gMPSK

sin2 θ

)

dθ (18)
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where Θ , π − π
M , gMPSK , sin2 (π/M), and

Mγk
(s) =

%(Al)∑

m=1

τm(Al)∑

n=1

N−K+1∑

p=0

(
N−K+1

p

)

Xm,n(Al)

×
( −βllks
βllks+1/pu

)p

2F0

(

n, p;—;
−µl,m

1/pu+βllks

)

. (19)

Proof: See Appendix B.
It is also interesting to investigate the SER at high SNRs

in order to obtain the diversity gain of the system under
consideration. For this case (pu → ∞), by ignoring 1/pu in
(19), we obtain the asymptotic SER at high SNRs as

SER
∞
k =

1

π

∫ Θ

0

M∞
γk

(
gMPSK

sin2 θ

)

dθ (20)

where

M∞
γk

(s) =

%(Al)∑

m=1

τm(Al)∑

n=1

N−K+1∑

p=0

(
N−K+1

p

)

×Xm,n(Al) (−1)
p
2F0

(

n, p;—;
−µl,m

βllks

)

. (21)

This implies that at high SNRs, the SER converges to a
constant value that is independent of SNR; hence the diversity
order, which is defined as limpu→∞

− log SERk
log(pu)

, is equal to zero.
This phenomenon occurs due to the presence of interference.
More precisely, as we can see from (17), when pu → ∞, the
SINR is bounded due to interference. The following corollary
corresponds to the interesting case when all diagonal elements
of Al are distinct.

Corollary 2: If all diagonal elements of Al are distinct, the
exact and high-SNR MGF expressions in (19) and (21) reduce
respectively to

Mγk
(s) =

K(L−1)
∑

m=1

N−K+1∑

p=0

(
N−K+1

p

)

Xm,1(Al)

×
(−βllks)p µ−1

l,m

(1/pu + βllks)
p−1 e

1/pu+βllks

µl,m Ep

(
1/pu + βllks

µl,m

)

(22)

M∞
γk

(s) =

K(L−1)
∑

m=1

N−K+1∑

p=0

(
N−K+1

p

)

Xm,1(Al)

× (−1)
p
βllks

µl,m
e
βllks

µl,m Ep

(
βllks

µl,m

)

(23)

where En(z) =
∫∞

1
t−ne−ztdt, n = 0, 1, 2, . . . ,Re(z) > 0,

is the exponential integral function of order n [35, Eq.
(06.34.02.0001.01)].

Proof: Following a similar methodology as in Corollary 1
and using the identity

2F0 (1, p;—;−x) = 1

x
e1/xEp

(
1

x

)

(24)

we arrive at the desired results (22) and (23). Note that (24)
is obtained by using [38, Eq. (8.4.51.1)], [38, Eq. (8.2.2.15)],
[38, Eq. (8.4.16.14)] and [39, Eq. (46)].

From (18), we can see that to compute the SER we have to
perform a finite integration over θ. To avoid this integration,
we can apply the tight approximation of [36] on (18), to get

SERk ≈
(

Θ

2π
− 1

6

)

Mγk
(gMPSK) +

1

4
Mγk

(
4gMPSK

3

)

+

(
Θ

2π
− 1

4

)

Mγk

(
gMPSK

sin2 Θ

)

. (25)

The above expression is easier to evaluate compared to (18).

C. Outage Probability Analysis

The main goal of this section is to analytically assess the
outage probability of multicell MU-SIMO systems with ZF
processing at the BS. Especially for the case of non-ergodic
channels (e.g. quasi-static or block-fading channels), it is
appropriate to resort to the notion of outage probability to
characterize the system performance. The outage probability,
Pout, is defined as the probability that the instantaneous SINR,
γk, falls below a given threshold value γth, i.e.,

Pout , Pr (γk ≤ γth) . (26)

With this definition in hand, we can present the following
novel, exact result:

Proposition 5: The outage probability of transmission from
the kth user in the lth cell to its BS is given by

Pout=1−exp

(

− γth
puβllk

)%(Al)∑

m=1

τm(Al)∑

n=1

N−K∑

p=0

p
∑

q=0

(
p

q

)
(

γth

βllk

)p

p!

×Xm,n (Al)
µ−n
l,m

(n− 1)!

Γ (n+ q) pq−p
u

(1/µl,m + γth/βllk)
n+q . (27)

Proof: See Appendix C.
Note that the exponential integral function and confluent

hypergeometric functions appearing in Propositions 2, 4, and
5 are built-in functions and can be easily evaluated by standard
mathematical software packages, such as MATHEMATICA or
MATLAB. We now recall that we are typically interested in
small outage probabilities (e.g., in the order of 0.01, 0.001
etc). In this light, when γth → 0, we can obtain the following
asymptotic result:

P∞
out

= 1−
%(Al)∑

m=1

τm(Al)∑

n=1

N−K∑

p=0

(
γth

βllk

)p

p!
Xm,n (Al)

×
µ−n
l,m

(n− 1)!

Γ (n+ p)

(1/µl,m + γth/βllk)
n+p . (28)

The above result is obtained by keeping the dominant term
p = q in (27) and letting γth → 0. Similarly to the SER
case, P∞

out
is independent of the SNR, thereby reflecting the

deleterious impact of interference. Furthermore, for the case
described in Corollaries 1 and 2, we can get the following
simplified results:

Corollary 3: If all diagonal elements of Al are distinct, the
exact and high-SNR outage probability expressions in (27) and
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(28) reduce respectively to

Pout = 1− exp

(

− γth
puβllk

)K(L−1)
∑

m=1

N−K∑

p=0

p
∑

q=0

(
γth

βllk

)p

(p− q)!

× Xm,1 (Al)

µl,m

pq−p
u

(1/µl,m + γth/βllk)
q+1 (29)

P∞
out

= 1−
K(L−1)
∑

m=1

N−K∑

p=0

(
γth
βllk

)p Xm,1 (Al) /µl,m
(

1
µl,m

+ γth

βllk

)1+p . (30)

IV. ASYMPTOTIC (N → ∞) ANALYSIS

As discussed in Remark 1, we cannot improve the mul-
ticell MU-SIMO system performance by simply increasing
the transmit power. However, we can improve the system
performance by using a large number of BS antennas. Due
to the array gain and diversity effects, when N increases, the
received powers of both the desired and interference signals
increase. Yet, based on the asymptotic orthogonal property of
the channel vectors between the users and the BS, when N
is large, interference can be significantly reduced even with
a simple ZF receiver [20], [21]. In this section, we analyze
the asymptotic performance for large N . We assume that
when N increases, the elements of the channel matrix are still
independent. To guarantee the independence of the channels,
the antennas have to be sufficiently well separated. Note that
the physical size of the antenna array can be small even with
very large N . For example, at 2.6 GHz, a cylindrical array with
128 antennas, which comprises 4 circles of 16 dual polarized
antenna elements (distance between adjacent antennas is about
6 cm which is half a wavelength), occupies only a physical
size of 28 cm × 29 cm [28].

1) Fixed pu, K, and N → ∞: Intuitively, when the number
of BS antennas N grows large, the random vectors between the
BS and the users as well as the noise vector at the BS become
pairwisely orthogonal and hence, interference from users in
other cells can be canceled out. At the same time, due to the
array gain effect, the impact of thermal noise is minimized too.
This intuition is confirmed by the following analysis. Since Xk

has an Erlang distribution with shape parameter N −K + 1
and scale parameter βllk, Xk can be represented as

Xk =
βllk
2

2(N−K+1)
∑

i=1

Z2
i (31)

where Z1, Z2, ..., Z2(N−K+1) are independent, standard nor-
mal RVs. Substituting (31) into (9), and dividing the denomi-
nator and the numerator of γk by 2 (N −K + 1), as N → ∞,
we obtain

γk =
pu

βllk

2

∑2(N−K+1)
i=1 Z2

i / (2 (N −K + 1))
(

pu
∑L

i6=l ‖YYY i‖2 + 1
)

/ (2 (N −K + 1))

a.s.→ ∞ (32)

where (32) is obtained by using the law of large numbers, i.e.,
the numerator converges to puβllk/2, while the denominator
converges to 0. The above result reveals that, when the number
of BS antennas goes to infinity, the effects of interference and
noise disappear. Therefore, by increasing N , the SINR grows
without limit. Similar conclusions were presented in [20].

2) Fixed pu, κ = N/K, and N → ∞: This is an
interesting asymptotic scenario since in practice, the number
of BS antennas, N , is large but may not be much greater than
the number of users K. For this case, the property stating that
the channel vectors between users and the BS are pairwisely
orthogonal when N→∞ is not valid. In other words, HHHH

liHHH li

does not converge point-wisely to an “infinite-size identity
matrix” [22]. Thus, intercell interference cannot be canceled
out. Since YYY i ∼ CN (000,DDDli), it can be represented as

YYY i = wwwH
i DDD

1/2
li (33)

where wwwi ∼ CN (000, IIIK). From (9), (31), and (33), γk can be
expressed as

γk =
pu

βllk

2

∑2(N−K+1)
i=1 Z2

i

pu
∑L

i6=lwww
H
i DDDliwwwi + 1

. (34)

By dividing the numerator and denominator of γk in (34) by
2 (N −K + 1), we obtain

γk =
pu

βllk

2

∑2(N−K+1)
i=1 Z2

i / (2 (N −K + 1))
(

pu
∑L

i6=lwww
H
i DDDliwwwi + 1

)

/ (2 (N −K + 1))
. (35)

Since N/K = κ, (35) can be rewritten as

γk =

puβllk
(
κ− 1 + 1

K

) 2(N−K+1)∑

i=1

Z2
i / (2 (N −K + 1))

(

pu
∑L

i6=lwww
H
i DDDliwwwi + 1

)

/K
.

(36)

From (36), by using the law of large numbers and the trace
lemma from [29, Lemma 13], i.e.,4

1

K
wwwH

i DDDliwwwi −
1

K
Tr (DDDli)

a.s.→ 0, as K → ∞

we obtain

γk − βllk (κ− 1)
∑L

i=1,i6=l
1
K Tr (DDDli)

a.s.→ 0, as N → ∞, and N/K = κ.

(37)

Therefore a deterministic approximation, γ̄k, of γk is given by

γ̄k =
βllk (κ− 1)

∑L
i=1,i 6=l

1
K Tr (DDDli)

. (38)

It is interesting to note that the signal-to-interference ratio
(SIR) expression (38) is independent of the transmit power,
and increases monotonically with κ. Therefore, for an arbi-
trarily small transmit power, the SIR (38) can be approached
arbitrarily closely by using a sufficiently large number of
antennas and users. The reason is that since the number of
users K is large, the system is interference-limited, so if every
user reduces its power by the same factor then the limiting SIR
is unchanged. Furthermore, from (38), when κ → ∞ (this is
equivalent to the case N � K), the SIR γ̄k → ∞, as N → ∞,
which is consistent with (32).

4Note that the trace lemma holds if lim supK E

{

1
K
Tr

(

DDDliDDD
H
li

)2
}

< ∞

which is equivalent to E
{

β4
lik

}

< ∞ [29, Remark 3]. For example, if βlik

is a lognormal RV with standard deviation of σ, then E
{

β4
lik

}

= e8σ
2

[30].
Evidently, for the vast majority of practical cases of interest, the standard
deviation is finite, which makes the fourth moment bounded.
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Fig. 1. Simulated uplink sum rate, analytical expression and lower bound
versus the SNR (L = 4, K = 10, and a = 0.1).

3) Fixed Npu, N → ∞: Let pu = Eu/N , where Eu is
fixed. From (32), we have

γk =
Eu

βllk

2

∑2(N−K+1)
i=1 Z2

i

2(N−K+1)
2(N−K+1)

N

Eu

N

∑L
i6=l ‖YYY i‖2 + 1

. (39)

Then, again using the law of large numbers and the trace
lemma, we obtain

γk − βllkEu
a.s.→ 0, as N → ∞, and fixed K (40)

γk − βllkEu (1− 1/κ)

Eu

κ

L∑

i6=l

1
K Tr (DDDli)+1

a.s.→ 0, as N → ∞,
N

K
= κ. (41)

These results show that by using a very large antenna array
at the BS, we can cut the transmit power at each user
proportionally to 1/N while maintaining a desired quality-of-
service. This result was originally established in [20] for the
case when N � K � 1 whereas herein, we have generalized
this result to the regime where N � 1. Again, we can see
that, when κ tends to infinity, the two asymptotic results (40)
and (41) coincide.

Remark 2: We can see from (40) that when N → ∞ and
K is fixed, the effects of interference and small-scale fading
disappear. The only remaining effect is noise. Let us define
the “massive MIMO effect” as the case where the system
is ultimately limited by noise.5 From (41), when N grows
large while keeping a finite κ, the system is still limited
by interference from other cells. This interference depends
mainly on κ (the degrees of freedom), and when κ → ∞,
we operate under massive MIMO conditions. Therefore, an
interesting question is: How many degrees of freedom κ are

5The term “massive MIMO effect” was also used in [23] but in a different
meaning, namely referring to the case when the system performance is limited
by pilot contamination, due to the use of non-orthogonal pilots in different
cells for the uplink training phase. However, here we assume orthogonal pilot
sequences in different cells, and we consider a particular operating condition
where the transmit power is very small (pu ∼ 1/N ).

needed in order to make interference small compared to noise
(i.e., to reach the massive MIMO condition)? Mathematically
speaking, we seek to find κ that satisfies

log2

(

1 +
βllkEu (1− 1/κ)

Eu/κ
∑L

i=1,i6=l
1
K Tr (DDDli) + 1

)

≥ ηRk,∞ (42)

for a desired η ∈ (0, 1), where Rk,∞ , log2 (1 + βllkEu)
is the ultimate rate which corresponds to the regime where
N � K � 1. We, more closely, address this fundamental
issue via simulations in Section V.

Remark 3: When N � K � 1 and pu = Eu/N , using
the property ψ(x) = ln(x) + 1/x + O(1/x2), and observing
that the second term of the exponential function approaches
zero, we can simplify (16) to get 〈Rl,k〉 ≥ log2 (1 + βllkEu) ,
which coincides with (40) for fixed K. This implies that the
proposed lower bound becomes exact at large N .

V. NUMERICAL RESULTS

In this section, we provide some numerical results to verify
our analysis. Firstly, we consider a simple scenario where the
large-scale fading is fixed. This setting enables us to validate
the accuracy of our proposed analytical expressions as well as
study the fundamental effects of intercell interference, number
of BS antennas, transmit power of each user on the system
performance. We then consider a more practical scenario that
accounts for random user locations and incorporates small-
scale fading as well as large-scale fading including path-loss
and lognormal shadow fading.

A. Scenario I

We consider a multicell system with 4 cells sharing the same
frequency band.6 In all examples, except Fig. 4, we choose
K = 10. We assume that βllk = 1 and βljk = a,∀j 6= l,
k = 1, 2, ...,K. Since a represents the effect of interference
from other cells, it can be regarded as an intercell interference
factor. Furthermore, we define SNR , pu.

Figure 1 shows the uplink sum rate per cell versus SNR,
at intercell interference factor a = 0.1 and for N = 10,
20, 40, 60, 80 and 100. The simulation curves are obtained
by performing Monte-Carlo simulations using (5), while the
analytical and bound curves are computed via (13) and (16),
respectively. As expected, when N increases, the sum rate
increases too. However, at high SNRs, the sum rate converges
to a deterministic constant which verifies our analysis (17).
Furthermore, a larger value of N makes the bound tighter.
This is due to the fact that when N grows large, things that
were random before become deterministic and, hence, Jensen’s
inequality used in (44) will hold with equality (see Remark 3).
Therefore, the bound can very efficiently approximate the rate
when N is large. It can be also seen that, even for moderate
number of antennas (N ' 20), the bound becomes almost
exact across the entire SNR range.

6This is a circular variant of the linear Wyner model with 4 cells. This
classical model can efficiently capture the fundamental structure of a cellular
network and can facilitate the performance analysis [11], [40].



8 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. X, XXX 2013

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

N = 500

N = 50

 Analysis
 Simulation
 Lower Bound

K = 10, SNR = 10 dB

 
Su

m
 R

at
e 

(b
its

/s
/H

z)
 

Intercell Interference Factor a 

N = 10

Fig. 2. Simulated sum rate, analytical expression and lower bound versus
the intercell interference factor a (L = 4, K = 10, and SNR = 10 dB).
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The effect of interference for different N is shown in Fig. 2.
Again, the simulated and analytical results match exactly,
and the bound is very tight. Interestingly, its tightness does
not depend on the interference level but on the number of
BS antennas. When the intercell interference factor increases
(and, hence, interference increases), the sum rate decreases
significantly. On the other hand, the effect of interference
decreases when N grows large. For example, at a = 0.1,
the sum rates are 3.76, 38.35, and 73.20 for N = 10, 50,
and 500, respectively, while at a = 0.5, the sum rates are
respectively 0.93, 19.10, and 50.80 for N = 10, 50, and 500.
This means that when increasing intercell interference factor
from 0.1 to 0.5, the sum rates are reduced by 75.27%, 50.20%,
and 30.60% for N = 10, 50, and 500, respectively.

The power efficiency of large array systems is investigated
in Fig. 3. Figure 3 shows the uplink sum rate per cell versus
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Fig. 4. Degrees of freedom κ required to achieve ηRk,∞ versus Rk,∞

(L = 4, a = 0.1 and 0.5).
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Fig. 5. Simulated average SER and analytical expression versus the SNR

for 4-PSK (L = 4, K = 10 and a = 0.1).

N at a = 0.1, 0.3, and 0.5 for the cases of pu = 10 and
pu = 10/N . As expected, with pu = 10/N , the sum rate
converges to a constant value when N increases regardless of
the effects of interference, and with pu = 10, the sum rate
grows without bound (logarithmically fast with N ) when N
increases (see (32) and (40)).

Figure 4 shows the required number of degrees of freedom
κ to achieve 80% (η = 0.8) and 90% (η = 0.9) of a
given ultimate rate Rk,∞, for a = 0.1, and a = 0.5. We
use (42) to determine κ. We can see that κ increases with
Rk,∞. Therefore, for multicell systems, the BS can serve
more users with low data rates. This is due to the fact that
when Rk,∞ increases, the transmit power increases and, hence,
interference also increases. Then, we need more degrees of
freedom to mitigate interference. For the same reason, we
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can observe that when the interference factor a increases, the
required κ increases as well.

In Fig. 5, the analytical SER curves are compared with the
outputs of a Monte-Carlo simulation for different N . Here, we
choose 4-PSK and a = 0.1. The “Analytical (Exact)” curves
are computed using Proposition 4, and the “Analytical (Ap-
prox)” curves are generated using (25). The high-SNR curves,
generated via (20), are also overlaid. It can be easily observed
that the analytical results coincide with the simulation results.
Furthermore, we can see that the “Analytical (Approx)” curves
are accurate in all cases. As in the analysis of the sum rate,
when the SNR is moderately large, the SER decreases very
slowly and approaches an error floor (the asymptotic SER) due
to interference, when SNR grows large. Yet, we can improve
the system performance by increasing the number of BS
antennas. The advantages of using large antenna arrays on the
SER can be further verified in Fig. 6, where the SER is plotted
as a function of N for different intercell interference factors
and 4-PSK, at SNR = 10 dB. We can see that the system
performance improves systematically when we increase N .

B. Scenario II

We consider a hexagonal cellular network where each cell
has a radius (from center to vertex) of 1000m. In each cell,
K = 10 users are located uniformly at random and we assume
that no user is closer to the BS than rh = 100m. The large-
scale fading is modeled via βlik = zlik/ (rlik/rh)

ν , where
zlik represents a lognormal RV with standard deviation of 8
dB, rlik is the distance between the kth user in the ith cell
to the lth BS, and ν is the path loss exponent. We choose
ν = 3.8 for our simulations. Furthermore, we assume that the
transmitted data is modulated using OFDM. Let Ts and Tu
be the OFDM symbol duration and useful symbol duration,
respectively. Then, we define the net uplink rate of the kth
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Fig. 7. Cumulative distribution of the net uplink rate per user for frequency-
reuse factors 1, 3, and 7 (N = 20, 100, SNR = 10 dB, σshadow = 8 dB,
and ν = 3.8).

user in the lth cell as follows [21]:

Rnet
l,k =

B

r

Tu
Ts

log2

(

1 +
puXk

puZl + 1/r

)

(43)

where B is the total bandwidth, and r is the frequency-
reuse factor. Note that (43) is obtained by using the result
in Proposition 1. For our simulations, we choose parameters
that resemble those of the LTE standard [21]: Ts = 71.4µsec,
and Tu = 66.7µsec. We further assume that B = 20 MHz. We
neglect the effects of all users in all cells which are outside a
circular region with a radius (from the lth BS) of 8000 meters.
This is reasonable since the interference from all users which
are outside this region is negligible due to very high path loss.

Figure 7 shows the cumulative distribution of the net uplink
rate per user for different frequency-reuse factors r = 1, 3,
and 7, and different number of BS antennas N = 20, 100.
We can see that the number of BS antennas has a very
strong impact on the performance. The probability that the
net uplink rate is smaller than a given indicated rate decreases
significantly when N increases. We consider the 95%-likely
rates, i.e., the rate is greater than or equal to this indicated rate
with probability 0.95. We can see that the 95%-likely rates
increase with N ; for example, with frequency-reuse factor
of 1, increasing the number of BS antennas from 20 to 100
yields a 8-fold improvement in the 95%-likely rate (from 0.170
Mbits/sec to 1.375 Mbits/sec). Furthermore, when N is large,
the random channel becomes deterministic and hence, the
probability that the uplink rate is around its mean becomes
inherently higher.

When comparing the effects of using frequency-reuse fac-
tors, we can see that, at high rates (and hence at high SNR),
smaller reuse factors are preferable, and vice versa at low rates.
The reason is that, the rate in (43) is affected by the reuse
factor through the pre-log factor and the SINR term. When
the reuse factor increases, the pre-log factor decreases, while
the SINR increases. At high SNRs, the pre-log factor has larger
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TABLE I
UPLINK PERFORMANCE OF ZF RECEIVERS WITH FREQUENCY-REUSE

FACTORS 1, 3, AND 7, FOR pu = 10dB, σshadow = 8dB, AND ν = 3.8

Frequency 
Reuse 
Factor 

0.95-likely Net 
Uplink Rate per 
User (Mbits/sec) 

Mean of the Net 
Uplink Rate per 
User (Mbits/sec) 

N=20 N=100 N=20 N=100 
1 0.170 1.375 20.295 48.380 
3 0.150 1.205 10.668 21.945 
7 0.145 1.350 6.731 12.546 

impact on the rate and vice versa at low SNRs. Furthermore,
we can observe that the gap between the performance of differ-
ent reuse factors becomes larger when N increases. This is due
to the fact that, when N is large, the intercell interference can
be notably reduced; as a consequence, the bandwidth used has
a larger impact on the system performance. Table I summarizes
the 95%-likely net uplink rates as well as their mean values.

VI. CONCLUSION

In this paper, we analyzed in detail the uplink performance
of data transmission from K single-antenna users in one cell
to its N -antenna BS in the presence of interference from other
cells. The BS uses ZF to detect the transmitted signals. We
derived exact analytical expressions for the most important
figures of merit, namely the uplink rate, SER, and outage
probability, assuming that the channel between the users and
the BS is affected by Rayleigh fading, lognormal shadow
fading, and path loss.

Theoretically, when N increases we obtain array and di-
versity gains, which affect both the desired and interference
signals. Hence, from this perspective the performance is not
dramatically affected. However, when N is large, the channel
vectors between the users and the BS are pairwisely asymp-
totically orthogonal and, hence, interference can be canceled
out with a simple linear ZF receiver (for fixed number of
users). In the case that the ratio between the number of
BS antennas and the number of users is fixed, the intercell
interference persists when the number of antennas grows large,
but we can still obtain an array gain. As a consequence, by
using a large antenna array, the performance of the multicell
system improves significantly. Furthermore, we investigated
the achievable power efficiency when using large antenna
arrays at the BSs. Large antenna arrays enable us to reduce the
transmitted power of each user proportionally to 1/N with no
performance degradation, provided that the BS has perfect CSI
of all users in its cell. We further elaborated on the massive
MIMO effect and the impact of frequency-reuse factors.

APPENDIX

A. Proof of Proposition 3
From (12), the uplink ergodic rate from the kth user in the

lth cell to its BS can be expressed as:

〈Rl,k〉 ≥ log2

(

1 + pu exp

(

EXk,Zl

{

ln

(
Xk

puZl + 1

)}))

=log2 (1+pu exp (EXk
{ln (Xk)} − EZl

{ln (puZl + 1)}))
(44)

where we have exploited the fact that log2(1 + α exp(x)) is
convex in x for α > 0 along with Jensen’s inequality. We
can now evaluate the expectations in (44) and we begin with
EXk

{ln (Xk)}, which can be expressed as

EXk
{ln (Xk)} =

β−N+K−1
llk

(N −K)!

∫ ∞

0

ln(x)e−x/βllkxN−Kdx

= ψ(N −K + 1) + ln(βllk) (45)

where we have used [34, Eq. (4.352.1)] to evaluate the corre-
sponding integral. The second expectation in (44) requires a
different line of reasoning. In particular, we have that

EZl
{ln (puZl + 1)} =

%(Al)∑

m=1

τm(Al)∑

n=1

Xm,n (Al)
µ−n
l,m

(n− 1)!

×
∫ ∞

0

ln (puz + 1) zn−1e
−z

µl,m dz

︸ ︷︷ ︸

,I

. (46)

The integral I admits the following manipulations

I =

∫ ∞

0

G1,2
2,2

[

puz

∣
∣
∣
∣

1, 1
1, 0

]

zn−1e
−z

µl,m dz

= µn
l,mG

1,3
3,2

[

puµl,m

∣
∣
∣
∣

1− n, 1, 1
1, 0

]

(47)

where Gm,n
p,q

[

x,
∣
∣
∣
α1,...,αp

β1,...,βq

]

denotes the Meijer’s-G func-
tion [34, Eq. (9.301)], and we have expressed the integrand
ln(1 + αz) in terms of Meijer’s-G function according to
[38, Eq. (8.4.6.5)]. The final expression stems from [34,
Eq. (7.813.1)]. In addition, we can simplify (47) as follows

I = puµ
n+1
l,m G1,3

3,2

[

puµl,m

∣
∣
∣
∣

−n, 0, 0
0,−1

]

= puµ
n+1
l,m Γ(n+ 1)3F1 (n+ 1, 1, 1; 2;−puµl,m) (48)

where we have used [34, Eq. (9.31.5)] to obtain the first
equality and [38, Eq. (8.4.51.1)] to obtain the second equality.
Combining (46) with (48) and after some basic simplifications,
we get

EZl
{ln (puZl + 1)} = pu

%(Al)∑

m=1

τm(Al)∑

n=1

µl,mnXm,n (Al)

× 3F1 (n+ 1, 1, 1; 2;−puµl,m) . (49)

Substituting (45) and (49) into (44), we conclude the proof.

B. Proof of Proposition 4

The MGF of γk is given by

Mγk
(s)=Eγk

{
e−sγk

}
=

∫ ∞

0

EXk

{
e−sγk

}
pZl

(z) dz. (50)

Using the PDF of Xk given by (7), we have that

EXk

{
e−sγk

}
=

1

(N −K)!βN−K+1
llk

×
∫ ∞

0

xN−K exp

(

−x
(

1

βllk
+

s

z+1/pu

))

dx

=

(
z + 1/pu

z + 1/pu + βllks

)N−K+1

(51)
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where the last equality is obtained by using [34, Eq. (3.326.2)].
Substituting (51) into (50) and using (8), we get

Mγk
(s) =

∫ ∞

0

%(Al)∑

m=1

τm(Al)∑

n=1

Xm,n (Al)
µ−n
l,m

(n− 1)!
zn−1e

−z
µl,m

×
(

z + 1/pu
z + 1/pu + βllks

)N−K+1

dz

=

%(Al)∑

m=1

τm(Al)∑

n=1

N−K+1∑

p=0

(
N−K+1

p

)

Xm,n (Al)
(−1)

p
µ−n
l,m

(n− 1)!

×
(

βllks

βllks+1/pu

)p∫ ∞

0

zn−1e
−z

µl,m

(
z

1/pu + βllks
+1

)−p

dz (52)

where the last equality is obtained by using the binomial
expansion formula. To evaluate the integral in (52), we first

express
(

z
1/pu+βllks

+ 1
)−p

in terms of a Meijer’s-G function
with the help of [38, Eq. (8.4.2.5)], and then using the identity
[38, Eq. (2.24.3.1)] to obtain

Mγk
(s)=

%(Al)∑

m=1

τm(Al)∑

n=1

M−K+1∑

p=0

(
N−K+1

p

)

Xm,n (Al)
(−1)

p

(n−1)!

×
(

βllks

βllks+1/pu

)p
1

Γ(p)
G1,2

2,1

[
µl,m

βllks+ 1/pu

∣
∣
∣
1−n,1−p

0

]

. (53)

Finally, using [38, Eq. (8.4.51.1)], we arrive at the desired
result (19).

C. Proof of Proposition 5
From Proposition 1 and (26), we have

Pout , Pr

(
Xk

Zl + 1/pu
≤ γth

)

. (54)

We can now express the above probability in integral form as
follows:

Pout =

∫ ∞

0

Pr (Xk < γth(Z` + 1/pu) |Z`) pZ`
(z)dz. (55)

The cumulative density function (CDF) of Xk can be shown
to be equal to

FXk
(x) = 1− exp

(

− x

βllk

)M−K∑

p=0

1

p!

(
x

βllk

)p

(56)

where we have used the integral identity [34, Eq. (3.351.1)] to
evaluate the CDF. Combining (55) with (56), we can rewrite
Pout as follows:

Pout = 1− exp

(

− γth
puβllk

)N−K∑

p=0

(
γth

βllk

)p

p!

×
∫ ∞

0

exp

(

−γthz
βllk

)

(1/pu + z)
p
pZ`

(z)dz

= 1− exp

(

− γth
puβllk

) %(Al)∑

m=1

τm(Al)∑

n=1

N−K∑

p=0

(
γth

βllk

)p

p!
Xm,n (Al)

×
µ−n
l,m

(n− 1)!

∫ ∞

0

(
1

pu
+z

)p

zn−1exp

(

−z
(

1

µl,m
+
γth
βllk

))

dz.

(57)

Applying a binomial expansion on (57) and thereafter evalu-
ating the resulting integral using [34, Eq. (3.326.2)], we arrive
at the desired result (27).
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