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Uplink Performance of Wideband Massive MIMO
With One-Bit ADCs
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Abstract— Analog-to-digital converters (ADCs) stand for a
significant part of the total power consumption in a massive
multiple-input multiple-output (MIMO) base station. One-bit
ADCs are one way to reduce power consumption. This paper
presents an analysis of the spectral efficiency of single-carrier
and orthogonal-frequency-division-multiplexing (OFDM) trans-
mission in massive MIMO systems that use one-bit ADCs. A
closed-form achievable rate, i.e., a lower bound on capacity, is
derived for a wideband system with a large number of channel
taps that employ low-complexity linear channel estimation and
symbol detection. Quantization results in two types of error in
the symbol detection. The circularly symmetric error becomes
Gaussian in massive MIMO and vanishes as the number of anten-
nas grows. The amplitude distortion, which severely degrades the
performance of OFDM, is caused by variations between symbol
durations in received interference energy. As the number of
channel taps grows, the amplitude distortion vanishes and OFDM
has the same performance as single-carrier transmission. A main
conclusion of this paper is that wideband massive MIMO systems
work well with one-bit ADCs.

Index Terms— Channel estimation, equalization, OFDM,
one-bit ADCs, wideband massive MIMO.

I. INTRODUCTION

ONE-BIT Analog-to-Digital Converters (ADCs) are the
least power consuming devices to convert analog signals

into digital [1]. The use of one-bit ADCs also simplifies the
analog front end, e.g., automatic gain control (AGC) becomes
trivial because it only considers the sign of the input signal.
Such radically coarse quantization has been suggested for
use in massive Multiple-Input Multiple-Output (MIMO) base
stations, where the large number of radio chains makes high
resolution ADCs a major power consumer. Recent studies have
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shown that the performance loss due to the coarse quantization
of one-bit ADCs can be overcome with a large number of
receive antennas [2]–[5].

Several recent papers have proposed specific symbol detec-
tion algorithms for massive MIMO with low-resolution ADCs.
For example, a near-maximum-likelihood detector for one-
bit quantized signals was proposed in [3], while [4] and [6]
studied the use of linear detection. In [7], it was proposed
to use a mix of one-bit and high resolution ADCs, which was
shown to give a performance similar to an unquantized system.
The proposed algorithms, however, focused only on frequency-
flat channels.

Maximum-likelihood channel estimation for frequency-flat
MIMO channels with one-bit ADCs was studied in [8]. It was
found that the quality of the estimates depends on the set of
orthogonal pilot sequences used. This is contrary to unquan-
tized systems, where any set of orthogonal pilot sequences
gives the same result. Closed-loop channel estimation with
dithering and bursty pilot sequences was proposed for the
single-user frequency-selective channel in [9]. It is not appar-
ent that bursty pilot sequences are optimal and no closed-form
expression for their performance was derived. In [10]–[12],
message passing algorithms were proposed that improve the
estimation of sparse channels. Our paper, in contrast, studies
general non-sparse channels.

Most previous work on massive MIMO with one-bit ADCs
has focused on narrowband systems with frequency-flat chan-
nels, e.g., [3]–[8]. Since quantization is a nonlinear operation
on the time-domain signal, there is no straightforward way
to extend these results to wideband systems, in which the
channel is frequency selective. Some recent work has proposed
equalization and channel estimation algorithms for wideband
systems [13]–[15]. In [13], an iterative Orthogonal-Frequency-
Division-Multiplexing (OFDM) based equalization and channel
estimation method was proposed. However, the method is
only shown to work for long pilot sequences of length Nd K

(Nd the number of subcarriers, K the number of users).
In contrast, our method only requires pilots of length µK L

(L ≪ Nd is the number of channel taps), where µ = 1
yields an acceptable performance in many cases. Our method
thus allows for a more efficient use of the coherence interval
for actual data transmission. In [14], a message passing
algorithm for equalization of single-carrier signals and a linear
least-squares method for channel estimation were proposed.
The detection algorithm proposed in our paper is linear in
the quantized signals and the channel estimation method is
based on linear minimum-mean-square-error (LMMSE) estima-
tion, which has the advantage of performing relatively well

1536-1276 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



88 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 1, JANUARY 2017

Fig. 1. System model for the massive MIMO uplink, both for single-carrier (without IFFT and FFT) and OFDM transmission.

independently of the noise variance. The use of a mix of
low and high-resolution ADCs was also studied for frequency-
selective single-user channels with perfect channel state infor-
mation in [15]. However, the mixed ADC architecture increases
hardware complexity, in that an ADC switch is required.
Furthermore, it is not clear that the computational complexity
of the designs in [13]–[15] is low enough for real-time symbol
detection, especially in wideband systems where the sampling
rate is high.

In this paper, we study a massive MIMO system with
one-bit ADCs and propose to apply to the quantized signals
low-complexity linear combiners for symbol detection and
LMMSE channel estimation. These are the same techniques
that previously have been suggested for unquantized massive
multiuser MIMO [16] and that have proven possible to imple-
ment in real time [17]. Linear receivers for signals quantized
by one-bit ADCs have not been studied for frequency-selective
channels before.

Without any simplifying assumptions on the quantization
distortion, we derive an achievable rate for single-carrier and
OFDM transmission in the proposed system, where the channel
is estimated from pilot data and the symbols are detected
with linear combiners. A frequency-selective channel, in which
the taps are Rayleigh fading and follow a general power
delay profile, is assumed. When the number of channel taps
grows large, the achievable rate is derived in closed-form for
the maximum-ratio and zero-forcing combiners (MRC, ZFC).
The rate analysis shows that simple linear receivers become
feasible in wideband massive MIMO systems, where the per-
formance loss compared to an unquantized system is approx-
imately 4 dB. In many system setups, the performance of the
quantized system is approximately 60–70% of the performance
of the unquantized system at data rates around 2 bpcu. The
loss can be made smaller, if longer pilot sequences can be
afforded.

We also show that the performance of OFDM, without any
additional signal processing, is the same as the performance of
single-carrier transmission in wideband systems with a large
number of channel taps. As was also noted in [18], the quanti-
zation error of the symbol estimates consists of two parts: one
amplitude distortion and one circularly symmetric distortion,
whose distribution is close to Gaussian. While the ampli-
tude distortion causes significant intersymbol interference in
OFDM, it can easily be avoided in single-carrier transmission.
We show that the amplitude distortion vanishes when the
number of taps grows. Therefore only the circularly symmetric
noise, which affects single-carrier and OFDM transmission in

the same way, is present in wideband systems with many taps.
Hence, frequency selectivity is beneficial for linear receivers
in massive MIMO because it reduces the quantization error
and makes it circularly symmetric and additive. Results in [5]
indicate that the capacity of quantized MIMO channels grows
faster with the number of receive antennas at high signal-to-
noise ratio (SNR) than the rate of the linear combiners. In a
frequency-flat channel, where near-optimal detection becomes
computationally feasible, a nonlinear symbol detection algo-
rithm, e.g., [3], [14], would therefore be better than linear
detectors, especially at a high SNR, where the linear ZFC fails
to suppress all interference in the quantized system, even with
perfect channel state information.

The most related work appeared in [19] and [20], where
achievable rates for massive MIMO with one-bit ADCs and low-
resolution ADCs for frequency-flat channels were investigated.
In [19] an approximation was given for the achievable rate
of a MRC system with low-resolution ADCs (one-bit ADCs
being a special case) for a Rayleigh fading channel. The
study showed a discrepancy between the approximation and
the numerically obtained rate of one-bit ADCs [19, Fig. 2],
which was left unexplained. In [20], an approximation of an
achievable rate for Ricean fading frequency-flat channels (of
which Rayleigh fading is a special case) was derived. Neither
[19] nor [20] mentioned that quantization distortion might
combine coherently and result in amplitude distortion and
neither mentioned the dependence of the rate on the number
of channel taps.

Parts of this work has been presented at [21], where the
derivation of the achievable rate for MRC, a special case, was
outlined. Channel estimation with fixed pilot lengths (equal to
K L, i.e., with pilot excess factor 1) was also studied. This
paper is more general and complete: generic linear combiners
are studied, the detailed derivation of the achievable rate is
shown and the effects of different pilot lengths are analyzed.

Paper disposition: The massive MIMO uplink with one-
bit ADCs is presented in Section II. The quantization of
one-bit ADCs is studied in Section III. Then the channel
estimation is explained in Section IV. The uplink transmission
is explained and analyzed in Section V. Finally, we present
numerical results in Section VI and draw our conclusion in
Section VII. The program code used in the numerical part can
be found at [22].

II. SYSTEM MODEL

We consider the massive MIMO uplink in Figure 1, where
the base station is equipped with M antennas and there
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are K single-antenna users. All signals are modeled in com-
plex baseband and are uniformly sampled at the Nyquist rate
with perfect synchronization. Because of these assumptions,
the front-end depicted in Figure 1 has been simplified accord-
ingly. Since the received signal is sampled at the Nyquist
rate, there is no intermediate oversampled step before the
matched receive filter (not in Figure 1), which thus has to be an
analog filter. Note that the one-bit ADC itself does not require
any AGC—a dynamic control loop with variable attenuators
and amplifiers that precisely adjusts the input voltage to
conventional ADCs to avoid clipping and to efficiently make
use of the whole dynamic range that the ADC has to offer.
Whereas one-bit ADCs has no need for this kind of fine
tuning of their input voltage, the analog receive filter, which
probably would be an active filter, might require some kind
of mechanism to regulate its input voltage to avoid being
overdriven. Such a mechanism would be simple to implement
in comparison to the AGC of a conventional ADC and could
possibly be combined with the low-noise amplifier [23].

At symbol duration n, base station antenna m receives:

ym[n] �

K
∑

k=1

L−1
∑

ℓ=0

√

Pk gmk[ℓ]xk[n − ℓ] + zm [n], (1)

where xk[n] is the transmit signal from user k, whose power
E
[

|xk[n]|2
]

= 1, Pk is the transmit power of user k and
zm [n] ∼ CN (0, N0) is a random variable that models the
thermal noise of the base station hardware. It is assumed that
zm [n] is identically and independently distributed (IID) over n

and m and independent of all other variables. We assume that
the L-tap impulse response {gmk[ℓ]} of the channel between
user k and antenna m can be written as the product of the
small-scale fading hmk[ℓ] and the large-scale fading

√
βk :

gmk[ℓ] =
√

βkhmk[ℓ]. (2)

The small-scale fading has to be estimated by the base station.
Its mean E[hmk[ℓ]] = 0 and variance are a priori known:

E
[

|hmk [ℓ]|2
]

= p[ℓ], ∀ℓ, (3)

where p[ℓ] is the power delay profile of the channel, for which

L−1
∑

ℓ=0

p[ℓ] = 1. (4)

In practice, the power delay profile depends on the propagation
environment and has to be estimated, e.g., like in [24], where
the power delay profile is estimated without additional pilots.
The base station is also assumed to know the large-scale
fading βk , which generally changes so slowly over time that an
accurate estimate is easy to obtain in most cases. The signal-
to-noise ratio (SNR) is defined as

SNR k �
Pk

N0

L−1
∑

ℓ=1

E[|gmk[ℓ]|2] = βk Pk

N0
. (5)

In a wideband system, the number of channel taps L can be
large—on the order of tens. For example, a system that uses
15 MHz of bandwidth over a channel with 1 µs of maximum

excess delay, which corresponds to a moderately frequency-
selective channel, has L = 15 channel taps. The Extended
Typical Urban Model [25] has a maximum excess delay of
5 µs, leading to L = 75 taps.

Upon reception, the in-phase and quadrature signals are sep-
arately sampled, each by identical one-bit ADCs, to produce:

qm[n] �
1√
2

sign
(

Re(ym[n])
)

+ j
1√
2

sign
(

Im(ym[n])
)

. (6)

We assume that the threshold of the quantization is zero. Other
thresholds can allow for better amplitude recovery when the
interference and noise variance is small compared to the power
of the desired signal [7], [26]. A small improvement in data
rate can be obtained at low SNR when a non-zero threshold
is paired with the optimal symbol constellation, see [27],
where the SISO channel is studied. Since we study a multiuser
system, where the interuser interference is high, we do not
expect any significant performance improvement from a non-
zero threshold. The scaling of the quantized signal is arbitrary
but chosen such that |qm[n]| = 1.

Two transmission modes are studied: single-carrier with
frequency-domain equalization and OFDM transmission.
We observe the transmission for a block of N symbols.
At symbol duration n, user k transmits

xk[n] =

⎧

⎪
⎨

⎪
⎩

sk[n], if single-carrier

1√
N

N−1
∑

ν=0

sk[ν]e j2πnν/N , if OFDM,
(7)

where sk[n] is the n-th data symbol. We assume that the
symbols have zero-mean and unit-power, i.e., E

[

sk[n]
]

= 0
and E

[

|sk[n]|2
]

= 1 for all k, n. The users also transmit a
cyclic prefix that is L − 1 symbols long:

xk[n] = xk[N + n], −L < n < 0, (8)

so that the input–output relation in (1) can be written as a
multiplication in the frequency-domain, after the cyclic prefix
has been discarded:

ym[ν] =
K
∑

k=1

√

βk Pkhmk [ν]xk[ν] + zm[ν], (9)

where

xk[ν] �
1√
N

N−1
∑

n=0

xk[n]e− j2πnν/N (10)

ym[ν] �
1√
N

N−1
∑

n=0

ym[n]e− j2πnν/N (11)

hmk[ν] �

L−1
∑

ℓ=0

hmk [ℓ]e− j2πℓν/N (12)

and zm[ν] ∼ CN (0, N0) IID is the unitary Fourier transform
of the thermal noise.

III. QUANTIZATION

In this section, some properties of the quantization of
one-bit ADCs are derived. These results are used later in the
channel estimation and the system analysis.
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We define the quantization distortion as

em [n] � qm[n] − ρym[n], (13)

where the scaling factor ρ is chosen to minimize the error
variance E � E

[

|em[n]|2
]

, which is minimized by the Wiener
solution:

ρ =
E
[

y∗
m[n]qm[n]

]

E
[

|ym[n]|2
] . (14)

Note that the distribution of em[n] depends on the distribu-
tion of the received signal ym[n] in a nonlinear way due to (6)
and that em[n] is uncorrelated to ym[n] due to the choice of
ρ because of the orthogonality principle.

We define the expected received power given all transmit
signals:

Prx[n] � E
[

|ym[n]|2
∣
∣ {xk[n]}

]

= N0 +
K
∑

k=1

βk Pk

L−1
∑

ℓ=0

p[ℓ]
∣
∣xk[n − ℓ]

∣
∣
2
, (15)

and the average received power:

P̄rx � E
[

|ym[n]|2
]

= N0 +
K
∑

k=1

βk Pk . (16)

When the number of channel taps L in (15) is large, the two
powers Prx[n] and P̄rx are close to equal. This is formalized
in the following lemma.

Lemma 1: Given a sequence of increasingly long power
delay profiles {pL[ℓ]}∞L=1 and a constant γ ∈ R such that
maxℓ pL[ℓ] < γ/L, for all lengths L, then

Prx[n] a.s.−→ P̄rx, L → ∞, ∀n. (17)
Proof: According to the law of large numbers and the

Kolmogorov criterion [28, eq. (7.2)],

L−1
∑

ℓ=0

pL[ℓ]
∣
∣xk[n − ℓ]

∣
∣
2 a.s.−→ E

[∣
∣xk[n − ℓ]

∣
∣
2
]

= 1, L → ∞.

(18)

Thus, the inner sum in (15) tends to one as the number of
channel taps grows.

Because of the cyclic prefix, the block length N cannot
be shorter than L. Therefore, it was assumed that N grew
together with L in the proof of Lemma 1. As we will see
later, the convergence can be fast, so the left-hand side in (17)
is well approximated by its limit also for L much shorter than
usual block lengths N .

Remark 1: Note that the sum over k in (15) also results
in an averaging effect when the number of users K is large.
The relative difference between the expected received power
given all transmit signals and its mean |Prx[n] − P̄rx|/Prx[n]
becomes small, not only with increasing L, but also with
increasing K if there is no dominating user, i.e., some user
k for which βk Pk ≫ βk′ Pk′ ,∀k ′ �= k. In practice, power
control is done and most βk Pk will be of similar magnitude.
The expected received power given all transmit signals is
thus closely approximated by its average also in narrowband
systems with a large number of users and no dominating user.

The next lemma gives the scaling factor and the variance
of the quantization distortion.

Lemma 2: If the fading is IID Rayleigh, i.e., hmk[ℓ] ∼
CN (0, p[ℓ]) for all m, k and ℓ, then the scaling factor defined
in (14) is given by

ρ =
√

2

π

E

[√
Prx[n]

]

P̄rx
→
√

2

π P̄rx
, L → ∞, (19)

and the quantization distortion has the variance

E = 1 − ρ2 P̄rx → 1 − 2
π
, L → ∞. (20)

Proof: See Appendix A.
We see that the error variance in (20) would equal its limit

if Prx[n] = P̄rx and ρ2 = 2
π P̄rx

. That is the reason the limit
coincides with the mean-squared error of one-bit quantization
in [29] and what is called the distortion factor of one-bit ADCs
in [30].

The following corollary to Lemma 2 gives the limit of the
relative quantization distortion variance, which is defined as

Q �
E

|ρ|2 . (21)

Corollary 1: The relative quantization distortion variance
in a wideband system approaches

Q → Q′ � P̄rx

(π

2
− 1
)

, L → ∞. (22)

Note that Q ≥ Q′, because Jensen’s inequality says that
ρ ≤

√
2

π P̄rx
is smaller than its limit in (19) for all L, since

the square root is concave. This means that the variance of the
quantization distortion is smaller in a wideband system, where
the number of taps L is large, than in a narrowband system.

If there is no quantization, the variance of the quantization
error E = 0 and thus the relative quantization distortion
Q = Q′ = 0. This allows us to use the expressions derived in
the following sections to analyze the unquantized system as a
special case.

IV. CHANNEL ESTIMATION

In this section, we will describe a low-complexity channel
estimation method. In doing so, we assume that the uplink
transmission is divided into two blocks: one with length
N = Np pilot symbols for channel estimation and one with
length N = Nd symbols for data transmission. The two blocks
are disjoint in time and studied separately. It is assumed,
however, that the channel is the same for both blocks, i.e.,
that the channel is block fading and that both blocks fit within
the same coherence time.

We define K orthogonal pilot sequences of length Np as:

φk[ν] �

{

0, (ν mod K ) + 1 �= k
√

K
Np

e jθk[ν], (ν mod K ) + 1 = k,
(23)

where θk[ν] is a phase that is known to the base station. During
the training period, user k transmits the signal that, in the
frequency domain, is given by

xk[ν] =
√

Npφk[ν]. (24)
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The received signal (9) is then

ym[ν] =
K
∑

k=1

√

βk Pk Nphmk[ν]φk[ν] + zm[ν] (25)

=
√

βk′ Pk′ K hmk′ [ν]e jθk′ [ν] + zm[ν], (26)

where k ′ � (ν mod K ) + 1, in the last step, is the index of
the user whose pilot φk′ [ν] is nonzero at tone ν. By rewriting
the time-domain quantized signal using (13), we compute the
quantized received signal in the frequency domain as

qm[ν] �
1
√

Np

Np−1
∑

n=0

qm[n]e− j2πnν/Np (27)

= ρym[ν] + 1
√

Np

Np−1
∑

n=0

em[n]e− j2πnν/Np

︸ ︷︷ ︸

�em [ν]

(28)

= ρ
√

βk′ Pk′ Khmk′ [ν]e jθk′ [ν] + ρzm [ν] + em[ν]. (29)

The sequence {qm[νK + k − 1], ν = 0, . . . ,
Np

K
− 1} is thus

a phase-rotated and noisy version of the frequency-domain
channel of user k, sampled with period F = K .

Because the time-domain channel hmk[ℓ] = 0 for all ℓ /∈
[0, L − 1], the sampling theorem says that, if the sampling
period satisfies

F ≤ Np

L
, (30)

it is enough to know the samples {hmk[νF + k − 1],
ν = 0, . . . ,

Np
F

− 1} of the channel spectrum to recover the
time-domain channel:

hmk [ℓ] = F

Np

Np
F −1
∑

n=0

hmk [nF + k − 1]e j2πℓ(nF+k−1)/Np. (31)

Thus, if the number of pilot symbols satisfies Np ≥ K L,
then (30) is fulfilled and the following observation of the
channel tap hmk [ℓ] can be made through an inverse Fourier
transform of the received samples that belong to user k:

h′
mk[ℓ]

�

√

K

Np

Np
K

−1
∑

ν=0

qm [νK +k−1]e j2πℓ(νK+k−1)/Npe− jθk[νK+k−1]

(32)

= ρ
√

βk Pk K

√

K

Np

Np
K −1
∑

ν=0

hmk[νK+k−1]e j2πℓ(νK+k−1)/Np

+ρ

√

K

Np

Np
K −1
∑

ν=0

zm[νK+k−1]e j2πℓ(νK+k−1)/Npe− jθk[νK+k−1]

︸ ︷︷ ︸

�z′
mk [ℓ]

+
√

K

Np

Np
K −1
∑

ν=0

em [νK+k−1]e j2πℓ(νK+k−1)/Npe− jθk[νK+k−1]

︸ ︷︷ ︸

�e′
mk [ℓ]

(33)
= ρ

√

βk Pk Nphmk[ℓ] + ρz′
mk [ℓ] + e′

mk[ℓ]. (34)

In the first step (33), qm [ν] is replaced by the expres-
sion in (29). Then, in (34), the relation in (31) is used to
rewrite the first sum as the time-domain channel impulse
response. We note that the Fourier transform is unitary and
therefore z′

mk [ℓ] ∼ CN (0, N0) is independent across m, k, ℓ

and E
[

|e′
mk[ℓ]|2

]

= E
[

|e′
mk[ℓ]|2

]

= E .
We use the LMMSE estimate of the channel, which is

given by

ĥmk[ℓ] � h′
mk [ℓ]

E
[

h∗
mk[ℓ]h′

mk[ℓ]
]∗

E
[

|h′
mk[ℓ]|2

] (35)

= h′
mk [ℓ]

ρp[ℓ]
√

βk Pk Np

ρ2 p[ℓ]βk Pk Np + ρ2 N0 + E
(36)

and whose variance is E
[

|ĥmk[ℓ]|2
]

= ck[ℓ]p[ℓ], where

ck[ℓ] �
p[ℓ]βk Pk Np

p[ℓ]βk Pk Np+N0+Q
. (37)

The error ǫmk [ℓ] � hmk[ℓ] − ĥmk[ℓ] is uncorrelated to the
channel estimate and has variance

E
[

|ǫmk [ℓ]|2
]

=
(

1 − ck[ℓ]
)

p[ℓ]. (38)

In the frequency domain, the channel estimate is given by

ĥmk [ν] �

L−1
∑

ℓ=0

ĥmk [ℓ]e− j2πνℓ/Nd, ν = 0, . . . , Nd − 1, (39)

the estimation error εmk[ν] � hmk [ν] − ĥmk[ν] and their
variances:

E
[

|ĥmk [ν]|2
]

=
L−1
∑

ℓ=0

ck[ℓ]p[ℓ] � ck (40)

E
[

|εmk[ν]|2
]

= 1 − ck . (41)

The variance of the channel estimate ck will be referred to as
the channel estimation quality.

We define the pilot excess factor as µ �
Np
K L

≥ 1. Because
ck → 1 as µ → ∞, the quality of the channel estimation in the
quantized system can be made arbitrary good by increasing µ.
Since the pilots have to fit within the finite coherence time of
the channel however, the channel estimation quality will be
limited in practice. To get a feeling for how large practical
pilot excess factors can be, we consider an outdoor channel
with Doppler spread σν = 400 Hz and delay spread στ = 3 µs
and symbol duration T . The coherence time of this channel
is approximately Nc ≈ 1/(σνT ) symbol durations and the
number of taps L ≈ στ/T . The pilots sequence will thus
fit if Np ≤ Nc, i.e., only pilot excess factors such that
µ ≤ 1/(Kσνστ ) ≈ 830/K are feasible in this channel.
Because of the finite coherence time of the practical channel,
we will study the general case of finite µ.

To compare the channel estimation quality of a quantized
wideband system to that of the corresponding unquantized
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Fig. 2. The channel estimation quality for the quantized system with
one-bit ADCs in solid lines and for the unquantized system in dotted lines
for a uniform power delay profile p[ℓ] = 1/L .

system, we define

ck

∣
∣
Q=0,µ=µ0

�

L−1
∑

ℓ=0

p2[ℓ]βk Pkµ0 K L

p[ℓ]βk Pkµ0 K L + N0
(42)

ck

∣
∣
Q= P̄rx(

π
2−1),µ=µq

�

L−1
∑

ℓ=0

p2[ℓ]βk Pkµq K L

p[ℓ]βk PkµqK L+N0+ P̄rx(
π
2 − 1)

(43)

�(µ0, µq) �
ck

∣
∣
Q=0,µ=µ0

ck

∣
∣
Q= P̄rx(

π
2 −1),µ=µq

, (44)

where µ0 is the excess factor of the unquantized system, µq is
that of the one-bit ADC system and �(µ0, µq) the quality ratio.
If this ratio is one, the channel estimates of the two systems are
equally good. Under the assumption that βk Pk = P , ∀k, and
p[ℓ] = 1/L, ∀ℓ, the difference in channel estimation quality

always is less than 2 dB when the excess factors µq = µ0 = µ

are the same:

�(µ,µ) ≤ π

2
≈ 2dB, (45)

Further, it can be seen that �(1, 1) = π/2 and that �(µ,µ)

is decreasing in µ. This can be seen in Figure 2, where the
channel estimation quality ck is plotted for different SNRs
P/N0 , where βk Pk = P for all k. It can be seen that the
power loss due to channel estimation is small in many system
setups—in the order of −2 dB.

Remark 2: To increase the length of the training period and
to increase the transmit power of the pilot signal would give
the same improvement in channel estimation quality in the
unquantized system. Because the orthogonality of the pilots is
broken by the quantization, this is not true for the quantized
system, which can be seen in (37), where Q is a function of
only the transmit power. This is the reason the phases θk[n] are
introduced: non-constant phases allow for pilot excess factors

µ > 1. Note that, with constant phases (assume θk[n] = 0
without loss of generality), the pilot signal transmitted during
the training period (26) is sparse in the time domain:

xk[n] =
{√

µL, if n = νµL + k − 1, ν ∈ Z

0, otherwise,
(46)

i.e., it is zero in intervals of width µL − 1. If µ > 1 there
are intervals, in which nothing is received. The estimate is
then based on few observations, each with relatively high
SNR. By choosing the phases such that they are no longer
constant, for example according to a uniform distribution
θk[ν] ∼ unif[0, 2π), the pilot signal is no longer sparse in the
time domain. The estimate is then based on many observations,
each with relatively low SNR. Increasing the number of low-
SNR observations is a better way to improve the quality of the
channel estimate than increasing the SNR of a few observations
in a quantized system. Furthermore, the limits in Lemma 2 are
only valid if the received power Prx[n] becomes constant as
L → ∞, which is not the case when there are intervals, in
which nothing is received.

V. UPLINK DATA TRANSMISSION

In this section, one block of N = Nd symbols of the uplink
data transmission is studied. Practical linear symbol detection
based on the estimated channel is presented and applied to
the massive MIMO system with one-bit ADCs. The distribution
of the symbol estimation error due to quantization and how
OFDM is affected is also analyzed. Finally, the performance is
evaluated by deriving an achievable rate for the system.

A. Receive Combining

Upon reception, the base station combines the received
signals using an FIR filter with transfer function wkm [ν] and
impulse response

wkm [ℓ] �
1

Nd

Nd−1
∑

ν=0

wkm [ν]e j2πνℓ/Nd, ℓ = 0, . . . , Nd − 1

(47)

to obtain an estimate of the time-domain transmit signal:

x̂k[n] �

M
∑

m=1

Nd−1
∑

ℓ=0

wkm [ℓ]qm

[

[n − ℓ]Nd

]

, (48)

where [n]Nd � n mod Nd, and, equivalently, of the
frequency-domain transmit signals

x̂k[ν] �

M
∑

m=1

wkm [ν]qm[ν], (49)

where qm [ν] is the Fourier transform of the quantized signals.
The symbol estimate of user k is then obtained as

ŝk [n] =
{

x̂k[n], if single-carrier

x̂k[n], if OFDM.
(50)

The combiner weights are derived from the estimated channel
matrix Ĥ[ν], whose (m, k)-th element is ĥmk [ν]. Three com-
mon combiners are the Maximum-Ratio, Zero-Forcing, and
Regularized Zero-Forcing Combiners (MRC, ZFC, RZFC):

W
′[ν] =

⎧

⎪
⎨

⎪
⎩

Ĥ
H[ν], if MRC
(

Ĥ
H[ν]ĤH[ν]

)−1
Ĥ

H[ν], if ZFC
(

Ĥ
H[ν]ĤH[ν] + λIK

)−1
Ĥ

H[ν], if RZFC,

(51)
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Fig. 3. Symbol estimates after one-bit quantization and ZFC in a massive
MIMO base station with 128 antennas that serves K users over an L-tap
channel. Even without thermal noise N0 = 0 (the received powers βk Pk = 1
for all users k) and perfect channel state information (ck = 1), ZFC cannot
suppress all interference due to the quantization. The amplitude distortion,
which manifests itself as oblong clouds pointing away from the origin in
the lower left narrowband system, disturbs the orthogonality of the OFDM

symbols in the lower right system and causes additional estimation error. The
amplitude distortion is negligible in the single-carrier wideband system
(the quantization distortion forms circular, not oblong, clouds), which makes
the estimates of the single-carrier and OFDM systems at the top equally good.

where λ is a regularization factor. The energy scaling of the
combiner weights is arbitrary; for convenience, it is chosen as
follows:

wkm [ν] = 1
√

αk

w ′
km [ν], (52)

where αk �
∑M

m=1 E
[

|w ′
km[ν]|2

]

and w ′
km [ν] is element (k, m)

of the matrix W
′[ν]. In practice, RZFC would always be

preferred because of its superior performance. The two other
combiners, MRC and ZFC, are included for their mathematical
tractability. The MRC also has an implementational advantage
over the other combiners—it is possible to do most of its signal
processing locally at the antennas in a distributed fashion.

Remark 3: As was noted in [31], the energy of the impulse
response in (47) is generally concentrated to a little more
than L of the taps for the receive combiners defined in (51).
For example, the energy is concentrated to exactly L taps for
MRC, whose impulse response is the time-reversed impulse
response of the channel. Because, in general, L ≪ Nd , a
shorter impulse response simplifies the implementation of the
receive combiner.

B. Quantization Error and Its Effect on Single-Carrier

and OFDM Transmission

In this section, we show that the estimation error
due to quantization consists of two parts: one amplitude

distortion and one circularly symmetric. The amplitude dis-
tortion degrades the performance of the OFDM system more
than it does the single-carrier system. In a wideband system
however, the amplitude distortion is negligible and OFDM

works just as well as single-carrier transmission.
If {hmk[ℓ]} is a set of uncorrelated variables, the quantiza-

tion distortion can be written as:

em[n] =
K
∑

k=1

L−1
∑

ℓ=0

E
[

h∗
mk [ℓ]em[n]

∣
∣ {xk[n]}

]

E
[

|hmk[ℓ]|2
] hmk[ℓ] + dm[n],

(53)

where dm[n] is the residual error with the smallest variance.
The sum in (53) can be seen as the LMMSE estimate of em[n]
based on {hmk[ℓ]} conditioned on xk[n] and the second term
as the estimation error, which is uncorrelated to the channel
{hmk[ℓ]}. The following lemma gives the coefficients in this
sum.

Lemma 3: If hmk[ℓ] ∼ CN (0, p[ℓ]), the normalized
conditional correlation

E
[

h∗
mk [ℓ]em[n]

∣
∣ {xk[n]}

]

E
[

|hmk[ℓ]|2
] =

√

2

π
xk[n − ℓ]τ [n] (54)

a.s.−→ 0, L → ∞, (55)

where

τ [n] �

√
Prx[n]

Prx[n] −
E

[√
Prx[n]

]

P̄rx
. (56)

Proof: See Appendix B.
By assuming that the channel taps are uncorrelated to each

other and by using (54) in (53), the quantization distortion
becomes:

em[n] =
√

2

π
τ [n]ȳm[n] + dm[n], (57)

where the noise-free received signal is

ȳm[n] �

K
∑

k=1

L−1
∑

ℓ=0

hmk[ℓ]xk[n − ℓ]. (58)

By using (13) to write qm[n] = ρym[n] + em [n], the symbol
estimate of the receive combiner in (48) can be written as:

x̂k[n] =
M
∑

m=1

Nd−1
∑

ℓ=0

wkm [ℓ](ρym[n − ℓ] + em[n − ℓ]). (59)

Therfore, we define the error due to quantization as

e′
k[n] �

M
∑

m=1

Nd−1
∑

ℓ=0

wkm [ℓ]em[n − ℓ] (60)

=
√

2

π

M
∑

m=1

Nd−1
∑

ℓ=0

wkm [ℓ]τ [n − ℓ]ȳm[n − ℓ]

+
M
∑

m=1

Nd−1
∑

ℓ=0

wkm [ℓ]dm[n−ℓ]. (61)

The first term in (61) contains the noise-free received signal
ȳm[n] and will result in an amplitude distortion, i.e., error that
contains a term that is proportional to the transmit signal xk[n]
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or the negative transmit signal −xk[n] (depending on the sign
of τ [n]).

When the number of channel taps goes to infinity, three
things happen. (i) The amplitude distortion that contains τ [n]
vanishes because τ [n] → 0 as L → ∞ according to Lemma 3.
(ii) The variance of the error approaches

E
[

|e′
k[n]|2

]

→ E
[

|dm[n]|2
]

= E, L → ∞. (62)

(iii) The number of terms in the second sum in (61) grows
with L, as noted in Remark 3. Therefore the sum converges
in distribution to a Gaussian random variable according to the
central limit theorem:

e′
k[n] dist.−−→ CN (0, E), L → ∞. (63)

The rate at which the amplitude distortion vanishes depends on
the rate of convergence in (17), i.e., the amplitude distortion
is small in systems, in which Prx[n] is close to P̄rx for
all n.

The effect of the quantization can be seen in Figure 3, where
the symbol estimates ŝk[n] after receive combining are shown
for four systems. All other sources of estimation error (except
quantization) have been removed: there is no thermal noise,
no error due to imperfect channel state knowledge and ZFC

is used to suppress interuser interference. In narrowband sys-
tems, there is coherent amplitude distortion that increases the
variance of the symbol error due to quantization and that will
not disappear by increasing the number of antennas. We see
that the impact of the amplitude distortion is more severe
in the OFDM system, where the it gives rise to intersymbol
interference, than in the single-carrier system, where distinct,
albeit non-symmetric, clusters still are visible. In wideband
systems, the amplitude distortion has vanished and there is
no visible difference in the distribution of the quantization
distortion of the symbol estimates for single-carrier and OFDM

transmission. This phenomenon was studied in detail in [18],
where it was found that the symbol distortion due to quantiza-
tion, in general, results in a nonlinear distortion of the symbol
amplitudes. If, however, the effective noise (interference plus
thermal noise) is large compared to the power of the desired
received signal, then the amplitude distortion vanishes and the
estimated symbol constellation is a scaled and noisy version of
the transmitted one. This happens when the number of channel
taps or the number of users is large.

In a wideband massive MIMO system with one-bit ADCs
and linear combiners, there is thus no amplitude distortion
and the error due to quantization can be treated as additional
AWGN (Additive White Gaussian Noise). As a consequence,
the transmission can be seen as the transmission over several
parallel frequency-flat AWGN channels. Over such channels,
the performance of different symbol constellations can be
evaluated using standard methods, such as minimum Euclidean
distance relative to the noise variance. Specifically, arbitrary
QAM constellations can be used as well as OFDM. Detailed
results with practical symbol constellations can be found
in [4].

C. Achievable Rate

In this section, we derive an achievable rate for the uplink
of the quantized one-bit ADC massive MIMO system. The
achievable rate, in the limit of a large number of channel
taps L, is then derived in closed form. As will be seen, this
limit closely approximates the achievable rate of a wideband
system also with practically large L.

Using the orthogonality principle, the estimate x̂k[ν] can be
written as a sum of two terms

x̂k[ν] = axk[ν] + ζk[ν], (64)

where ζk[ν] is the residual error. By choosing the factor
a � E

[

x∗
k [ν]x̂k[ν]

]

, the variance of the error ζk[ν] is min-
imized and the error becomes uncorrelated to the transmit
signal xk[ν]. The variance of the error term is then

E
[

|ζk[ν]|2
]

= E
[

|x̂k[ν]|2
]

−
∣
∣E
[

x∗
k [ν]x̂k[ν]

]∣
∣
2
. (65)

If we denote the distribution of the transmit signal xk[ν]
by fX , an achievable rate can be derived in the following
manner. The capacity is lower bounded by:

C = max
{ fX :E[|xk [ν]|2]≤1}

I (xk [ν]; x̂k[ν]) (66)

≥ I (xk[ν]; x̂k[ν])
∣
∣
xk [ν]∼CN (0,1)

(67)

≥ Rk � log2

(

1 +
∣
∣E
[

x∗
k [ν]x̂k[ν]

]∣
∣
2

E
[

|x̂k[ν]|2
]

−
∣
∣E
[

x∗
k [ν]x̂k[ν]

]∣
∣
2

)

. (68)

In (67), the capacity is bounded by assuming that the transmit
signals are Gaussian. In (68), we use results from [32, eq. (46)]
to lower bound the mutual information. The expectations
are over the small-scale fading and over the symbols. The
derived rate is thus achievable by coding over many channel
realizations. In hardened channels [33], however, the rate
is achievable for any single channel realization with high
probability.

Because the Fourier transform is unitary, the correspond-
ing rate for single-carrier transmission is the same as (68),
which can be proven by showing that E

[

x∗
k [n]x̂k[n]

]

=
E
[

x∗
k [ν]x̂k[ν]

]

.
To gain a better understanding of the achievable rate, we

will partition the estimate x̂k[ν] into components that are
uncorrelated to the transmit signal xk[ν]. By writing the
channel as hmk[ν] = ĥmk [ν] + εmk[ν] the received signal
becomes

ym[ν] =
K
∑

k=1

√

ckβk Pk ȳmk[ν] + um[ν] + zm[ν], (69)

where

ȳmk[ν] �
1

√
ck

ĥmk[ν]xk[ν], (70)

um[ν] �

K
∑

k=1

√

βk Pkεmk[ν]xk[ν]. (71)

Just like the time-domain estimate in (59), the frequency-
domain estimate of the transmit signal can be partitioned by
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rewriting the quantized signal using the relation in (13):

x̂k[ν] =
M
∑

m=1

wkm [ν]
(

ρ

K
∑

k′=1

√

ck′βk′ Pk′ ȳmk′ [ν]

+ ρum [ν] + ρzm[ν] + em [ν]
)

(72)

= ρ

K
∑

k′=1

√

ck′βk′Pk′

M
∑

m=1

wkm[ν]ȳmk′[ν]
︸ ︷︷ ︸

�x̂ ′
kk′ [ν]

+ρ

M
∑

m=1

wkm[ν]um[ν]
︸ ︷︷ ︸

�u′
k [ν]

+ ρ

M
∑

m=1

wkm [ν]zm[ν]
︸ ︷︷ ︸

�z ′
k [ν]

+
M
∑

m=1

wkm [ν]em[ν]
︸ ︷︷ ︸

=e′
k [ν]

. (73)

The terms {x̂ ′
kk′ [ν]} can further be split up in a part that is

correlated to the transmit signal and a part that is not:

x̂ ′
kk′ [ν] = αkk′ xk[ν] + ikk′ [ν], (74)

where αkk′ � E
[

x∗
k [ν]x̂ ′

kk′ [ν]
]

and ikk′ [ν] is the interference
that is uncorrelated to xk[ν]. It is seen that αkk′ = 0 for all
k ′ �= k, i.e., that only the term x̂ ′

kk [ν] is correlated to the
transmit signal xk[ν]. We denote the gain Gk � |αkk |2 and
the interference variance Ikk′ � E

[

|ikk′ [ν]|2
]

. Since they do
not depend on the quality of the channel estimates nor on
the quantization coarseness, they characterize the combiner
that is used. In general, these characteristic parameters are
determined numerically. Using results from random matrix
theory, they were computed for MRC and ZFC in [34] and [35]
for an IID Rayleigh fading channel hmk[ℓ] ∼ CN (0, p[ℓ]):

Gk =
{

M

M − K ,
Ikk′ =

{

1, for MRC

0, for ZFC.
(75)

With RZFC, the parameter λ can balance array gain and
interference suppression to obtain characteristic parameters in
between those of MRC and ZFC to maximize the SINR (Signal-
to-Interference-and-Noise Ratio) of the symbol estimates that
is given by the following theorem for wideband channels.

Theorem 1: When the small-scale fading coefficients are
IID and hmk[ℓ] ∼ CN

(

0, p[ℓ]
)

, the achievable rate Rk in (68)
approaches

Rk → R′
k, L → ∞, (76)

where

R′
k � log2

⎛

⎜
⎜
⎜
⎝

1 + ckβk Pk Gk

K∑

k′=1
βk′ Pk′

(

1−ck′(1−Ikk′ )
)

+ N0 + Q′

⎞

⎟
⎟
⎟
⎠

.

(77)
Proof: See Appendix C.

From (75), we get the following corollary about
MRC and ZFC.

Corollary 2: The achievable rates for MRC and ZFC sys-
tems, where hmk [ℓ] ∼ CN (0, p[ℓ]) IID and when L → ∞,

are

RMRC = log2

(

1 + 2

π

ckβk Pk M

N0 +
∑K

k′=1 βk′ Pk′

)

, (78)

RZFC = log2

(

1 + 2

π

ckβk Pk(M − K )

N0 +
∑K

k′=1 βk′ Pk′ (1 − ck′ 2
π
)

)

. (79)

Remark 4: By looking at the SINR of (77), we see that,
whereas the numerator scales with Gk , which scales with
M for MRC and ZFC, the variance of the quantization dis-
tortion Q′ does not scale with M , just like the other noise
terms (which was observed in [16] too). In a wideband
system, quantization is thus a noncoherent noise source that
disappears in the limit M → ∞. Hence, arbitrary high rates
are achievable by increasing the number of antennas, also in
a system with one-bit ADCs.

For the unquantized MRC and ZFC, the achievable rates
become:

RMRC0 = log2

(

1 + ckβk Pk M

N0 +
∑K

k′=1 βk′ Pk′

)

(80)

RZFC0 = log2

(

1 + ckβk Pk(M − K )

N0 +
∑K

k′=1 βk′ Pk′ (1 − ck′)

)

. (81)

Note that ck should be understood as the channel estimation

quality of the unquantized system ck

∣
∣
Q=0; it is not the same

as ck in (78) and (79).
Remark 5: For quantized MRC with pilot excess factor µq,

the SINR in (78) is a fraction

2

π�(µ0, µq)
(82)

smaller than the SINR of the unquantized system in (80) with
pilot excess factor µ0 independently of the SNR. With equal
channel estimation quality �(µ0, µq) = 1 the SINR loss is
2/π ≈ −2 dB. In light of (45), the SINR loss increases to
−4 dB if both pilot excess factors µq = µ0 = 1 and the receive
powers βk Pk = P are the same from all users and the power
delay profile p[ℓ] = 1/L for all ℓ. The same SINR loss is
experienced in the quantized ZFC system at low SNR βk Pk/N0.
At high SNR however, the performance of ZFC is greatly
reduced as the interference is not perfectly suppressed. Even
with perfect channel state information (ck = 1), it is seen from
the rate expression (79) that there is residual interference in
the quantized system. This gives a rate ceiling, as was pointed
out in for example [36], [37]. In [36] and [37], the reason for
the incomplete interference suppression was imperfect channel
state knowledge. In the quantized system, the reason is the
distortion of the received signals. Whereas the rate of the
unquantized ZFC system grows without bound as P/N0 → ∞
(βk Pk = P,∀k), the rate of the quantized system approaches
the rate ceiling:

RZFC → log2

(

1 + Np(M − K )

(π
2 − 1)K (Np + K )

)

,
P

N0
→ ∞. (83)

Thus, one-bit ADCs with ZFC work well at low SNR, but incur
a performance loss at high SNR. At high SNR, however, other
imperfections than quantization also limit the performance of
ZFC. For example, pilot contamination [16] results in a rate
ceiling also in the unquantized system, which is not apparent
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Fig. 4. Performance ratio R′
k
/R0 between the quantized and unquantized

systems as a function of the pilot excess factor of the quantized system.
The pilot excess factor of the unquantized system is µ0 = 1. All users have
equal SNR βk Pk/N0 .

in our analysis. The performance loss at high SNR might
therefore be smaller than predicted here.

Because of the similarities between the rate expressions of
the quantized and unquantized systems, many of the properties
of the unquantized massive MIMO system carry over to the
one-bit quantized system. For example that ZFC performs
poorly when the number of antennas M is close to the number
of users K , i.e., when M − K is small (M ≥ K for ZFC to
exist). Similarly, quantization does not change the fact that the
rate of MRC is higher than that of ZFC at low SNR, where
array gain, which is larger for MRC than for ZFC (2M/π

compared to 2(M−K )/π), is more important than interference
suppression.

Earlier results showed that, with perfect channel state infor-
mation, the capacity of a SISO channel [38] and a MIMO

channel [39] decreases by a factor 2/π at low SNR when the
signals are quantized by one-bit ADCs. Our results indicate that
the rate expressions for the low-complexity detectors MRC and
ZFC also decrease by a factor 2/π at low SNR when one-bit
ADCs are used, as long as �(µ0, µq) = 1, i.e., as long as
the channel state information is the same in the quantized and
unquantized systems.

To compare the two systems, we let R0 denote the achiev-
able rate of the unquantized system that uses a fixed pilot

excess factor µ0 = 1. The ratio R′
k/R0 is drawn in Figure 4.

We see that the quantized system achieves approximately
60–70 % of the unquantized rate with MRC in the studied
systems. With ZFC, the ratio is around 60 % when there are
5 users but only 40 % with 30 users at low SNR. At high SNR,
the ratio can be much lower, e.g., 20 % for 30 users at 10 dB
SNR. Further the figure shows that the ratio can be improved
by increasing the length of the pilot sequences in the quantized
system. The largest improvement, however, is by going from
µq = 1 to µq = 2. After that, the improvement saturates in
most systems.

Fig. 5. The achievable rate Rk marked × and its limit R′
k drawn with a

solid line for a system with 128 antennas that serves 5 and 30 users over an
L-tap channel with Rayleigh fading taps. The dotted line shows the rate of the
unquantized system with MRC. The rate of the unquantized ZFC is 10 bpcu
for K = 5 and 9.9 bpcu for K = 30. The channel is known perfectly by the
base station.

VI. NUMERICAL EXAMPLES

In this section, we verify how close the limit R′
k in

Theorem 1 is the achievable rate Rk in (68) for wideband
systems with a finite number of channel taps L. The rate Rk

is numerically evaluated for the massive MIMO system with
one-bit ADCs described in Section II with the linear channel
estimation and receive combining described in the Sections IV
and V. As a way of comparing the quantized system to the
unquantized, the number of extra antennas needed to make the
quantized rate the same as the unquantized, while maintaining
the same transmit power, is established. Such a comparison
is sensible in a system where the number of users is fixed.
If more users were available, a system with more antennas
could potentially also serve more users and thus get a higher
multiplexing gain.

The channel taps are modeled as IID Rayleigh fading
and follow a uniform power delay profile, i.e., hmk[ℓ] ∼
CN (0, 1/L). The large-scale fading is neglected and all
received powers βk Pk/N0 are assumed to be equal for all
users k in the first part of the study. This corresponds to doing a
fair power control among the users, where the transmit power
Pk is chosen proportional to 1/βk . Such a power control is
possible to do since the users are assumed to know the large-
scale fading. It is also desirable many times to ensure that
all served users have similar SNR so that quality of service is
uniformly good.

First, we study the convergence of the achievable rate Rk

in (68) towards its limit by comparing Rk for finite L to the
limit R′

k in (77) in Figure 5. It is seen that the limit R′
k is

indeed an accurate approximation of the achievable rate Rk

when the number of channel taps is large. For the system
with 128 antennas and 5 users, the limit R′

k is close to Rk

already at L = 15 taps, which corresponds to a moderately
frequency-selective channel. For the system with 128 antennas
and 30 users, however, the limit R′

k is a good approximation
for Rk also in a narrowband scenario with L = 1. This
immediate convergence was explained by Remark 1, where
it was noted that the wideband approximation is valid also
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Fig. 6. Achievable rate Rk (marked × and △), its limit R′
k

(solid lines) and the rate Rk for the unquantized system (dotted lines) at
high SNR βk Pk/N0 = 10 dB, ∀k, using the same number of pilot symbols.
The channel taps are IID Rayleigh fading and estimated with Np = K L pilot
symbols. The curves for single-carrier and OFDM transmission coincide both
for maximum-ratio and zero-forcing combining.

Fig. 7. Same setup as in Figure 6 except the SNR is low. For one set of
curves, all users have the same SNR βk Pk/N0 = −10 dB. For the other,
marked weak user, the studied user has −10 dB SNR while the interfering
users have 0 dB SNR. The rate of the unquantized system is drawn with dotted
lines for equal SNR and with dashed lines for the weak user.

when the number of users is large and there is no dominant
user.

The lower performance for small L for the case of 5 users
in Figure 5 is caused by the amplitude distortion discussed in
Section V-B. As the amplitude distortion disappears with more
taps, the rate Rk increases. The improvement saturates when
the amplitude distortion is negligible and the limit R′

k is a close
approximation of Rk . This suggests that linear receivers for
one-bit ADCs work better with frequency-selective channels
than with frequency-flat channels and that wideband systems
are beneficial when one-bit ADCs are used.

The rates of some wideband massive MIMO systems at high
SNR βk Pk/N0 = 10 dB and low SNR −10 dB are shown for
different numbers of base station antennas in Figures 6 and 7
respectively. We observe that the limit R′

k approximates the
rate Rk well in all studied cases. Furthermore, we note that
the quantized system needs 2.5 times (≈4 dB) more antennas
to ensure the same rate as the unquantized system with MRC,
which was predicted in Remark 5. With ZFC at high SNR,

Fig. 8. Rate R′
k . All users have the same SNR. The channel is estimated

with Np = K L pilot symbols.

the gap between the quantized and unquantized rates is much
larger. At low SNR however, the gap is greatly decreased; then
2.6 times more antennas are needed in the quantized system to
obtain the same performance as the unquantized system. The
rate of RZFC is similar to MRC and ZFC, whichever is better
for a given M; it is in part or fully hidden by the curves of
MRC and ZFC. For this reason, only the quantized RZFC is
included.

In Figure 7, we consider a user whose SNR is 10 dB
weaker than the SNRs of the interfering users βk Pk/N0 =
10β1 P1/N0 = 0 dB for k = 2, 3, 4, 5. This can happen if
there is one user whose transmit power is limited for some
practical reason or if a user happens to experience shadowing
by the environment. The result is marked with “weak user”
in Figure 6. We see that such a weak user gets a much
lower rate than the case where all users have the same SNR.
This is because of the increased interference that the weak
user suffers. The gap between the unquantized system and
the quantized system is larger for a weak user than for users
with the same SNR as all the other users because the channel

estimation quality is heavily degraded when the orthogonality
of the pilots is lost in the quantization. For ZFC, 10.4 times
more antennas are needed and for MRC 10.6 times, which
should be compared to 2.6 and 2.5 times for equal SNR. Users
that are relatively weak compared to interfering users should
therefore be avoided in one-bit ADC systems, for example by
proper user scheduling. In case weak users cannot be avoided,
such users will have to obtain good channel estimates, either
by longer pilot sequences or by increasing the transmit power
of their pilots.

In Figure 8, the rate as a function of SNR is shown for some
systems. It can be seen that the rate of the quantized systems is
limited by a rate ceiling, as was indicated in (83). Around 70 %
of the performance of the unquantized system can be achieved
by the quantized system with MRC at −5 dB SNR, which
gives approximately 2 bpcu. At the same SNR, ZFC achieves
60 % of the unquantized rate, which agrees with Figure 4.
As observed, this performance loss can be compensated for by
increasing the number of base station antennas. An increase of
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antennas, however, would also lead to an increase in hardware
complexity, cost and power consumption. Having in mind that
one-bit ADCs at the same time greatly reduces these three
practical issues, it is difficult to give a straightforward answer
to whether one-bit ADCs are better, in some sense, than ADCs
of some other resolution. A thorough future study of the
receive chain hardware has to answer this question.

VII. CONCLUSION

We derived an achievable rate for a practical linear massive
MIMO system with one-bit ADCs with estimated channel
state information and a frequency-selective channel with IID

Rayleigh fading taps and a general power delay profile. The
derived rate is a lower bound on the capacity of a massive
MIMO system with one-bit ADCs. As such, other nonlinear
detection methods could perform better at the possible cost
of increased computational complexity. The rate converges to
a closed-form limit as the number of taps grows. We have
shown in numerical examples that the limit approximates the
achievable rate well also for moderately frequency-selective
channels with finite numbers of taps.

A main conclusion is that frequency-selective channels are
beneficial when one-bit ADCs are used at the base station.
Such channels spread the received interference evenly over
time, which makes the estimation error due to quantization
additive and circularly symmetric. This makes it possible to
use low-complexity receive combiners and low-complexity
channel estimation for multiuser symbol detection. One-bit
ADCs decrease the power consumption of the analog-to-digital
conversion at a cost of an increased required number of
antennas or reduced rate performance. At low to moderate
SNR, approximately three times more antennas are needed
at the base station to reach the same performance as an
unquantized system when the channel is estimated by the
proposed low-complexity channel estimation method.

The symbol estimation error due to quantization consists of
two parts in a massive MIMO system: one amplitude distortion
and one additive circularly symmetric Gaussian distortion. The
amplitude distortion becomes negligible in a wideband system,
which makes the implementation of OFDM straightforward.
Since the error due to quantization is circularly symmetric
Gaussian, systems that use OFDM are affected in the same way
by one-bit quantizers as single-carrier systems, which means
that many previous results for single-carrier systems carry over
to OFDM systems.

By oversampling the received signal, it is possible that a
better performance can be obtained than the one established
by the achievable rate derived in this paper. Future research
on massive MIMO with coarse quantization should focus on
receivers that oversample the signal.

APPENDIX A
PROOF OF LEMMA 2

From (14), the scaling factor is given by

P̄rxρ = E
[

y∗
m[n]qm[n]

]

(84)

= 1√
2

E

[
(

Re(ym[n]) − j Im(ym[n])
)

= 1√
2

E

[∣
∣Re(ym[n])

∣
∣+
∣
∣Im(ym[n])

∣
∣

+ j
(

Re(ym[n]) sign(Im(ym[n]))
− Im(ym[n]) sign(Re(ym[n]))

)]

(85)

=
√

2E

[

E

[∣
∣Re(ym[n])

∣
∣

∣
∣
∣ {xk[n]}

]]

(86)

= E

[√

2

π
Prx[n]

]

. (87)

In (85), the imaginary part of the expected value is zero,
because Re(ym[n]) and Im(ym[n]) are IID and have zero
mean. Further, by conditioning on the transmit signals, the
inner expectation in (86) can be identified as the mean of a
folded normal distributed random variable, which gives (87).

The error variance is derived as

E
[

|em[n]|2
]

= E
[

|qm[n] − ρym[n]|2
]

(88)

= 1 − ρ2
E
[

|ym[n]|2
]

. (89)

The limits in (19) and (20) follow directly from Lemma 1.

APPENDIX B
PROOF OF LEMMA 3

Because they are functions of each other, the random
variables hmk [ℓ], ym[n], em [n] form a Markov chain in that
order. Therefore:

E
[

h∗
mk[ℓ]em[n]

∣
∣ {xk[n]}

]

= E

[

E
[

h∗
mk [ℓ]em[n]

∣
∣ ym[n]

]
∣
∣
∣ {xk[n]}

]

(90)

= E

[

E
[

h∗
mk [ℓ]

∣
∣ ym[n]

]

E
[

em [n] | ym[n]
]
∣
∣
∣ {xk[n]}

]

(91)

= xk[n − ℓ]p[ℓ]
Prx[n] E

[

y∗
m[n](qm[n] − ρym[n])

∣
∣ {xk[n]}

]

(92)

= xk[n − ℓ]p[ℓ]
Prx[n]

(

E
[

y∗
m[n]qm[n]

∣
∣ {xk[n]}

]

− ρPrx[n]
)

(93)

= xk[n − ℓ]p[ℓ]
(

√

2
π

Prx[n]
Prx[n] −

E

[√

2
π

Prx[n]
]

P̄rx

)

. (94)

In (92), we used the fact that the mean of a Gaussian variable
conditioned on a Gaussian-noisy observation is the LMMSE

estimate of that variable, i.e.,

E
[

hmk[ℓ]
∣
∣ ym[n], {xk[n]}

]

=
x∗

k [n − ℓ]p[ℓ]
Prx[n] ym[n]. (95)

In the last step (94), we used the expression in (14) for ρ.
It can now be seen that, when L → ∞, Prx[n] a.s.−→ P̄rx and
the correlation goes to zero.

APPENDIX C
PROOF OF THEOREM 1

We have seen how the estimated signal can be written as
the sum of the following terms:

x̂k[ν] = ρ

K
∑

k′=1

√

ck′βk′ Pk′
(

αkk′ xk[ν] + ikk′ [ν]
)

+ ρu′
k[ν]

+ ρz ′
k[ν] + e′

k[ν]. (96)
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It can be shown that each term in this sum is uncorrelated to
the other terms. Most correlations are easy to show, except the
correlation between the error due to quantization e′

k[ν] and the
transmit signal xk[ν]. To show that this correlation is zero, we
show that all the time-domain signals {e′

k[n]} and {xk[n]} are
pairwise uncorrelated if xk[n] is Gaussian. The procedure is
similar to the proof of Lemma 3. We note that xk[n′], ym[n],
em[n] form a Markov chain in that order. Therefore:

E
[

e∗
m [n]xk[n′]

]

= E

[

E
[

e∗
m[n]xk[n′]

∣
∣ ym[n]

]]

(97)

= E

[

E
[

e∗
m[n] | ym[n]

]

E
[

xk[n′]
∣
∣ ym[n]

]
]

(98)

= E[y∗
m[n]xk[n′]]

E[|ym[n]|2] E
[

(q∗
m[n] − ρ∗y∗

m[n])ym[n]
]

(99)

= E[y∗
m[n]xk[n′]]

E[|ym[n]|2]
(

E
[

q∗
m[n]ym[n]

]

− ρ∗
E
[

|ym[n]|2
]
)

(100)

= 0, (101)

for all n and n′. In the last step, we used (14).
The variances of u′

k[ν] and z ′
k[ν] are given by

E
[

|u′
k[ν]|2

]

= E
[

|um[ν]|2
]

=
K
∑

k′=1

βk′ Pk′
(

1 − ck′
)

, (102)

E
[

|z ′
k[ν]|2

]

= E
[

|zm[ν]|2
]

= N0, (103)

By evaluating the expectations in the rate expression in (68),
we obtain

∣
∣E
[

x∗
k [ν]x̂k[ν]

]∣
∣
2 → ρ2ckβk Pk Gk, (104)

E
[

|x̂k[ν]|2
]

→ ρ2
(

ckβk Pk Gk

+
K
∑

k′=1

(

ckβk Pk Ikk′ + βk′ Pk′ (1−ck′)
)

+ N0 + Q′
)

, (105)

as L → ∞. Here we used Corollary 1. Letting the number of
channel taps L → ∞ thus gives the rate R′

k = log2(1+SINRk),
where

SINRk = ckβk Pk Gk
∑K

k′=1

(

ckβk Pk Ikk′+βk′ Pk′ (1−ck′ )
)

+N0+Q′
.

(106)
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