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Abstract 

In this contribution, the upper bounds for sums of dependent ran­

dom variables Xl + X 2 + ... + Xn derived by using comonotonicity are 

sharpened for the case when there exists a random variable Z such 

that the distribution functions of the Xi, given Z = z, are known. By 

a similar technique, lower bounds are derived. A numerical application 

for the case of lognormal random variables is given. 

1 Introduction 

In some recent articles, Goovaerts, Denuit, Dhaene, Millier and several uth­

ers have applied theory originally studied by Frechet in the previous c:entury 

to derive upper bounds for sums S = Xl + X2 + ... + Xn of random variables 

Xl, X 2 , ••• , Xn of which the marginal distribution is !mown, but the joint dis­

tribution of the random vector (Xl, X 2 , ..• , Xn) is either unspecified or too 

cumbersome to work with. These upper bounds are actua.lly suprema in 

the sense of convex order. The concept of convex order is closely related to 

the notion of stop-loss order whiell is more familiar in a.ctuarial circles. Both 

express which of two risks is the more risky one. Assuming that. only the 111(\1'­

ginal distributions ofthe Xi are given (or used), the riskiest instanee S" of S 

occurs when the risks Xl, X 2 , ••. , Xn are comonotonous. This means that they 
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are all non-decreasing functions of one uniform(O,l) random variable U, and 

since the marginal distribution must be Pr [Xi ~ xl = Fi(X), the comonoto­

nous distribution is that of the vector (FI-I(U), F2-I(U), ... , F;I(U)). 
In this contribution we assume that the marginal distribution of ea.ch 

random variable X I ,X2 , .•• ,Xn is known. In addition, we assume that there 

exists some random variable Z, with a known distribution function, such that. 

for any i and for any z in the support of Z, the conditional distribution func­

tion of Xi, given Z = z, is known. We will derive upper and lower bounds in 

convex order for S = Xl + X 2 + ... + X n , based on these conditional distribu­

tion functions. Two extreme situations are possible here. One is that Z = S, 

or some one-to-one function of it. Then the convex lower bound for S, which 

equals E[SIZl, will just be S itself. The other is that Z is independent of all 

XI, X 2 , •.• , X n . In this case we actually do not have any extra. information 

at all and the upper bound for S is just the same comonotonous bound as 

before, while the lower bound reduces to the trivial bound E [8]. But in some 

cases, and the lognormal discount process of section 5 is a good example, a 

random variable Z can be found with the property that by conditioning on 

it we can actually compute a non-trivial lower bound and a sharper upper 

bound than S,. for S. 
In section 2, we will present a short exposition of the theory we need. 

Section 3 gives upper bounds, section 4 improved upper bounds, as well as 

lower bounds, both applied to the case of lognormal distributions in section 

5. Section 6 gives nuinerical examples of the performance of these bounds, 

and section 7 concludes. 

2 Some theory on comonotonous random vari­

ables 

Let FI, F2 , ••• , Fn be univariate cumulative distribution functions (cdf's for 

short). Frechet studied the class of all n-dimensional cdf's Fx of random· 

vectors X == (Xl, X 2 , ••• , Xn) with given marginal cdf's FI, F2 , ••• , Fn, where 

for any real number x we have Pr [Xi ~ xl = ,Fi(x), i = 1,2, ... , n. In this 

paper, we will consider the problem. of determining stochastic lower and 

upper bounds for the cdf of the random variable Xl + X 2 + ... + X n , without 

restricting to independence between the terms Xi. We will always assume 

that the marginals cdf's of the Xi are given, and that all cdf's involved ha:ve 
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a finite mean. 

The stochastic bounds for random variables will be in terms of "eonvex 

order", which is defined as follows: 

Definition 1 Consider two random variables X and Y. Then X is said to 

precede Y in the convex order sense, notation X :::;cx Y, if and only if for all 

convex real functions v such that the expectations exist, we have 

E [71 (X)] :::; E [v (Y)]. 

It can be proven, see e.g. Shaked & Shanthikumar (1994), that the condit.ioIl 

in this definition is equivalent with the following condition: 

E[X] E[Y], 

E [X - d]+ < E [Y - d]+ for all d, 

where E[Z]+ is a notation for E[max{Z,O}]. 
Using an integration by parts, the ordering condition between the st.op­

loss premiums E [X - dJ+ and E [Y - dJ+ can also be expressed as 

100 

(1 - Fx(x)) dx:S: 100 

(1 - Fy(x)) dx for all d. 

In case X :s:= Y, extreme values are more likely for Y than for X. In terms 

of utility theory, X :::;cx Y entails that loss X is preferred to loss Y by all 

risk averse decision makers, i.e., E [u (-X)] 2:: E [u (-Y)] for all concave 

non-decreasing utility functions u. This means that replacing the (unknown) 

distribution function of a loss X by the distribution function of a loss Y can be 

considered as an actuarially prudent strategy, for example when determining 

reserves. 

From the relation above, we see immediately that 

Thus, two random variables X and Y with equal mean are convex ordered 

if their cdf's cross once. This last condition can be observed to hold in most. 

conceivable examples, but it is easy to construct instances with X :::;(,." Y 

where the cdf's cross more than once. 
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It follows immediately that X S;"" Y implies Var [X] S; Var [Y]. The re­

verse implication does not hold in general; for a counterexample, see e.g. 

Brockett and Garven (1998). Also note that X S;"" Y is equivalent to 

-X S;"" - Y. This means that it makes no difference if we interpret the 
random variables as losses or as gains. 

For any random vector X with marginal cdf's F1, F2, ... , Fn the following 

convex order relation holds: 

where U is a uniform(O,l) random variable, and where the p-th quantile of a 

random variable X with cdf F x is, as usual, defined by 

Goovaerts, Dhaene & De Schepper (2000) prove this order relation directly, 

while MUller (1997) derives it as a special case of the concept of super­

modular ordering. This relation can be interpreted as follows: the most 

risky random vector with given marginals (in the sense that the sum of 

their components is largest in the convex order sense) has the comonoto­

nous joint distribution, which means that it has the joint distribution of 

(Fl1(U),F2-1(U), ... ,F,;:-1(U)). The components of this random vector are 

maximally dependent, all components being non-decreasing functions of the 

same random variable. 

The inverse cdf of a sum of comonotonous random variables can easily 

be computed. Indeed, if Su =d Fll(U) + F;l(U) + ... + F,;:-l(U), where =d 

means equality in distribution, then 

n 

Fi,.l(P) = L F;-1(P), P f [0,1]. 
i=l 

Recently, the concept of comonotonicity has been considered in many ac- . 

tuarial papers, see e.g. Miiller (1997), Wang & Dhaene (1998), Dhaene, 

Wang, Young & Goovaerts (1998). Dependence in portfolios and related sto­

chastic orders are also considered in Dhaene & Goovaerts (1996), Denuit & 

Lefevre (1997), Dhaene & Goovaerts (1997), Bauerle & MUller (1998), Wang 

& Young (1998), Goovaerts & Redant (1999), Denuit, De Vylder & Lefevre 

(1999), Dhaene & Denuit (1999), and others. 
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3 Comonotonous Upper Bounds for Sums of 

Random Variables 

The usual definition of the inverse of a cdf is the left-continuous function 

FXI(p) = inf {x f RIFx(x) ~ pl. But if Fx(x) = p holds for an interval 

of values for x, any element of it could serve as FXI(p). In this paper, we 

introduce a more sophisticated definition which enables us to choose that 

particular inverse cdf with the property that for a certain d, the relation 

Fxl(Fx(d)) = d holds. 

For p f [0,1]' a possible choice for the inverse of Fx in p is any point. in 

the interval 

[inf {x f RlFx(x) ~ p}; SUp {x f RIFx(x) :s: p}]. 

Here we take inf 0 = +00 and sup 0 = -00. Taking the left hand border of 

this interval to be the value of the inverse cdf at p, we get FXI(p). Similarly, 

we define F;(lo(p) as the right hand border of the interval: 

FXlo(p)=SUp{XERlFx(x):s:p}, pf [0,1]. 

Note that FXI(O) = -00 and FXlo(l) = +00, while FXI(p) and FXlo(p) are 

finite for all p f (0,1). For any a in [0,1] , we define the a-inverse of Fx as 

follows: 

P E (0,1). 

For a comonotonous random vector (XbX2' ... ,Xn ), it follows that for all a 

in [0,1]: 
n 

Fi:fL+ ... +Xn (P) = :E Fi}(a) (p), p € (0,1). 

i=l 

The following result was already mentioned in Section 1. We give 11 Hew· 

proof for it, based on the a-inverse just introduced, because this method of 

proof leads to new results that we will need in the sequel of this paper. 

Proposition 2 Let U be a uniform{O,l) random variable. For any random. 

vector (Xl, X 2 , ... , Xn) with marginal cdf's F I , F2 , ..• , Fn, we have 
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Proof. Let B and Su be defined by B = Xl +X2+ ... +Xn and Bu = F1- 1(U)+ 
F2-1(U) + ... + F;l(U), respectively, with U uniform(O,l). Then obviously 

E [8] = E [B.,]. To prove the stop-loss inequalities needed to establish convex 

order, consider an arbitrary fixed real number d, with 0 < Fs,.{d) < 1. Let 

Q € [0,1] be determined such that 

Fi..1(a) (Fs" (d» = d. 

Then we have 

E [S - dJ+ = E [S - Fi..1(Q) [Fs,,(d)]L = E [t (Xi - F;-l(Q) (Fs"(d»)] + 

s; tE [Xi - F;-l(a) (Fs" (d»] . 
i=1 + 

On the other hand we find 

E [Bu - dJ+ E [Fs;.l(U) - d]+ = 11 (Fs;.l(P) - d)+ dp 

t (Fs;.l(P) - Fi..1(a) (Fs" (d») dp 
JFs,,(d) 

t 11 (~-1(p) - F.-1(a) (Fs,,(d))) dp. 
i=1 Fs .. (d) 

One can verify that for any p € (Fs .. (d); Fi (~-l(a) (Fs" (d)))) we have 

F;-1(P) = F;-l(a) (Fs,,(d». 

This implies 

t 11( -1(a) ) (Fi-1(P) - F;-l(a) (Fs..(d))) dp 
i=l F; Po (Fs" (d)) 

t 11 (~-1(p) - ~-l(a) (Fs,,(d»L dp 

n 

EE [~-l(U) - ~-l(Q) (Fsu(d»] 
i=1 + 

tE [Xi - F.-1(a) (Fs" (d»] , 
.=1 + 
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so we have proven that E [S - dJ+ :::; E [S" - dJ+ holds for all retentions d 

with 0 < Fs .. (d) < 1. 

AB the stop-loss transform is a continuous, non-increasing function of the 

retention d, we find that the result above implies 

E [S - p-l-(O)] < E [8 - p-l-(O)] 
s.. +- " s.. +' 

as well as 

E [S - Fi,;(l)] + :::; E [S" - F;,.I(l)] + . 

So E [S - dJ+ :::; E [S" - dJ+ also holds for retentions d with Fs .. (d) = 0 

or Fs .. (d) = 1 .• 

If d € (Fs..I-(O),F;,.I(l)), then 0 < Fs .. (d) < 1, so we find the following 

Corollary from the proof of Proposition 1. 

Corollary 3 Let U be uniform(O,l) and let S" = Fll(U)+ ... +F,;:-l{U). If 

d € (Fi';-(O),F;,.l(l)), then the stop-loss premium at retention d of s" is 

given by 

with a E [0,1] determined by Fil(a) (Fs .. (d)) = d. 

The expression for the stop-loss premiums of a comonotonous sum S" can 

also be written in terms of the usual inverse cdf's. Indeed, for any retention 

dE (F;,.I-(O),F;,.l(l)), we have 

E [Xi - F.-I(a) (Fs .. (d))L = E [Xi - F.-I (FsJd))] + 

- (F.-I(a) (Fs .. (d)) - ~-1 (FsJd))) (1- Fs"Cd)). 

Slimming over i, and taking into account the definition of a, we find the 

expression derived in Dhaene, Wang, Young & Goovaerts (1999), where the 

random variables are assumed to be non-negative: 

n 

E[S" - dJ+ = LE [Xi - Fi- 1 (FsJd))] + -Cd - F;,.l (Fs" (d))) (1- Fs,,(d)). 
;=1 
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From Corollary 1, we can conclude that any stop-loss premium of a sum of 

comonotonous random variables can be written as the sum of stop-loss pre­

miums for the individual random variables involved. Corollary 1 provides an 

algorithm for directly computing stop-loss premiums of sums of comonoto­

nous random variables, without having to compute the entire cdf of the stun 

itself. Indeed, in order to compute the stop-loss premium with retentioll tI, 

we only need to know FsuCx) for x equal to d. The cdf at x follows from 

Now assume that the marginal cdf's F; are continuous on R and strictly 

increasing on (Fi-
lo (O), Jii-1(1)). Then one can verify that Fs" is also continu­

ous on R and strictly increasing on (Fi1• (0) TFi1 (1)) , and that Fi1 is strictly 

increasing and continuous on (0,1). Hence, for any x f (Fi1·(0),Fi1(1)), 

the value Fsu(x) can be obtained unambiguously from 

n 

LF;-l (Fsu(x)) = x. 

i=l 

In this case, we also find 

n 

E[S" - dJ+ = EE [Xi - F;-1 (FsuCd))] + ' 
i=l 

which holds for any retention d f (Fi1• (0), Fi1 (1) ) . 
Corollary 1 can be used for deriving upper bounds for the price of an 

Asian option, see Simon, Goovaerts & Dhaene (2000). 

4 Improved Bounds for Sums of Random Vari"': 

abIes 

4.1 Upper Bounds 

As (Fl1(U), F2-
1(U), ... , F;l(U)) is a random vector with marginals FI, ... , F,,, 

the upper bound S" = F1- 1(U) + F2-
1(U) + ... + F;l(U) is the best that can 
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be derived under the conditions stated in Proposition 1; it is a supremum in 

terms of convex order. Let us now assume that we have complete (or par­

tial) information, more than just the marginal distributions, concerning the 

dependence structure of the random vector (XI,Xa, ... ,Xn ), but that exact 

computation of the cdf of the sum S = Xl + Xa + ... + Xn is not feasible. In 
this case, we will show that it is possible to derive improved upper bounds for 

S, and also non-trivial lower bounds, based on the information we have on 

the dependence structure. This is accomplished by conditioning on a random 

variable Z which is assumed to be some function of the random vector x. 
We will assume that we know the distribution of Z, and also the conditional 

cdf's, given Z = z, of the random variables Xi. A suitable example is to use 

Z = I: log Xi when the Xi are lognormal .. In the following proposition, we 

introduce the notation Fx,jz(U) for the random variable /i(U, Z), where the 

function fi is defined by J.(u,z) = Fx,jz=z(u). 

Proposition 4 Let U be uniform(O,l), and cnnsider a mndom variable Z 

which is independent of U. Then we have 

Proof. From Proposition 1, we get for any convex function v, 

E [11 (Xl + ... + Xn)] L: E [1) (Xl + ... + Xn) IZ = z] dFz(z) 

< L: E [11 (h(U, z) + ... + fn(U, z))] dFz(z) 

E [1) (h(u, Z) + ... + fn(U, Z))] 

from which the stated result follows directly .• 

Note that the random vector (Fx:IZ(U),Fx;lz(U), ... ,Fx~IZ(U)) has mar­

ginals FI> Fa, ... , Fn , because 

}i(x) Pr[Xi ::; x] 

L: Pr [Xi::; x I Z = z] dFz(z) 

L: Pr [FxJz=z(U) ::; x] dFz(z) 
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I: Pr [lieU, z) ::::; x J dFz(z) 

Pr [Ji(U, Z) ::::; xJ. 

In view of Proposition 1 this implies 

The left hand side of this relation is S~; the right hand side is SUo In order to 

obtain the distribution function of S~, observe that given the event Z = z, 

this random variable is a sum of comonotonous random variables. Hence, 

n 

Fi~z=z(p)=LFxiIZ=z(P)' pc [O,lJ. 
i=l 

If the marginal cdf's FXilz=z are strictly increasing and continuous, so is 

Fs:.1z=z' and then FS~lz=z(x) follows by solving 

t FX,lz=z (FS'uIZ=z(X)) = x. 
i=l 

The cdf of S~ then follows from 

Application of Proposition 2 to lognormal marginals Xi is considered in Sec­

tion 5, but see also the simple examples with 11. = 2 at the end of this section. 

Note that if Z is independent of all Xl, X 2 , ... , X n , upper bound s,~ reduces 

to Su. 

4.2 Lower Bounds 

Let X be a random vector with marginals F I , F2 , •.. , Fn , and assume that 

we want to find a lower bound Sl, in the sense of convex order, for S = 
Xl + X 2 + ... + X n . We can obtain such a bound by conditioning on some 

random variable Z, again assumed to be a function of the random vect.or X. 
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Proposition 5 For any random vector X and random variable Z, 'We have 

Proof. By Jensen's inequality, we find that for any convex function 71, the 

following inequality holds: 

E [v (Xl + X 2 + ... + Xn)] Ez E [v (Xl + X 2 + ... + X,,) IZ] 

> Ez [v (E [Xl + X 2 + ... + XnIZ])] 

Ez [v (E [XIIZ] + ... + E [Xn I Z])] . 

This proves the stated result .• 

Note that if Z and S are mutually independent, Proposition 3 leads to the 

trivial lower bound E [S] ~cx S. On the other hand, if Z and S have a one-to­

one relation, the lower bound in Proposition 3 coincides with S. Note further 

that E[E [XiIZ]] = E[Xi] always holds, but Var [E[XiIZ]] < Var [Xi] unless 

E [Var [Xi I Z]] = 0 which means that Xi, given Z = z, is a constant for each 

z. This implies that the random vector (E [XlIZ] ,E [X2IZ] , ... , E [X" I Z]) 

will in general not have FI, F2, ... , Fn as its marginal distribution functions. 

But if the conditioning random variable Z has the property that all random 

variables E [XiIZ] are non-increasing functions of Z (or all are non-decreasing 

functions of Z), the lower bound in Proposition 3 has the form of a SUIll of 17. 

comonotonous random variables. The cdf of this SUIll is then obtained by the 

results of Section 2. An application of Proposition.3 in the case of lognormal 

marginals Xi is considered i:q Section 5. 

With S = Xl +X2+ ... +Xn' the lower bound Sl in Proposition 3 ean be 

written as E [SIZ]. To judge the quality of this stochastic bound, we might 

look at its variance. To maximize it, the mean value of Var[SIZ = z] should 

be mininrized. Thus, for the best lower bound, Z and S should be as Cllike 

as possible. 

Let's further assume that the random variable Z is such that all E [XiIZ] 

are non-increasing continuous functions of Z. The quantiles of the random 

variable E [SIZ] then follow from 

n n 

FE[1Izl(P) = LFE[iiIZj(P) = LE[XiIZ = FZl (l- p)], P t (0,1). 
;=1 i=l 
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In order to derive the result above, we used the fact that for a non-increasing 

continuous function f, we have 

Similarly, for a non-decreasing continuous function f, we have 

If we now in addition assume that the cdf's ofthe random variableH E [XiIZ] 
are strictly increasing and continuous, then the cdf oLE [BIZ] is also strictly 

increasing and continuous, and we get for all x € (FE[~Z] (0), FE[1Iz] (1)), 

n 

LFE[1-. lz] (FE[SIz](x)) = x, 
i=1 

or equivalently, 

n 

LE [XiIZ = FZ1 (1- FE[SIZ] (x))] = x, 
;=1 

which unambiguously determines the cdf of the convex order lower bound 

E [BIZ] for B in case all E[XiIZ = z] are non-increasing in z. 
The stop-loss premiums of E [BIZ] can be computed as follows: 

n 

E[E [BIZ]- dJ+ = L {E[XiIZJ - E [XiIZ = FZ1 (1- FE[SIZ] (d))]}+ ' 
i=l 

which holds for all retentions d € (FE[~Z] (0), FE[~Iz] (1)) . 

The technique for deriving lower bounds as explained in this section is also 

considered (for some special cases) in Vyncke, Goovaerts & Dhaene (2000). 

The idea of this technique stems from mathematical physics, and was applied 

by Rogers & Shi (1995) to derive approximate values for the value of Asian 

options. 
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4.3 Some simple examples 

Let X, Y be independent N(O, 1) random variables, and consider random 

variables of the type Z = X + aY for some real a. We want to derive 

stochastic bounds for S = X + Y. The conditional distribution of X, given 

Z = z, is, as is well-known, 

N (J.tX + PX:zrTX (z - J.tz), ai(l - pi,z)) = N (1: a2' 1 :2a2) . 

But this means that for the conditional expectation E[XIZ] and for the 

random variable FXI~(U), with U uniform(O,l) and independent of Z, we 

get 

E[XIz] = _Z_ and F-1 (U) = E[XIZ] + lal<p-1(U) . 
1 + a2 xlZ VI + a2 

In line with E[X + aYIZ] == Z, we also get 

aZ -1 <p-1(U) 
E(ylz] = -1 2 and Fy1z(U) = E(ylz] + v'f+(i2' 

+a 1+~ 

It can be shown that both FXI~(U) and FyMU) have N(O, 1) distributions. 

Their U -dependent parts are comonotonous. For the lower and upper bOlmds 

derived above we get 

S=X+Y 

l+a 
Sl = E[X + YIZ] = 1+a2Z 

s'. = 1 + a Z + 1 + lal <p-1(U) 
" 1 + a2 VI + a2 

S" =d 2X 

N(O, 2), 

N (0 (1 +a)2) 
'1+a2 ' 

N (0 (1 + a)2 + (1 + lal)2) 
, 1+a2 ' 

N(0,4). . 

For some special choices of a, we get the following distributions for the lower 

and upper bounds Sl and s',.: 

a=O 

a=l 

a=-l 

lal-+ 00 

N(O, 1) ~cx S ~cx N(0,2), 

N(O, 2) ~cx S ~cx N(0,4), 

N(O, 0) ~cx S ~cx N(0,2), 

N(O, 1) ~cx S ~cx N(0,2). 

13 



Note that the actual distribution of 8 is N(0,2), so the best convex lower 

bound (a = 1) and the best upper bound (a ::; 0 or a -+ 00) coincide with 

8. Of course taking lal -+ 00 gives the same results as taking Z = Y. The 

variance of 81 can be seen to have a maximum at a = + 1, a minimum at 

a = -1. On the other hand, Var[8:] also has a maximum at a = 1, and 

minima at a ::; 0 and a -+ 00. So the best lower bound in this case is attained 

for Z = 8, the worst for Z and 8 independent. The best improved upper 

bound is found by taking Z = X, Z = Y, or any a < 0, including the case 

a = -1 with Z and 8 independent; the worst, however, by taking Z = 8. 

To compare the variance of the stochastic upper bound 8: with the vari-

ance of 8 boils down to comparing call (FXI~(U),FYI~(U)) with cov (X, Y). 

It is clear that, in general, the optimal choice for the conditioning random 

variable Z will depend on the correlation of X and Y. If this correlation 

equals 1, any Z results in 8 =d 8: =d 8. Inour case where X and Y Hre 

mutually independent, the optimal choice proves to be taking Z == X or 

Z == Y, thus ensuring that 8 and 8: coincide. 

AI; a second example, consider a simple special case of the theory dealt 

with in the next section. We present it here for the reader's convenience, 

just as an illustration. Take Yi and Y2 independent N(O,l) random vari­

ables. Look at the sum of Xl = eY1 '" 10gnormal(O,1), and X 2 = eY1 +Y2 '" 

10gnormal(O,2). Take Z = Yi + Y2. For the lower bound 8z, note that 

E[X2IZ] = eZ , while YiIYi + Y2 = z '" N(~z, ~), hence 

1 1 
E[eY1/YI + Y2 = z] = m(l; 2"z, 2")' 

where met; J.l-, CT2 ) = e,.t+~0"2t2 is the N(J.l-, CT2 ) moment generating func:tion. 

This leads to 

So the lower bound is 

14 



Upper bound S,. has (Xl,X2) =d (eW ,eV2W ) for W '" N(O, 1). The improved 

upper bound S: has as a second term again eZ , and as first term e!z+!v'2W, 

with Z and W mutually independent. All terms occurring in the bounds 

given above are lognormal random variables, so the variances of the bOlmcls 

are easy to compute. Note that to compare variances is meaningful when 

comparing stop-loss premiums of stop-loss ordered random V"ariables, see, 

e.g., Kaas et al. (1994, p. 68). The following relation, which can be proven 

using partial integration, links variances and stop-loss premiums: 

1 roo 
"2 Var[X] = Loo {E[X - t]+ - (E[X] - t)+} dt, 

from which we deduce that if X :S;"'" Y, thus E[Y - t]+ ~ E[X - t]+ for all 

t, then 

1 roo 
"2 {Var[Y] - Var[X]} = Loo {E[Y - t]+ - E[X - t]+} dt 

Thus, half the variance difference between two convex ordered random vari­

ables equals the integrated difference of their stop-loss premiums. This im­

plies that. if X :s;= Y and in addition Var[X] = Var[y], then X and Y must 

necessary be equal in distribution. Moreover, the ratio of the variances is 

roughly equal to the ratio of the stop-loss premiums, minus their minimal 

possible value for random variables with the same mean. We have, as the 

reader may verify, 

Hence, 

E[S]2 

E[Sf] 

E[S2] = E[s'!] 

E[S;] 

e1 +2e~ +e4 , 

3 5 4 
e2" + 2e2" + e , 

e2 +2e~ + e4 , 

e2 + 2e~+v'2 + e4 • 

Var[E[S]] 

Var[Szl 

Var[S] = Var[s'",] 

Var[S",] 
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So an improved stochastic lower bound SI for S is obtained by conditioning 

on Yi + Y2 , and the improved upper bound S~ for this case proves to be very 

good indeed, having in fact the same distribution as S. 

5 Present Values - Lognormal Discount Process 

5.1 General Result 

Consider a series of deterministic payments at, a2, ... , an, of arbitrary sign, 

that are due at times 1,2, ... , n respectively. The present value of this series 

of payments equals: 
n 

S = La; e-(Y,+Y2+ ... +Y;). 

i=l 

Assume that (Yi, Y2, ... , Yn ) has a multivariate normal distribution. We in­

troduce the random variables Xi and Y(i) defined by 

Y(i) = Yr + Y2 + ... + 1'; 

and S = Xl + X 2 + ... + X n , where 

For some given choice of the Pi' consider a conditioning random v-ariable Z 
defined as follows: 

;=1 

For a multivariate normal distribution, every linear function of its compo­

nents has a univariate normal distribution, so Z is normally distributed. Also, 

(Y(i), Z) has a bivariate normal distribution. Conditionally given Z = z, 

Y(i) has a univariate normal distribution with mean and variance given by 

E [Y(i)1 Z = z] = E [Y(i)] + Pi °"Y(i) (z - E [Z]) 
O"z 

and 

Var [Y(i) I Z = z] = O"h.) (1- pn 
where Pi is the correlation between Z and Y(i). 
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Proposition 6 LetS,SI,S: andS", be defined as follows: 

n 

S = L ai e-(Y' +Y2+"'+Y;) , 

i=l 

SI = t ai e-E[y(i)]-Pi ITY(i) \f!-l(U)+Hl-'?') lTh,) , 
.=1 

8' = ..[!-. a. e-E[Y(i)]-p, lTy(,) \f!-l(U)+sign(a,) v'l-p~lTY(') \f!-'(V) 
1£ L.....J 1. , 

.=1 
n 

8 - '"' n •. e-E[Y(i)]+sign(a,) ITY(i) \f!-'(U) 
t£-~Lf" , 

i=l 

where U and V are mutually independent uniform{O,l} random variables, 

and q> is the cdf of the N(O, 1) distribution. Then we have 

Proof. (a) If a random variable X is lognorma1(p" (72), then E [Xl = el'+~1T2. 

Hence, for Z = '£~=l(3i }i, we find that, taking U = q> (Z~~[Z)), so U "" 

uniform(O,l), 

From Proposition 3, we find SI ~cz S. 

(b) If a random variable X is 10gnorma1(p" (72), then we have F;,i (P) = 
a el'+·ign(a) IT \f!-'(p). Hence, we find that 

From Proposition 2 we find that S ~"'" S:. 
(c) The stochastic inequality s: ~cz S", follows from Proposition 1. • 

In order to compare the cdf of S = '£~=1 ai e-(Y'+Y2+ ... +Y;) with the c:df's 

of SI, S: and S .. , especially their variances, we need the correlations of the 

different random variables involved. We find the following results for the 
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lognormal discOlmt process considered in this section: 

corr[X, X j ] = 

carr [E (XiIZ), E (XjIZ)] 

ecov[Y(i},Y(j}] - 1 

Jeuh,) - 1 Jeu~(j) - l' 

eP"Pjuy(,)uY(j) - 1 

J ePf uh,) - 1 J ePJ u~(j) - 1 ' 

e[p'·Pj+.ign(a,.aj)~.ji=P;lu,I-'(')u}'(.i) _ 1 

J euh,) - 1 J eU~'(j) - 1 

eBign(a,.aj)uY(i)UY(j) - 1 

JU2 JU2 e Y(i) - 1 e Y(j) - 1 

From these correlations, we can for instance deduce that if all payments Ct;. are 

positive and corr [Y(i), Y(j)] = 1 for all i and j, then S =d Su. In practice, 

the discount factors will not be perfectly correlated. But for any realistic 

discount process, corr [Y(i), Y(j)] = corr [Yi + ... +}i, Yi + ... + Y:i] will be 

close to 1 provided that i and j are close to each other. This gives an 

indication that the cdf of Su might perform well as approximation for the edf 

of S for such processes. This is indeed the case in the numerical illustrations 

in Goovaerts, Dhaene & De Schepper (2000). A similar reasoning leads to the 

conclusion that the cdf of Su will not perform well as a convex upper bound 

for the cdf of S if the 'payments Cti have mixed signs. This phenomenon will 

indeed be observed in the numerical illustrations in Section 6. 

It remains to derive expressions for the cdf's of Sl, S: and Su' 

5.2 The cdf and the stop-loss premiums of Su 

The quantiles of Su follow from Goovaerts, Dhaene & De Schepper (2000): 

n 

Fs..1(P) = La. e-E[y(i»)+sign(<>i) O'y(,) 4?-l(P), P € (0,1). 

i=l 

Also, Fs..{x) follows implicitly from solving 

n L Cti e-E [Y(i)]+8ign(a,) UY(i) 4?-l(Fsu(z» = X. 

i=l 

18 



It is straightforward to derive expressions for the stop-loss premiums in this 

case: 

E [B", - d]+ = t lail e-E[y(i)]E [Sign(ai) (Zi _ esign(a,) uY(') CP-l(Fs,,(d»)] , 
i=l + 

where the Zi are lognormal(O, ahi» random variables. 

In order to derive an explicit expression for the stop-loss premiums E [Bu - dJ+, 

we first mention the following result, which can easily be proven, e.g. by using 

-9tE [X - tl+ = Fx(t) - 1. 

Proposition 7 ffY is lognormal(p" a2 ), then for any d > 0 we have 

2 

E[Y - dl+ = e"+T q,(d1 ) - d q,(d2), 

.. 2 

E[Y-d]_ = e"+2q,(-d1)-dq,(-~), 

where d1 and d2 are determined by 

d1 -- p,+a2 -In(d), 
d2 = d1 - a. 

a 

At d :::; 0, the stop-loss premiums are trivially equal to E[Y] - d. The 

following expression results for the stop-loss premiums at d > 0: 
n 

E [B", - d]+ = L ai e-E[Y(i)]. 

i=l 

with d i ,l and d i ,2 given by 

£4,1 = aye,) - sign(a;) q,-l(Fs,,(d» , 

£4,2 = -sign(a;) q,-l(Fsjd». 

Using the implicit definition for Fsjd) leads to the following expression for 

the stop-loss premiums: 
n 2 

[8 d] '" -E[Y(i)]+~ [. (). -1( (»] E '" - + = ~ ai e 2 q, s~gn ai aY(i) - q, Fs .. d 

i=l 

-d (1- Fs,,(d». 
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5.3 The cdf and the stop-loss premiums of 51 

In general, Sl will not be a sum of 11. comonotonous random variables. But 

in the remainder of this subsection, we assume that all ai 2": 0 and all Pi = 
COtJ[Y('),Z] > o. These conditions ensure that Sl is the sum of 11. comonotollous 
aY(i) az -

random variables. 

Taking into account that Z = 2:~=1 (3. Y; is normally distributed, we find 
that 

and hence 

n n 

LFE[~ilz](P) = LE[X.IZ = Fz(1- p)] 
i=1 .=1 

.=1 

Fs,(x) can be obtained from 

n La. e -E[Y(i»)+Pi aY(i) iJ!-l(Fs,(a:))+!ahi) (1-~) = x. 

i=1 

'We have 

After some straightforward computations, one finds that an explicit expres­

sion for the stop-loss premiums is given by 

n 

E[SI- dJ+ = La. e-E [y(i»)+!4(i)4> [Pi a"Y(i) - 4>-1 (Fs,(d))] 

i=1 

-d (1- Fs,(d)). 

5.4 The cdf of ~ 

Since FS~lu=u is a sum of 11. comonotonous random variables, we have 

n 

Fd..~u=u(P) = LFxi~U= .. (P) 
i=1 
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n L Cl!i e-E[Y(i)J-Pi UY(i) <I>-1(u)+sign(Cti) \/l-p~uY(i)u <1>-'0'). 

i=l 

FS~IU=u also follows implicitly from 

n 
'\"' -E[Y(i)J-Pi UY(i) <I>-1(u)+sign(a;} ~UY(i) <I>-1(Fs'IU_ (x)) 
L-;ai e 1L _u = ~£. 

i=l 

The cdf of S~ then follows from 

F s' (x) = (1 FS'lu=u(x) duo 
u io t£ 

6 Numerical illustration 

In this section, we will numerically illustrate the bounds we derived for 

S = 2::=1 Cl!i e-(Y' +Y2+ ... +1'i). We will take n = 20. In order to be able t.o 

compare the distribution functions of the stochastic bounds Sl, S~ and S.U 

with the distribution function of S, we will completely specify the multivari­

ate distribution function of the random vector (Yi., Y2, ... , Y20). In particular, 

we will assume that the random variables Yi are i.i.d. and N(/-l, (j2). This 

will enable us to simulate the cdf's in case there is no way to compute them 

analytically. The conditioning random variable Z is defined as before: 

In this case, we find 

Pi = 

20 

Z = LfJi Yi, 
i=l 

E[Y(i)] 

Var [Y(i)] 

Var[Z] 

CO'll [Y(i), Zj 

(jY(i) (jz 

21 

i /-l, 

i (j2, 

20 

(j2 LfJt 
k=l 

2:~-1 fJk 
. /. ",20 (.l2 
V ~ L.Jk=l fJk 



In our numerical illustrations, we will choose the parameters of the normal 

distribution involved as follows: 

It = 0.07; (T = 0.1. 

We will compute the lower bound and the upper bounds for the following 

choice of the parameters {3i 

20 

{3i = LOije-jJ.', i = 1, ... ,20. 

j=i 

By this choice, the lower bound will perform well in these cases. This is due 

to the fact that this choice makes Z a linear transformation of a first order 

approximation to 8. This can be seen from the following computation, which 

depends on (T, and hence Yi - It, being "small": 

n 

8 = L Oije-jJ.' - 2:1=1 (Yi-J.'l 

j=1 

n j 

~ L Oije-jJ.' [l - L(Yi - It)] 
j=1 i=1 

n j 

C- LOije-jJ.'LYi 
j=1 i=1 

n n 

C- LYiLOije-jJ.', 
i=l j=i 

where C is the appropriate constant. By the remarks in section 4, 51 will 

then be "close" to 8. 

Figure 1 shows the cdf's of 5, 81, 8~ and 5u for the following payments: 

Oik = 1, k = 1, ... ,20. 

Since 81 :Sex 5 :S;CX 8~ :S"", 8u , and the same ordering holds for the tails 

of their distribution functions which can be observed to cross only once, we 

can easily identify the cdf's. We see that the cdf of 51 is very close to the 

distribution of 8, which was expected because of the choice of Z. Note that in 

this case 81 is a sum of comonotonous random variables, so its quantiles can 
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be computed easily. The cdf of Su also performs rather well, as was observed 

in Goovaerts, Dhaene & De Schepper (2000). We find that the improved 

upper bound S~ is very close to the comonotonous upper bound Suo This is 

due to the fact that cov (FXiIZ(U)' FXjIIZ(U)) is close to COV (Xi, X j ) for any 

pair (i,j) with i i j. 

Figure 2 shows the cdf's of S, Sl, S~ and Su for the following payments: 

{ 
-1, k=1, ... ,5, 

O!k = . 
1 k=6, ... ,20. 

Note that the cdf of the lower bound Sl cannot be computed exactly in tIns 

case; it is obtained by simulation. In this case, we see that the lower bound 

Sl still performs very well. The comonotonous upper bound Su performs very 

badly in this case, as was to be expected from the observations in Sec:tioll 

5.1. The improved upper bound performs better. 

In Figure 3, we c:onsider the same series of payments as in Figure 2. We 

consider the cdf of the improved upper bound for a different choice of the COIl­

ditioning random variable Z. We choose Z such that it is an approximation 

to the discounted total of the 5 negative payments: 

{ 

",5 . -jlL 

fJi = ~j=i O!J e , i = 1, ... ,5, 

i = 6, ... ,20. 

The (simulated) cdf of S is the dotted line. Note that the upper bound 8'" 
is much improved, the lower bound is worse. 

7 Conclusions and related research 

In this contribution we considered the problem of deriving stochastic lower 

and upper bounds, in the sense of convex order, for a sum S = Xl + X 2 + . 
... + Xn of possibly dependent random variables Xl, X 2 , •.. , X n. We assumed 

that, as is often the case, the marginal distribution of each random variable 

XI,X2 , ••. ,Xn is lmown. The problem of deriving a convex upper bound 

without using additional information about the dependency structure was 

considered in Mtiller (1997) and Goovaerts, Dhaene & De Schepper (2000). 

In this paper, we additionally assumed that there exists some random variable 

Z, with a computable distribution, such that for any i and for any z in the 
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support of Z, the conditional distribution function of Xi, given Z = z, is 

also computable. Based on this, we derived random variables Sl and S~, the 

cdf's of which are known to be less and larger than the one of S in convex 

order, meaning that the tails of Sl are thinner, the ones of s.~ are thidmr 

in general. Though it is not guaranteed that two convex ordered cdf's cross 

only once, in the majority of examples they do so. Thus, we obtain a band 

of possible values of Pr[S :::; x] which might provide more, and more relia.ble, 

information than a point estimate as obtained from a number of simula.tions. 

This is especially the case when the inverse cdf is sought, such as when 

one wants to determine fair values and supervisory values. But note tha.t 

Pr[S:S x] cannot be guaranteed to be between Pr[SI :::; x] and Pr(S~ :::; :r]. 

It has been argued before, see e.g. Kaas (1994), that actuaries should not. 

be focused on probabilities and quantiles, but rather on stop-loss premiullls, 

since it is not the probability of exceeding a threshold Q, that matters, but the 

amount by which this happens, of which the expected value is just the stop­

loss premium at d. And for stop-loss premiums, the property E(Sl - d]+ :S 

E[S - dJ+ :::; E(S~ - d]+ does hold. 

It should be noted that the upper bound S~ is no longer a supremum 

(in the sense of convex order) over the set of all random vectors with fixed 

marginals, and that the lower bound Sl is not a sum of terms with the proper 

marginal distributions. This follows from the fact that the bounds that we 

derived take into account the dependency structure of the random vector 

under consideration. 

It should also be noted that our results actually do not require the com­

plete dependency structure, but only the distribution of Z and the condi­

tional distributions of Xi given Z = z. In the numerical illustration section 

we chose an example where the distribution of the random vector was com­

pletely known, in order to be able to compare the bounds with the (simulated) 

exact cdf. 

A topic for future research is the determination of the optimal condition­

ing random variable Z for the improved upper bound S~, in the spirit of the 

remarks made at the end of section 4.3. Another item for future research 

is the extension of the results of this paper to the case where also the cash 

flows are stochastic, hence to find improved upper bounds and lower bOlmds 

for S = X1Y1 + X 2Y2 + ... + XnYn. Another idea that we intend to pursue 

is conditioning on more than one random variable Z. 
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Upper, Lower & Better Upper Bound vs. Empirical Distributi 
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Figure 1: Payments: 20 x 1; Z such that the lower bound is optimized. 
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Upper, Lower & Better Upper Bound vs. Empirical Distributi 
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Figure 2: Payments: 5 x (-1), 15 x 1; Z such that the lower bound is opti­

mized. 
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Upper, Lower & Better Upper Bound vs. Empirical Distrib 
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Figure 3: Payments: 5 x (-1), 15 x 1; Z is such that it is an approximation 

to the discounted total of the negative payments. 
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