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Abstract

We consider two variants of the radio link frequency assignment problem� These

problems arise in practice when a network of radio links has to be established� Each

radio link has to be assigned a particular frequency� The interference level between

the frequencies assigned to the di�erent links has to be acceptable� since otherwise

communication will be distorted� The frequency assignments have to comply with

certain regulations and physical characteristics of the transmitters� Moreover� the

number of frequencies is to be minimized� because each frequency used in the network

has to be reserved at a certain cost�

We develop several approximation algorithms for the problems� which are based

on local search� and we compare their performance on some practical instances� Lower

bounding techniques based on nonlinear programming and the chromatic number

of a graph are used to estimate the quality of the approximate solutions for these

instances�

�Partially supported by the EUCLID project RTP ��� as part of CEPA � ��Arti�cial Intelligence��
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� Problem description

The subject of this paper is a variant of the radio link frequency assignment problem
�RLFAP�� In this problem� we are given a set L of links� For each link i a frequency fi
has to be chosen from a given domain Di� Some links may already have a preassigned
frequency pi� which may or may not be changed� Restrictions are de�ned on pairs of links
that limit the choice of frequencies for these pairs� For a given pair of links fi� jg these
restrictions are either of type

jfi � fjj � dij ���

or of type

jfi � fjj � dij ���

for a given distance dij � �� Two links i and j involved in a constraint of type ��� are
called interfering links� and the corresponding dij is the interfering distance� Two links
bound by a constraint of type ��� are referred to as a pair of parallel links� every such link
belongs to exactly one such pair�

Some of these restrictions may be violated at a certain cost� Such restrictions are called
soft� in contrast to the hard constraints� which may never be violated� The constraints of
type ��� are always hard� and so are some of the preassignment constraints� Interference

costs Cij for violating soft constraints of type ��� and mobility costs Mi for changing soft
preassigned frequencies are given� An assignment of frequencies is complete if every link in
L has a frequency assigned to it� We denote by W and U the sets of all soft interference
and mobility constraints� respectively�

The �rst order problem is to �nd a complete assignment that satis�es all hard constraints
and is of minimum cost	

minimize
X
W

Cij��jfi � fj j � dij� �
X
U

Mi��jfi � pij � �� ���

subject to the hard constraints	

jfi � fjj � dij for all pairs of links fi� jg involved in the hard constraints�
jfi � fjj � dij for all pairs of parallel links fi� jg�

fi � pi for all links i � L with hard preassigned frequencies�
fi � Di for all links i � L�

where ���� is � if the condition within brackets is true and � otherwise�
If there exists a feasible assignment� i�e�� a complete assignment of zero cost� then

the second order problem is to �nd a feasible assignment that satis�es all constraints and
minimizes the number of distinct frequencies used	
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minimize j �i ffigj ���

subject to the hard and soft constraints	

jfi � fjj � dij for all pairs fi� jg involved in the soft and hard constraints�
jfi � fjj � dij for all pairs of parallel links fi� jg�

fi � pi for all links i � L with preassigned frequencies�
fi � Di for all links i � L�

Sometimes another version of the second order problem is considered� where the largest
frequency used instead of the number of frequencies is minimized�

The paper is organized as follows� Section � sketches the approach we used to derive
approximate solutions� The detailed description of the approximation algorithms is given
in sections � and �� In section � lower bounding techniques are described� Sections �
presents the results obtained for the test instances and in section � conclusions of this
study are listed�

� Solution approach

The main aim of this work is to develop approximation algorithms for the RLFAP and
compare their relative performance on real�life instances provided by the CELAR �Centre
d��ELectronique de l�ARmement� in the context of the CALMA �Combinatorial ALgorithms
for Military Applications� project� A wide variety of approximation and optimization
techniques has been tested within this project� The algorithms we considered are all
based on the principle of local search� which is a powerful tool often used for solving hard
combinatorial problems� The general idea of local search is to start with an initial solution
and iteratively perform small transformations of this solution in an attempt to improve it
with respect to a given criterion�

The neighborhood of a given solution is de�ned as the set of solutions to which a given
one can be transformed in one iteration� A mapping that speci�es a neighborhood of
each solution is called a neighborhood function� A solution that has no solution with
better objective value in its neighborhood is called a local optimum� There are several
neighborhood search strategies for �nding good solutions�

The basic iterative improvement method modi�es at each step a given solution to a
solution from its neighborhood of lower cost� This method stops when no better solution
can be found in the neighborhood�

Simulated annealing ��� modi�es a solution to a random one chosen from its neigh�
borhood� Improvements are always accepted� Deteriorations are accepted with a certain
probability� decreasing during the run� Simulated annealing stops when this probability
becomes smaller than a speci�ed parameter�

Taboo search ������� always performs a move to the best solution in a neighborhood� In
this way the cost of solutions visited during the search is not necessarily always decreasing�
To prevent this method from cycling� several recently visited solutions are removed from
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any neighborhood� A stopping criterion has to be de�ned� for example the maximum
number of iterations without improvement�

Variable�depth search ��� performs a sequence of changes at each iteration� This se�
quence of changes is terminated if an improvement is found or if no gain is expected from
further changes� The search will be continued with a new solution in the former case or
with the old solution in the latter case� The stopping criterion can be de�ned in the same
way as for taboo search�

In order to apply these techniques to the RLFAP� we consider a natural partition of
the problem into two phases� corresponding to the two di�erent objectives� Splitting the
problem in this way helps to exploit the underlying special structure� Clearly� both of
these problems are NP�hard and thus no polynomial�time optimization algorithm is likely
to exist ����

A solution to a given minimization problem obtained by an approximation algorithm
provides an upper bound for the optimal solution to this problem� In order to estimate the
di�erence between the upper bounds and the optimum we also obtain some lower bounds
for the test instances�

We de�ne the notion of an interference graph� which will be helpful to illustrate our
arguments� The set of links constitutes the set of nodes of the interference graph� If two
links are bound by a constraint� then there is an edge between the corresponding nodes�

� The �rst order problem

��� Neighborhood

We de�ne the cost of the link i in solution S to be the sum of its mobility cost �if the
frequency of i in S is not pi� and half the sum of the penalties for all violated soft constraints
involving i� The objective function in this problem is the sum of the contributions of
individual links� In some cases it is possible to change a frequency of one separate link so
as to reduce its contribution and thus to reduce the total cost� We de�ne the neighborhood
of a given solution as the set of all solutions that can be obtained by changing a frequency
of only one pair of parallel links� At each step� however� we only consider those links whose
contribution is strictly positive� we denote the corresponding neighborhood function by
R� A neighborhood function is called connected if from every starting solution an optimal
solution can be reached using this function�

Lemma � The neighborhood function R described above is connected�

Proof Consider an arbitrary starting solution S and let Sopt be some optimal solution�
If the objective values of S and Sopt are equal� then S is also optimal� Otherwise� as long
as there exists a link i of strictly positive cost in S whose frequency is di�erent in S and
Sopt� modify S by assigning to i its frequency in Sopt� Now suppose that no such link exists
in S� Then all the links of strictly positive cost in S have the same frequency in S and
Sopt� By the de�nition of the cost all such links have the same cost in S and Sopt� Hence�
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the sum of costs over all links in S� which is the total cost of S� cannot be larger than
the cost of Sopt� Thus starting with an arbitrary solution we construct an optimal solution
using only transitions to neighboring solutions� which proves the lemma� �

As an example of the advantage of this reduced neighborhood consider an instance
where the underlying interference graph consists of several disconnected components� Then
this instance can be decomposed into several independent ones� We argue that to some
extent this is done automatically by the reduced neighborhood� If during the search a
frequency assignment of zero cost is found for some component� this component will not
be disturbed again� which will reduce the size of the instance� This will not be the case if
changes were also allowed at the links of zero cost�

We found it convenient to relax the hard constraints ��� and to introduce the corre�
sponding term into the objective function� The penalty we attach to the violation of these
constraints should be relatively high� for example the sum of weights of all soft constraints
plus �� Then from the value of the objective function one can judge whether the solution
is feasible� At the same time� constraints ��� and ��� are always treated as hard�

All methods described in this section use the same procedure to obtain a starting
solution� Initially a random solution is generated by assigning to each pair of parallel links
a pair of frequencies randomly drawn from their domains� this solution is then subjected to
standard iterative improvement� using neighborhood R� Each of the following algorithms
has its own way of trying to escape from a local optimum�

��� Simulated annealing

Simulated annealing starts with some initial solution and performs a transformation to a
random member of its neighborhood� We de�ne this transformation in the following way	

� Select randomly a pair of parallel links of nonzero cost�

� Assign to them a random pair of frequencies from their domains� but distinct from
the currently assigned one�

The result of the transformation is accepted as a new solution with a certain probability
p� otherwise the previous solution is restored� In order to de�ne p� we �rst describe some
auxiliary control parameter T � Initially T is equal to the highest cost coe�cient of the
instance� Every k iterations T decreases according to the rule

T 	�
T

� � �T ln�� � �������
�

where � is a parameter that controls the rate of decrement of T and � is an estimate of
the standard deviation of the cost value� calculated for solutions visited in the previous
k iterations� The values of � and k have to be speci�ed� The estimate of the standard
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deviation is calculated by

�� �
k
P

i�����k Y
�
i � �

P
i�����k Yi�

�

k�k � ��
�

where Yi �i � �� ���� k� is the objective value during the i�th iteration� If we denote the cost
of old and new solutions by Co and Cn� then p is de�ned as

p � minf�� exp���Cn � Co��T �g�

These transformations are performed repeatedly as long as T is su�ciently large� Note that
a new solution of cost Cn � Co is always accepted� Deteriorations may also be accepted�
but this will happen with decreasing probability�

��� Taboo search

Taboo search starts with an initial solution generated as described in Section ���� It
performs a move to a solution selected from a given neighborhood� We used a �rst�
improvement strategy in our implementation of taboo search for the �rst order problem�
This strategy always moves to the �rst encountered nontaboo solution that yields an im�
provement� If no such solution is found� then it selects the best nontaboo solution from
the neighborhood�

To prevent the algorithm from cycling we forbid several recently performed moves to
be repeated� For this purpose we maintain a taboo list of all links whose frequency was
modi�ed in the previous k iterations� parameter k has to be speci�ed� We arrived at this
choice after experimenting with several alternatives for the items to be put on the taboo
list� We also used a so�called aspiration criterion to override the forbidden status of a
solution in case it would improve upon the best solution found so far�

��� Variable�depth search

The method for generating an initial solution produces a locally optimal solution� In each
iteration we apply a combination of variable�depth search and iterative improvement in an
attempt to �nd improvements� In our implementation of variable�depth search we reassign
frequencies to the nodes of some connected component of the interference graph� We start
by randomly reassigning frequencies to a pair of parallel links of nonzero cost� Note that
the objective function cannot be improved by this change� because the starting solution is
always a local optimum� We apply a random search to the links involved in violated soft
constraints in attempt to obtain an improvement� This operation can result in a signi�cant
modi�cation of the solution� The solution obtained in this way need not be locally optimal
anymore� so we apply iterative improvement each time we �nd an improvement by variable�
depth search�

Suppose we assign a pair of frequencies ff� gg to a pair of parallel links fi� jg in some
given solution� while keeping the rest of the solution unchanged� Denote then by I ijfg the
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set of all links adjacent to i or j in the interference graph whose frequency violates some
soft constraint involving i or j� We now describe our variable�depth search procedure	

�� Select randomly a pair of parallel links fk� lg of nonzero cost� Let T � fk� lg�

�� Assign a random pair of frequencies ff� gg to fk� lg from their domain� distinct from
the currently assigned one� Let C be equal to the resulting cost increment and
S � Iklfg�

�� Select randomly link i from S and its parallel link j� Let S 	� Snfi� jg and add fi� jg
to T � Assign to this pair of links fi� jg a pair of frequencies ff� gg with the lowest
cost from their domains� Add the resulting cost increment to C� If the reassignment
of frequencies to i and j resulted in an improvement� add the set I ijfgnT to S�

�� If S is empty or C is negative� then stop� otherwise return to step ��

If no improvement is found in a �xed number of iterationsN � we modify the current solution
randomly� For that we select links with a cost contribution higher than the average and
reassign a frequency to them with a given probability p� The solution obtained in this
way is subjected to iterative improvement and variable�depth search� in this order� The
number of times that random modi�cation is applied is limited by a control parameter M �
which also serves as a parameter in the stopping criterion� Thus� there are three control
parameters	 N � M and p�

� The second order problem

We de�ne a very di�erent kind of neighborhood for the second order problem� We are
convinced that a �wild� neighborhood that eliminates a particular frequency from an as�
signment altogether is more e�ective in this problem than any neighborhood based on the
small changes� Let F be the set of all frequencies used in some assignment� We will select
a frequency f from F and try to obtain a feasible complete assignment using frequencies
from Fnffg� If this is not possible� then any frequency but f is allowed to be used to com�
plete the assignment� The precise description of this mechanism will be given in section
����

We use a feasible complete assignment with respect to the second order problem to
initiate all approximation algorithms of this section� In some cases such a solution can be
obtained relatively easily� Such cases can be treated by a greedy heuristic� described in the
following section� which tries to extend a partial assignment at each step� If this heuristic
fails to produce a complete assignment� then one of the methods for the �rst order problem
can be used to obtain a solution of zero cost� The methods for the �rst order problem can
also be used when feasibility is lost during the search for the second order problem�
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��� Constructing a starting solution

There are two main strategies known from the literature �see for example ���� to construct
a feasible partial solution to the RLFAP�

The frequency exhaustive strategy orders links and assigns frequencies to them in this
order� The ordering of links should re�ect the potential di�culty of assigning a frequency
to them� Thus the di�cult links are treated �rst�

In the requirement exhaustive strategy frequencies are assigned one by one in some
order� At each step a frequency is assigned to as many links as possible� This strategy
takes advantage of assigning at each step a frequency to some large independent set of
links�

We describe here a heuristic of the frequency exhaustive type� An initial ordering � of
the set of links L is determined as follows	

�� Let S be a set initialized to L�

�� Select a link with the smallest degree in the subgraph of the interference graph
induced on S� In case of ties� select a link i with the smallest total interference
distance

P
j�Snfig dij in this subgraph�

�� Remove link i from S�

�� If S is not empty� then return to step �� otherwise stop�

The initial ordering � will be the reverse of the order of removal�
Now suppose that some partial assignment has been made� Let Fi be the set of fre�

quencies available at link i in this assignment� This set is computed by removing from
domain Di all frequencies eliminated by the interference with links that have already been
assigned a frequency� Algorithm A selects at each step a pair of parallel links and assigns
a pair of frequencies to them� For the assignment of frequencies to a pair of parallel links
fi� jg� all pairs of frequencies ffi� fjg such that fi � Fi�fj � Fj and jfi � fj j � dij are
checked� Among these pairs the one most heavily occupied in the current partial assign�
ment is chosen� If none of them is used� a smallest pair is taken�

Algorithm A

�� Determine the initial ordering �� Let S be equal to L�

�� Select a link i � S with the smallest number of available frequencies	

i � arg min
k�S

jFkj�

In case of ties the �rst link in the ordering � is chosen�

�� Assign a pair of frequencies ffi� fjg to a pair of parallel links fi� jg� as described
above� if possible� Remove i and j from S�

�� If S is not empty� then return to step �� otherwise stop�
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��� Neighborhood

Suppose we assign a pair of frequencies ff� gg to a pair of parallel links fi� jg in some given
solution� while keeping the rest of the solution unchanged� Denote by I ijfg the set of all
links adjacent to i or j in the interference graph whose frequency violates some constraint
involving i or j�

For link i� let the set Fi of alternative frequencies be as de�ned above� and let Ui be the
set of frequencies from domain Di used in the current solution� Denote byMi the following
subset of Ui	

Mi � ff � Uij�g � Dj 	 jf � gj � dij 	 �I ijfg � 
 � min
l�Iij

fg

jFlj � ��g�

The set Mi can be interpreted as a set of feasible alternatives in domain Di� We now de�ne
the neighborhood of a given solution S� Solution S� is a neighbor of solution S if S� can
be obtained from S as a result of the following procedure	

�� Choose some seed frequency f used in solution S �possibly a dummy frequency��
Prohibit the use of f for the assignment�

�� Determine the set P of all unassigned links and links with the chosen frequency f in
solution S� in case of a dummy f � P contains only unassigned links�

�� For each link i from P and its parallel link j� �nd a pair of frequencies fgi� gjg� gi �� f �
gj �� f � jgi � gj j � dij such that

fgi� gjg � arg min
h�Mi�k�Mj

jI ijhkj�

if ties occur� choose a pair fgi� gjg that maximizes the minimumnumber of alternative
frequencies at interfering links

min
l�Iijgigj

jFlj�

If such a pair of frequencies fgi� gjg is found� assign it to fi� jg and mark all links in
I ijgigj as unassigned� otherwise mark i and j as unassigned� Let P 	� Pnfi� jg�

�� Apply algorithm A to links that are left unassigned�

Unfortunately� the feasibility of solutions obtained in this way from a feasible solution
cannot be guaranteed� Hence� in developing a local search technique based on this neigh�
borhood� we also have to make sure that our solutions have a low degree of infeasibility�
We measure this degree by the number of links in a solution that cannot be assigned a
feasible frequency� If this number becomes too high� we apply one of the methods for the
�rst order problem to restore feasibility of the current solution� We stop if our algorithm
for the �rst order problem fails to produce a feasible solution�






��� Taboo search

We incorporate the neighborhood described in the previous section in the taboo search
framework� Two criteria are used to select the best solution in the neighborhood at each
step� First� we consider the neighbors with a minimum number of unassigned links� Sec�
ond� among these solutions the one using a minimum number of distinct frequencies is
selected�

Taboo search

�� Start with a feasible complete solution S� Let the taboo list T be empty� N and
I are given integer numbers� denoting the size of the taboo list and the maximum
number of iterations respectively� Set the counter i to �� Let U be the maximum
number of unassigned links allowed during the search�

�� Determine P � the set of neighbors of S for all seed frequencies taken from the set of
used frequencies not in T�

�� Select a complete solution S� from P with a minimum number of used frequencies�
If no such solution exists� select an incomplete solution S� from P with a minimum
number of unassigned links and� in case of ties� with a minimum number of used
frequencies�

�� If the number of unassigned links in S� is bigger than U � then apply the simulated
annealing method for the �rst order problem� initiated with S�� Let S be the solution
obtained in this way� Go to step ��

�� Include the seed frequency generating S� in T� If the size of T exceeds N � delete the
earliest inclusion in T� Denote the solution S� by S�

�� Increase i by �� If i � I� then stop� otherwise return to step ��

��� Simulated annealing

We use the same neighborhood to de�ne a simulated annealing method� Here a random
solution from a neighborhood is selected and a speci�c cost function of this solution is
evaluated� We de�ne the cost function as the sum of the number of used frequencies and
a hundred times the number of unassigned links� If we denote by Co and Cn the cost of
the old and the new solution respectively� then the search is continued with a new solution
with probability minf�� exp���Cn�Co��Tg� where T is a control parameter that decreases
linearly every k iterations� Let T� and Tf be an initial and a �nal value of control param�
eter� respectively� and let � be the decrement rate�
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Simulated annealing

�� Start with a feasible complete solution S� Set the counter i to � and the control
parameter T to T�� Let U be the maximum number of unassigned links allowed
during the search�

�� Select randomly a frequency used in S� and �nd a solution S� generated from S with
this seed frequency�

�� Select a real number p from the uniform distribution on ������ If p is larger than
minf�� exp���Cn � Co�T �g� then go to step ��

�� If the number of unassigned links in S� is bigger than U � then apply the simulated
annealing method for the �rst order problem� initiated with S�� Let S be the solution
obtained in this way� Go to step ��

�� Denote the solution S� by S�

�� Increase i by �� If i � K� then set T to �T and i to �� If T 	 Tf � then stop� otherwise
return to step ��

��� Variable�depth search

The idea behind the variable�depth search procedure for the second order problem can be
traced back to that of the neighborhood used in taboo search and simulated annealing�
which is to eliminate one of the frequencies used in some given solution� However� this
time it is done with a more exhaustive search� Namely� for each link i with a prohibited
frequency in a given solution� frequencies of links in some connected component of the
interference graph can be reassigned in search for improvement�

Variable�depth search

�� Start with a feasible complete solution S� Let Imax be the maximum number of
iterations� Set the counter i to ��

�� Choose randomly some seed frequency f used in the solution S� Prohibit the use of
f for the assignment�

�� Determine a set P of all unassigned links and links with a frequency f in solution S�
Mark all links in P as unassigned�

�� Select link k from P and its parallel link l� Let P 	� Pnfk� lg� Let D � fk� lg�
Remove all labels�
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�� Select link i from D and its parallel link j� Let D 	� Dnfi� jg� Find a pair of
frequencies fgi� gjg� gi �� f � gj �� f � jgi�gjj � dij� such that gi and gj do not interfere
with any labeled link� and such that

fgi� gjg � arg min
h�Mi�k�Mj

jI ijhkj�

if ties occur� choose the pair fgi� gjg that maximizes the minimum number of alter�
native frequencies at interfering links

min
l�I

ij
gigj

jFlj�

If such a pair of frequencies fgi� gjg is found� assign it to fi� jg and mark all links in
I ijgigj as unassigned� otherwise mark fi� jg as unassigned and go to step �� Assign a

label to i and j� Add the set I ijgigj to D�

�� If D is not empty� return to step ��

�� Remove all links with an assigned frequency from P � If P is not empty� return to
step ��

�� Apply algorithm A to unassigned links� If the current solution is complete and uses
fewer frequencies than S denote the current solution by S� Increase i by �� If i � Imax�
then stop� otherwise return to step ��

� Lower bounds

Our work was mainly concerned with the development of local search techniques for the
given problem� These methods perform very well in practice and provide near�optimal
solutions in a reasonable time� However� all these methods are based on intuitive consid�
erations� which cannot be validated analytically� In this case virtually the only possible
way to estimate objectively the quality of a local search approach is to compare its result
with some lower bound� We develop here several lower bound techniques�

��� The �rst order problem

We will formulate a nonlinear optimization problem� An optimal solution to this problem
will be a lower bound for the �rst order problem� We will describe a preprocessing technique
and an enumeration scheme� which can be used to solve this problem under some special
conditions� These special conditions are the following	

� A signi�cant number of links have a preassigned frequency and at least some of these
frequencies cannot be changed�
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� The mobility coe�cients Mi are not much smaller than the interference coe�cients
Cij�

Consider the following decision variables	

xi �

�
�� if link i is set to its preassigned frequency�
�� otherwise�

Clearly these variables are �xed to � for all links whose preassigned frequency cannot be
changed� Note that even if a link does not have any preassigned frequency� we can specify
one and set its mobility coe�cient to zero without loss of generality� Denote by Kij the
cost of interference between i and j if both of them are set to their preassigned frequencies	

Kij �

�
Cij� if jpi � pj j � dij �
�� otherwise�

We denote by Kifj the cost of interference between i and j if frequency f is assigned to i
and j is set to its preassigned frequency	

Kifj �

�
Cij� if jf � pj j � dij �
�� otherwise�

Now the problem can be formulated in the following way	

min
X

i�j�L�i�j

Kijxixj �
X
i�L

Mi��� xi� �
X
i�L

��� xi�� min
f�Dinpi

X
j�L

Kifjxj�� ���

where xi � f�� �g 
i � L�

We will interpret this objective function for some link i� If the decision is made not to use
the preassigned frequency for i� in other words if xi is zero� then the second and the third
terms in ��� occur for i� The second term is then simply a mobility cost of i� The third
term in this case is the minimal cost of interference that may occur between i and all other
links� which are set to their preassigned frequencies� Suppose now that the frequency of i
is �xed to its preassigned value �xi � ��� The cost of interference between i and all other
links �xed to their preassigned frequencies is given by the �rst term� The variable xi is also
considered in the third term� determining the cost of the cheapest alternative frequency
for links whose frequencies are di�erent from their preassigned ones�

The only interference cost that is not covered by this objective function concerns the
interference between links with frequencies di�erent from their preassigned ones� Note that
all cost coe�cients in this problem are nonnegative�
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Preprocessing In order to solve problem ��� we �rst try to reduce its size� For this
purpose we will apply some preprocessing� that is� we �x some variables xi to � or to � and
prove that there is an optimal solution in which they will have these values� De�ne by F�

a set of all indices �links� i for which xi has been �xed to �� In the same manner we de�ne
F� and F� for the free variables and the variables �xed to �� respectively�

Suppose we want to �x xi at �� Consider some arbitrary solution in which xi � �� If
we are able to show that the objective function of this solution cannot increase when xi is
�xed to �� we are free to do so� A similar consideration holds for �xing xi at ��

We will now derive a su�cient condition for �xing variable xi to � for some link i from
F�� Consider an arbitrary solution where xi � �� If we change xi to � in this solution� then
some cost terms may increase and new ones may appear� on the other hand a part of the
objective function will decrease� We call the former phenomenon the cost of the change
and the latter its saving� To be able to �x a variable� we would like to show that the saving
of the change is not smaller than its cost�

The saving obtained by changing xi from � to � is equal to

Mi � min
f�Dinpi

X
j�Lni

Kifjxj� ���

In words� it consists of a mobility cost of i and an interference cost of the cheapest alter�
native to a preassigned frequency� We cannot evaluate this expression directly� because it
contains decision variables� The principle remains valid� however� if we consider an upper
bound on the cost of changing and a lower bound on the saving� Similarly� the cost of such
a change is given byX

j�Lni

Kijxj �
X
j�L

�� � xj�Tij� ���

where

Tij � min
f�Djnpj

�
X
l�Lni

Kjf lxl �Kjfi�� min
f�Djnpj

�
X
l�Lni

Kjf lxl� ���

� min
f�Djnpj

�
X

l�F��F�

Kjf l�� min
f�Djnpj

�
X
l�F�

Kjf l� �
�

�	 �j�F�� F�� �

At the same time

Tij � max
f�Djnpj

Kjfi � ����

So we obtain the following upper bound for the expression ���	

Tij � minf�j�F�� F��� max
f�Djnpj

Kjfig �	 �ij � ����

The value of �ij can be calculated for every j� Let us now consider the di�erence between
saving and cost� This value is at least

Mi � min
f�Dinpi

X
j�F��F�ni

Kifjxj �
X

j�F��F�ni

Kijxj �
X

j�F��F�ni

�� � xj��ij � ����
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Mi � min
f�Dinpi

�
X

j�F�ni

��Kifj �Kij�xj � �� � xj��ij� �
X
j�F�

�Kifj �Kij�� �
X
j�F�

���ij� ����

�Mi � min
f�Dinpi

�
X

j�F�ni

minfKifj �Kij ���ijg�
X
j�F�

�Kifj �Kij� �
X
j�F�

���ij�� � ����

Now a su�cient condition for �xing variable xi at � is that

Mi � min
f�Dinpi

X
j�Lni


ifj � � � ����

where 
ifj �

���
��
��ij� j � F��
Kifj �Kij � j � F��
minfKifj �Kij ���ijg� j � F��

We will repeat this scheme once again to derive a su�cient condition for �xing xi to ��
Consider some arbitrary solution where xi is �� We change the value of xi in this solution
to �� The cost of such a change and its saving are now given by expressions ��� and ����
respectively� We now obtain a lower bound on ���	

min
f�Djnpj

�
X
l�Lni

Kjf lxl �Kjfi�� min
f�Djnpj

X
l�Lni

Kjf lxl � min
f�Djnpj

Kjki �	 �ij� ����

Consider the di�erence between cost and saving of changing xi from � to �	

Mi � min
f�Dinpi

X
j�F��F�ni

Kifjxj �
X

j�F��F�ni

Kijxj �
X

j�F��F�ni

�� � xj��ij � ����

Mi � min
f�Dinpi

X
j�Lni

�ifj � ����

where �ifj �

���
��
��ij� j � F��
Kifj �Kij � j � F��
maxfKifj �Kij���ijg� j � F��

A su�cient condition for �xing xi at � is that

Mi � min
f�Dinpi

X
j�Lni

�ifj � �� ��
�

If the su�cient condition for �xing xi at � or � is satis�ed� we �x this variable� delete index
i from the set F� and include it in F� �respectively F��� Note that once the set F� or F� is
modi�ed� the su�cient conditions for preprocessing of all free variables �xj for all j � F��
are changed� in fact they are strengthened� So� we repeat this preprocessing cyclicly until
no free variable can be �xed anymore after the last successful preprocessing�

In practice� the speci�c structure of an instance determines how many variables can be
�xed by preprocessing� The favorable conditions for that have been loosely de�ned in the
beginning of this section� For some of the CELAR test instances� we were able to solve
the lower bound problem completely by preprocessing� for others we had to solve relatively
small subproblems left after preprocessing by enumeration�
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E�cient enumeration We will now describe the procedure to perform this enumeration
e�ciently� Starting with an initial solution this procedure uses the so�called Gray code to
change one variable at a time� The number of times the variable has to be swapped is
however di�erent for all variables� We will use this fact to swap more frequently those
variables that require less computational work for updating the cost function�

We will �rst describe how the objective function can be updated� When the prepro�
cessing stage is completed� we can calculate for each link i in F� the cost of interference of
preassigned frequency of i with all links in F�� Denote it by CiF� � De�ne I�i� as the set
of all links adjacent to i in the interference graph� Suppose all variables have been given
a value and the objective function of this solution has been calculated� We also calculate
and store some auxiliary values	

Vi � min
f�Dinpi

X
j�I�i���F��F��

Kifjxj 
 i � F� � F� for which xi � ��

Consider now the change of some variable xi� i � F�� from � to �� The objective function
of a new solution is computed by adding the following value to the objective function of
the previous solution	

�
X

j�F��I�i�

Kijxj � CiF� �Mi � min
f�Dinpi

X
j�I�i���F��F��

Kifjxj

�
X

l�I�i���F��F��

�� � xl��Vl � min
f�Dlnpl

X
j�I�l���F��F��

Klfjxj�� ����

The value Vi� which is the fourth term in this expression� is stored� Now once xi has been
set to �� the values Vj have to be recalculated for all j � I�i�� �F� � F�� for which xj � ��

Let us consider the opposite change of some variable xi� i � F�� from � to �� The
increment of the objective function is given in this case by the following expression	

X
j�F��I�i�

Kijxj�CiF��Mi�Vi�
X

l�I�i���F��F��

���xl�� min
f�Dlnpl

�
X

j�I�l���F��F��

Klfjxj�Klf i��Vl� �

Here again� after setting xi to �� values Vj have to be recalculated for all j � I�i� � �F� �
F�� for which xj � ��

The amount of computation for updating the cost function can be estimated for each
link i in F� as

jI�i� � F�j� jI�i� � �F� � F��j�jDij � �� �
X

j�I�i���F��F��

jI�j� � �F� � F��j�jDj j � �� �

We enumerate the links in F� from � to jF�j�� in nondecreasing order of this estimate� In
order to determine the next link to be swapped we use the auxiliary array Toggle of jF�j
elements from f�� �g� This array is initiated with all ones� At each step we swap the �rst
i elements of this array� where i is the �rst element with zero entry after swapping� Index
i determines now the new link in F� to be swapped� This operation is performed until all
entries of Toggle are zero�
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We incorporated this lower bounding technique in a branch and bound framework� We
use the best solution obtained by the approximation algorithms for the �rst order problem
as an upper bound� Branching is performed by splitting the domain of some link into two
or more parts� If for some branch in the �rst level its lower bound value is strictly higher
than the value of an upper bound� we conclude that the corresponding subset of the split
domain is not used in any optimal solution and can thus be dropped� Using this argument
for the CELAR instances we were able to reduce the domains of the links signi�cantly�
even though we did not use the full branching scheme for reasons of computation time and
considered splitting domains of at most two links at a time�

��� The second order problem

One possible lower bound for the number of used frequencies of the RLFAP is the size of
the largest clique in its interference graph� We will focus on this lower bound� In order to
determine the largest clique we develop a branch and bound algorithm� We de�ne variables
xi in the following way	

xi �

���
��

�� if link i is excluded from the clique�
�� if link i is included to the clique�
�� if this decision is yet to be made�

We de�ne G to be a subgraph of an interference graph induced on all links i for which xi
is nonzero� The upper bound is the minimum degree in G of links i for which xi � �� We
also make sure that all such links form a clique� We obtain a lower bound by the following
greedy heuristic�

Algorithm MC

�� Let S be a set of all links i� whose variable xi is equal to �� The graph G� is equal to
G�

�� If G� is a clique� then stop�

�� Select a link from S of smallest degree in G� and remove it from S and G�� Ties are
broken randomly� Return to step ��

If during branching a larger clique is found� we terminate the branching process� set
all variables to � and eliminate from G all links with degree smaller than the size of the
largest clique� Initially let G be interference graph de�ned on a ground set L� We describe
our branch and bound algorithm recursively	

Initial step

�� All variables xi are set to �� If the current size C of the maximal clique is zero� apply
algorithm MC to initiate it�
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�� Delete from G all nodes with degree smaller than C and repeat this until all nodes
of G have a degree not smaller than C�

�� Arrange the nodes of G in nonincreasing order of their degree� Let the current clique
K be empty�

Recursive step

�� Select the �rst node i of G with xi � �� If no such i is found� backtrack to the
previous active node� Stop if there is no active node�

�� If K � i is a clique� then let K � K � i and set xi to �� else go to step ��

�� If jKj � C� apply algorithm MC to �nd a clique� If the size of a clique found by
MC is larger than C� then set C to this value and return to Initial step� otherwise
go to step ��

�� Let i be an active node� Perform the recursive step�

�� Set xi to �� If the smallest degree of nodes in K is not smaller than C� perform the
recursive step� Backtrack to the previous active node� Stop if there is no active node�

Before we actually apply this algorithm to �nd a lower bound� we use some simple
implication arguments to introduce extra constraints on an instance� These arguments are
based on two special properties of all test instances� namely that all dij in constraints ���
are equal� and that� if the frequency of a link is �xed� then the choice of the frequency for
its parallel link is unique� So� for each constraint of type ��� between links i and j there
should be a constraint between their parallel links� and if some link interferes with a pair
of parallel links� so should its parallel link�

Having a tool to obtain a largest clique we decided to strengthen further the lower
bound on the RLFAP� Consider some clique K in the interference graph� and let K � be a
clique of the same size as K such that a di�erence between the sets of nodes of K and K �

is a singleton� Then there are only two non�interfering nodes i and j in the union of these
sets that can be either connected or contracted ���� Note that if i and j are connected� we
immediately obtain a clique larger than K� Now suppose K is the maximal clique in the
interference graph and we want to prove that we need at least one extra frequency� besides
those used in K� to obtain a feasible solution to the RLFAP� If we are able to �nd K � as
described above� we only have to consider the contraction procedure� So� considering this
as a branching rule we are only left to check a path in the decision tree to improve our
lower bound�

The lower bound for the second order problem of the RLFAP is� apart from the pre�
processing step� merely based on the pairwise interference of links� One possible way to
take the other problem data into account is to check the existence of a feasible frequency
assignment to a clique after a contraction procedure has been performed� Indeed� if we are
able to prove that there is no feasible assignment after contracting two nodes as described
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in the previous paragraph� we immediately improve our lower bound� Note that after con�
traction of two nodes i and j in a new node l the interference distances of l are de�ned
as

dlm � maxfdim� djmg 
m � I�i� � I�j� �

The problem we consider is the following� Given a complete graphK and an interference
distance function de�ned on the edges� does there exist an assignment of frequencies from
domain D to the nodes� so that the distance between the frequencies assigned to any pair
of nodes will be at least their interference distance� We call it the leaf problem� Before we
prove the NP�completeness of this problem we want to recall that� although the maximal
clique problem is also NP�hard� we wanted to test the possibility of embedding an exact
algorithm for the leaf problem into another algorithm with exponential running time�

Lemma � The leaf problem is NP�complete�

Proof We will construct a reduction from the Hamiltonian path problem �HPP�� An
instance of HPP is an undirected graph G � �V�E� and the question	 �is there a Hamilto�
nian path in this graph�� Let domain D be the set of consecutive integers from � to jV j�
De�ne an instance of the leaf problem as the complete graph on the set V with domain D
and an interference distance dij is � if there is an edge between i and j in E and � other�
wise� We argue that if there exists a feasible solution to the instance of the leaf problem
constructed in this way� then there is a Hamiltonian path in G� and vice versa� Indeed�
consider a feasible solution of the leaf problem and a permutation of the nodes in increasing
order of frequencies assigned to them in this solution� There is an edge in E between any
two nodes adjacent in this permutation and each node from V appears exactly once � so
it is a Hamiltonian path in G� Obviously� when a Hamiltonian path exists� one can assign
frequency i to the i�th node in the path and thus create a feasible frequency assignment�
�

� Results

We tested our methods on eleven CELAR instances� These instances are available via an
anonymous ftp at ftp�win�tue�nl in the directory �pub�techreports�CALMA�Instances�
The computational results are summarized in the Table �� The instances labeled with  
have an optimal solution of value � in the �rst order problem and the entries in the table
for these instances are the objective value of the second order problem� The computation
times of the solution methods for �rst order problem for those instances are no longer than
one minute� in fact� they are less than two seconds for instances �� � and �� Computation
times are given in seconds of CPU time on a SUN SPARC � workstation� The lower bounds
we obtained for instances 
 and �� are the only nontrivial ones known for the �rst order
problem� The approximation algorithms for the second order problem perform equally
well on these test instances� We attribute this performance mainly to the neighborhood

�




Table �	 Computation results for real life instances

inst� size upper bound lower bounds

var� constr� taboo search variable�depth sim� annealing

value time value time value time
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inst� instance number

size var� the number of links in the instance

size constr� the number of constraints

� instance of the second order problem

structure� The taboo search framework performs better in case the feasible solutions are
sparse� as in instance ���

Our neighborhood for the �rst order problem happens to be less �exible than the one
for the second order problem� It is e�ective in the simulated annealing framework� but we
were not able to obtain any satisfactory performance of the taboo search method based
on this neighborhood� The di�culty of simulated annealing with instances � and � can
be explained by a fundamental problem of this method� Namely� the conventional cooling
schemes do not work smoothly when the cost coe�cients of the objective function are of
di�erent orders of magnitude� which is the case for these interferences� But the performance
of simulated annealing on the instances where this problem does not occur is robust� and we
used this method as a subroutine for approximation methods for the second order problem�
as described in section ��

We have also applied our algorithms to ten random instances due to H�P� van Benthem
available at ftp�dutiosd�twi�tudelft�nl in the directory �pub�others�rlfap� The
results are listed in the following the Table � in the same format as the Table �� except
for the best known solutions that are listed in place of the lower bounds� One of the aims
of our work was to show that local search techniques are very �exible and can be easily
modi�ed to obtain approximate solutions for related problems� For this we considered a
di�erent variant of the frequency assignment problem which also stems from a practical
application� In this problem we are given a set of forces and a set of possible locations
for each force� Radio frequencies assigned to the forces at a same location have to satisfy
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Table �	 Computation results for random instances

inst� size upper bound best known

var� constr� taboo search variable�depth sim� annealing

value time value time value time
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inst� instance number

size var� the number of links in the instance

size constr� the number of constraints

� instance of the second order problem

certain complicated interference constraints� Several interference levels are acceptable at
each location corresponding to di�erent parameter settings in the interference constraints�
Each interference level has a penalty associated with it� For each force we are asked to
select a frequency from a given domain so that	

� for each possible location of a force an acceptable interference level is achieved�

� the sum of penalties over all locations is minimized�

We were able to apply the simulated annealing algorithm for the �rst order problem with
modi�ed data structures to obtain approximate solutions to real�life instances of this prob�
lem�

� Conclusions

Our study showed that local search is a powerful tool to solve various frequency assignment
problems� However� for an e�cient implementation of this method the special structure of
a problem has to be used to design an appropriate neighborhood function� We observed the
following advantages of the local search approach for real�life hard combinatorial problems	

� local search is easy to implement and to tune for a particular problem at hand�

� it is able to generate good solutions in limited time�
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� it requires only modest computer facilities�

In order to guarantee quality of approximate solutions obtained by a local search a lower
bounding technique has to be developed separately�
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