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Abstract. In this paper we introduce and illustrate non-trivial upper and lower bounds on the learning curves for
one-dimensional Guassian Processes. The analysis is carried out emphasising the effects induced on the bounds by
the smoothness of the random process described by the Modified Bessel and the Squared Exponential covariance
functions. We present an explanation of the early, linearly-decreasing behavior of the learning curves and the bounds
as well as a study of the asymptotic behavior of the curves. The effects of the noise level and the lengthscale on
the tightness of the bounds are also discussed.
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1. Introduction

A fundamental problem for systems learning from examples is to estimate the amount of
training samples needed to guarantee satisfactory generalisation capabilities on new data.
This is of theoretical interest but also of vital practical importance; for example, algorithms
which learn from data should not be used in safety-critical systems until a reasonable
understanding of their generalisation capabilities has been obtained. In recent years several
authors have carried out analysis on this issue and the results presented depend on the
theoretical formalisation of the learning problem.

Approaches to the analysis of generalisation include those based on asymptotic expan-
sions around optimal parameter values (e.g. AIC (Akaike, 1974), NIC (Murata, Yoshizawa,
& Amari, 1994)); the Probably Approximately Correct (PAC) framework (Valiant, 1984);
uniform convergence approaches (e.g. Vapnik, 1995); and Bayesian methods.

The PAC and uniform convergence methods are concerned with frequentist-style con-
fidence intervals derived from randomness introduced with respect to the distribution of
inputs and noise on the target function. A central concern in these results is to identify the
flexibility of the hypothesis classF to which approximating functions belong, for example,
through the Vapnik-Chervonenkis dimension ofF . Note that these bounds are independent
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of the input and noise densities, assuming only that the training and test samples are drawn
from the same distribution.

The problem of understanding the generalisation capability of systems can also be ad-
dressed in a Bayesian framework, where the fundamental assumption concerns the kinds of
function our system is required to model. In other words, from a Bayesian perspective we
need to putpriors over target functions. In this context learning curves and their bounds can
be analysed by an average over the probability distribution of the functions. In this paper we
use Gaussian priors over functions which have the advantage of being more general than
simple linear regression priors, but they are more analytically tractable than priors over
functions obtained from neural networks.

Neal (1996) has shown that for fixed hyperparameters, a large class of neural network
models will converge to Gaussian process priors over functions in the limit of an infinite
number of hidden units. The hyperparameters of the Bayesian neural network define the
parameters of the corresponding Gaussian Process (GP). Williams (1997) calculated the
covariance functions of GPs corresponding to neural networks with certain weight priors
and transfer functions.

The investigation of GP predictors is motivated by the results of Rasmussen (1996),
who compared the performances obtained by GPs to those obtained by Bayesian neural
networks on a range of tasks. He concluded that GPs were at least as good as neural
networks. Although the present study deals with regression problems, GPs have also been
applied to classification problems (e.g. Barber & Williams, 1997).

In this paper we are mainly concerned with the analysis of upper and lower bounds on
the learning curve of GPs. A plot of the expected generalisation error against the number of
training samplesn is known as a learning curve. There are many results available concerning
leaning curves under different theoretical scenarios. However, many of these are concerned
with the asymptotic behaviour of these curves, which is not usually of great practical
importance as it is unlikely that we will have enough data to reach the asymptotic regime.
Our main goal is to explain some of the early behaviour of learning curves for Gaussian
processes.

The structure of the paper is as follows. GPs for regression problems are introduced in
Section 2. As will be shown, the whole theory of GPs is based on the choice of the prior
covariance functionCp(x, x′): in Section 3 we present the covariance functions we have been
using in this study. In Section 4 the learning curve of a GP is introduced. We present some
properties of the learning curve of GPs as well as some problems may arise in evaluating
it. Upper and lower bounds on the learning curve of a GP in a non-asymptotic regime are
presented in Section 5. These bounds have been derived from two different approaches: one
makes use of main properties of the generalisation error, whereas the other is derived from
an eigenfunction decomposition of the covariance function. The asymptotic behaviour of
the upper bounds is also discussed.

A set of experiments have been run in order to assess the upper and lower bounds of
the learning curve. In Section 6 we present the results obtained and investigate the link
between tightness of the bounds and the smoothness of the stochastic process modelled
by a GP. A summary of the results and some open questions are presented in the last
Section.
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2. Gaussian processes

A collection of random variables{Y(x) | x ∈ X } indexed by a setX defines a stochastic
process. In general the domainX might beRd for some dimensiond although it could be
even more general. A joint distribution characterising the statistics of the random variables
gives a complete description of the stochastic process.

A GP is a stochastic process whose joint distribution is Gaussian; it is fully defined by
giving a Gaussian prior distribution for every finite subset of variables.

In the following we concentrate to the regression problem assuming that the value of the
target functiont(x) is generated from an underlying functiony(x) corrupted by Gaussian
noise with mean 0 and varianceσ 2

ν . Given a collection ofn training dataDn = {(xi , t i ), i =
1 . . n} (where eacht i is the observed output value at the input pointxi ), we would like to
determine the posterior probability distributionp(y | x,Dn).

In order to set up a statistical model of the stochastic process, the set ofn random vari-
ablesy = (y1, y2, . . . , yn)T modelling the function values atx1, x2, . . . , xn respectively, is
introduced. Similarlyt is the collection of target valuest = (t1 . . tn)T . Let Xn denote the
set of training inputsx1, x2, . . . , xn. We also denote with̃y the vector whose components
arey and the test valuey at the pointx. The distributionp(ỹ | x,Dn) can be inferred using
Bayes’ theorem. In order to do so, we need to specify a prior over functions as well as
evaluate the likelihood of the model and the evidence for the data.

A choice for a prior distribution of the stochastic vectorỹ is a Gaussian prior distribution:

p(ỹ | x, Xn) ∝ exp

[
−1

2
ỹT6−1ỹ

]
.

This is a prior as it describes the distribution of the true underlying values without any
reference to the target valuest. The covariance matrix6 can be partitioned as

6 =
(

K p k(x)

kT (x) Cp(x, x)

)
.

The element(K p)i j is the covariance between thei -th and the j -th training points, i.e.
(K p)i j = E[(y(xi ) − µ(xi ))(y(x j ) − µ(x j ))]. The components of the vectork(x) are the
covariances of the test point with all the training data(k i (x) = Cp(x, xi )); Cp(x, x) is the
covariance of the test point with itself.

A GP is fully specified by its meanE[y(x)] = µ(x) and covariance functionCp(x, x′) =
E[(y(x) − µ(x))(y(x′) − µ(x′))]. Below we setµ(x) = 0; this is a valid assumption
provided that any known offset or trend in the data has been removed. We can also deal
with µ(x) 6= 0, but this introduces some extra notational complexity. A discussion about
the possible choices of the covariance functionCp(x, x′) is given in Section 3. For the
moment we note that the covariance function is assumed to depend upon the input variables
(x, x′). Thus the correlation between function values depends upon the spatial position of
the input vectors; usually this will be chosen so that the closer the input vectors, the higher
the correlation of the function values.
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The likelihood relates the underlying values of the function to the target data. Assuming
a Gaussian noise corrupting the data, we can write the likelihood as

p(t | y) ∝ exp

[
−1

2
(y− t)TÄ−1(y− t)

]
whereÄ = σ 2

ν I. The likelihood refers to the stochastic variables representing the data; so
t, y ∈ Rn andÄ is ann× n matrix.

Given the prior distribution over the values of the functionp(ỹ | x, x1, . . . , xn), Bayes’
rule specifies the distributionp(ỹ | x,Dn) in terms of the likelihood of the modelp(t | y)
and the evidence of the datap(Dn) as

p(ỹ | x, t, Xn) = p(t | y)p(ỹ | x, Xn)

p(t | Xn)
.

Given such assumptions, it is a standard result (e.g. Whittle, 1963) to derive the analytic
form of the predictive distribution marginalising overy. The predictive distribution turns out
to bey(x) ∼ N (ŷ(x), σ 2

ŷ,n(x)) where the mean and the variance of the Gaussian function
are

ŷ(x) = kT (x)K−1t (1)

σ 2
ŷ,n(x) = Cp(x, x)− kT (x)K−1k(x). (2)

The most probable valuêy(x) is regarded as the prediction of the GP on the test point
x; K is the covariance matrix of the targetst: K = K p + σ 2

ν I. The estimate of the variance
σ 2

ŷ,n(x) of the posterior distribution is considered as the error bar ofŷ(x). In the following,
we always omit the subscript̂y in σ 2

ŷ,n, taking it as understood. Since the estimate 1 is a
linear combination of the training targets, GPs are regarded as linear smoother (Hastie &
Tibshirani, 1990).

3. Covariance functions

The choice of the covariance function is a crucial one. The properties of two GPs, which
differ only in the choice of the covariance function, can be remarkably diverse. This is
due to the rˆole of the covariance function which has to incorporate in the statistical model
the prior belief about the underlying function. In other words the covariance function is
the analytical expression of the prior knowledge about the function being modelled. A
misspecified covariance function affects the model inference as it has influence on the
evaluation of Eqs. (1) and (2).

Formally every function which produces a symmetric, positive semi-definite covariance
matrix K for any set of the input spaceX can be chosen as covariance function. From an
applicative point of view we are interested only in functions which contain information
about the structure of the underlying process being modelled.

The choice of the covariance function is linked to thea priori knowledge about the
smoothness of the functiony(x) through the connection between the differentiability of
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the covariance function and the mean-square differentiability of the process. The relation
between smoothness of a process and its covariance function is given by the following
theorem (see e.g. Adler, 1981): if∂2Cp(x, x′)/∂xi ∂x′i exists and is finite at(x, x), then the
stochastic processy(x) is mean square differentiable in thei -th Cartesian direction atx.
This theorem is relevant as it links the differentiability properties of the covariance function
with the smoothness of the random process and justifies the choice of a covariance function
depending upon the prior belief about the degree of smoothness ofy(x).

In this work we are mainly concerned with stationary covariance functions. A stationary
covariance function is translation invariant (i.e.Cp(x, x′) = Cp(x− x′)) and depends only
upon the distance between two data points. In the following, the covariance functions we
have been using are presented. In order to simplify the notation, we consider the case
X = R.

The stationary covariance functionsquared exponential(SE) is defined as

Cp(x − x′) = exp

[
− (x − x′)2

2λ2

]
(3)

whereλ is the lengthscale of the process. The parameterλ defines the characteristic length of
the process, estimating the distance in the input space in which the functiony(x) is expected
to vary significantly. A large value ofλ indicates that the function is almost constant over
the input space, whereas a small value of the lengthscale designates a function which varies
rapidly. The graph of this covariance function is shown by the continuous line in figure 1.
As the SE function has infinitely many derivatives it gives rise to smooth random processes
(y(x) posses mean-square differentiability up to order∞).

Figure 1. The figure shows the covariance functions used in this work. The solid line is the SE covariance
function; the dotted, dash-dot and dashed lines draw the graph of the MBk covariance functions withr = 1, 2 and 3
respectively. The values of|x − x′|/λ are reported on thex-axis.
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It is possible to tune the differentiability of a process, introducing the modified Bessel
covariance function of orderk (MBk). It is defined as

Cp(x − x′) = κν
( |x − x′|

λ

)ν
Kν
( |x − x′|

λ

)
= κν

k−1∑
i=0

ai

( |x − x′|
λ

)i

exp

[
− |x − x′|

λ

]
, (4)

whereKν(·) is the modified Bessel function of orderν (see e.g. Equation 8.468 in Gradshteyn
and Ryzhik (1993)), withν = k−1/2 for integralk. Below we set the constantκν such that
Cp(0)= 1. The factorsak are constants depending on the orderν of the Bessel function.
Matérn (1980) shows that the functions MBk define a proper covariance. Stein (1989)
also noted that the process with covariance function MBk is k − 1 times mean-square
differentiable.

In this study we deal with modified Bessel covariance function of ordersk = 1, 2, 3;
their explicit analytic form is

k = 1, Cp(x − x′) = exp

[
− |x − x′|

λ

]
k = 2, Cp(x − x′) = exp

[
− |x − x′|

λ

](
1+ |x − x′|

λ

)
k = 3, Cp(x − x′) = exp

[
− |x − x′|

λ

](
1+ |x − x′|

λ
+ 1

3

( |x − x′|
λ

)2
)
.

We note that MB1 corresponds to the Ornstein-Uhlenbeck covariance function which de-
scribes a process which is not mean square differentiable.

If k → ∞, the MBk behaves like the SE covariance function; this can be easily shown
by considering the power spectra of MBk and SE which are

Sk(ω) ∝ λ

(1+ ω2λ2)
k and Sse(ω) ∝ λ exp

[
−ω

2λ2

2

]
.

Since

lim
k→∞

(
1+ ω

2λ2

2k

)−k

= exp

[
−ω

2λ2

2

]
,

the MBk behaves like SE for largek, provided thatλ is rescaled accordingly.
Modified Bessel covariance functions are also interesting because they describe Markov

processes of orderk. Ihara (1991) definesY(x) to be astrict senseMarkov process of
orderk if it is k − 1 times mean-square differentiable at everyx ∈ R and if P(Y(t + s)
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≤ y | Y(u), u ≤ t) = P(Y(t + s) ≤ y | Y(t),Y′(t), . . . ,Yk−1(t)).1 Ihara also states that
a Gaussian process is a Markov process of orderk in the strict sense if and only if it is an
autoregressive model of orderk(AR(k)) with a power spectrum (in the Fourier domain) of
the form

S(ω) ∝
k∏

j=1

1

|iω + α j |2 .

As the power spectrum of MBk has the same form of the power spectrum of an AR(k)
model, the stochastic process whose covariance function is MBk is a strict sensek-ple
Markov process. This characteristic of the MBk covariance functions is important as it
ultimately affects the evaluation of the generalisation error (as we shall see in Section 6).

Figure 2 shows the graphs of four (discretised) random functions generated using the MBk

covariance functions (withk = 1, 2, 3) and the SE function. We note how the smoothness of

Figure 2. Discretised sample of random functions generated from the MB covariance function of first (2(a)),
second (2(b)), third order (3(c)), and the SE function (2(d)) withλ = 0.01. The orderr − 1 of a process refers to
the number of mean square derivatives of the random process. In all cases thex-axis is the interval [0, 1].



84 C.K.I. WILLIAMS AND F. VIVARELLI

the random function specified is dependent of the choice of the covariance function. In par-
ticular, the roughest function is generated by the Ornstein-Uhlenbeck covariance function
(figure 2(a)) whereas the smoothest one is produced by the SE (figure 2(d)). An interme-
diate level of regularity characterises the functions of figures 2(b) and (c), corresponding
to MB2 and MB3 respectively. Note that the number of zero-level upcrossings in [0, 1]
(denotedNu) is only weakly dependent on the order of the process. For MB2 and MB3

E[Nu] = ( −C′′p(0)
π2Cp(0)

)1/2 is (πλ)−1 and(
√

3πλ)−1 respectively (see Papoulis (1991) eqn 16-7
for details). For the SE processE[Nu] = (2πλ)−1. As the Ornstein-Uhlenbeck process is
non-differentiable, the formula given forE[Nu] cannot be applied in this case.

4. Learning curve for Gaussian processes

A learning curve of a model is a function which relates the generalisation error to the
amount of training data; it is independent of the test points as well as the locations of the
training data and depends only upon the amount of data in the training set. The learning
curve for a GP is evaluated from the estimation of the generalisation error averaged over
the distribution of the training and test data.

For regression problems, a measure of the generalisation capabilities of a GP is the
squared differenceEg

Dn
(x, t) between the target value on a test pointx and the prediction

made by using Eq. (1):

Eg
Dn
(x, t) = (t − kT (x)K−1t)2.

The Bayesian generalisation error at a pointx is defined as the expectation ofEg
Dn
(x, t)

over the actual distribution of the stochastic processt : Eg
Dn
(x) = Et [E

g
Dn
(x, t)]. Under the

assumption that the data set is actually generated from a GP, it is possible to read Eq. (2)
as the Bayesian generalisation error atx given training dataDn. To see this, let us consider
the (n + 1)-dimensional distribution of the target values atx1, x2, . . . , xn andx. This is a
zero-mean multivariate Gaussian. The prediction at the test pointx is ŷ(x) = kT (x)K−1t,
whereK = K p + σ 2

ν I. Hence the expected generalisation error atx is given by

Eg
Dn
(x) = E[(t − kT (x)K−1t)2]

= E[t2] − 2kT (x)K−1E [t t] + E[kT (x)K−1tt T K−1k(x)]

= Cp(0)+ σ 2
ν − 2kT (x)K−1k(x)+ Tr[K−1k(x)kT (x)K−1E[tt T ]]

= Cp(0)+ σ 2
ν − kT (x)K−1k(x) (5)

where we have usedE[t t] = k(x) andE[tt T ] = K . Equation (5) is identical toσ 2
n (x) as

given in Eq. (2) with the addition of the noise varianceσ 2
ν (since we are dealing with noisy

data). The variance of(t − kT (x)K−1t)2 can also be calculated (Vivarelli, 1998).
The covariance matrix pertinent for these calculations is the true prior; if a GP predictor

with a different (incorrect) covariance function is used, the expression for the generalisation
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error becomes

C(0)− 2kT
c (x)K

−1
i k i (x)+ kT

i (x)K
−1
i KcK−1

i k i (x),

where the indicesc andi denote the correct and incorrect covariance functions respectively.
It can be shown (Vivarelli, 1998) that this is always larger than Eq. (5).

Another property of the generalisation error can be derived from the following obser-
vation: adding more data points never increases the size of the error bars on prediction
(σ 2

n+1(x) ≤ σ 2
n (x)). This can be proved using standard results on the conditioning of a

multivariate Gaussian (see Vivarelli, 1998). It can also be understood by the information
theoretic argument that conditioning on additional variables never increases the entropy of
a random variable. Consideringt (x) to be the random variable, we observe that its distri-
bution is Gaussian, with variance independent oft (although the mean does depend ont).
The entropy of a Gaussian is1

2 log(2πeσ 2(x)). As log is monotonic, the assertion is proved.
This argument is an extension of that in (Qazaz, Williams, & Bishop, 1997), where the
inequality was derived for generalized linear regression.

Sinceσ 2
n (x) = Eg

Dn
(x), a similar inequality applies also to the Bayesian generalisation

errors and hence

Eg
Dn+1

(x) ≤ Eg
Dn
(x). (6)

This remark will be applied in Section 5 for evaluating upper bounds on the learning curve.
Equation (5) calculates the generalisation error at a pointx. AveragingEg

Dn
(x) over the

density distribution of the test pointsp(x), the expected generalisation errorEg
Dn

is

Eg
Dn
=
∫
(Cp(0)+ σ 2

ν − kT (x)K−1k(x))p(x) dx. (7)

For particular choices ofp(x) andCp(x) the computation of this expression can be reduced
to a n × n matrix computation asEx[kT (x)K−1k(x)] = Tr[K−1Ex[k(x)kT (x)]]. We also
note that Eq. (7) is independent of the test pointx but still depends upon the choice of
the training dataDn. In order to obtain a proper learning curve for GP,Eg

Dn
needs to be

averaged2 over the possible choices of the training dataDn. However, it is very difficult to
obtain the analytical form ofEg for a GP as a function ofn. Because of the presence of
thekT (x)K−1k(x) term in Eq. (5), the matrixK and vectork(x) depend on the location of
the training points: the calculations of the averages with respect to the data points seems
very hard. This motivates looking for upper and lowerboundson the learning curve for
GP.

5. Bounds on the learning curve

For the noiseless case, a lower bound on the generalisation error aftern observations is due
to Michelli and Wahba (1981). Letη1, η2, . . . be the ordered eigenvalues of the covariance
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function on some domain of the input spaceX . They showed thatEg(n) ≥ ∑∞
k=n+1 ηk.

Plaskota (1996) gives a bound on the learning curve for the noisy case; since the bound
uses observations consisting of projections of the random function onto the firstN eigen-
functions, it is not expected that it will be tight for observations which consist of function
evaluations.

Other results that we are aware of pertain to asymptotic properties ofEg(n). Ritter
(1996) has shown that for an optimal sampling of the input space, the asymptotics of the
generalisation error isO(n−(2s+1)/(2s+2)) for a random process which obeys to the Sacks-
Ylvisaker3 conditions of orders (see Ritter, Wasilkowski, and Wozniakowski (1995) for
more details on Sacks-Ylvisaker conditions). In general, the Sacks-Ylvisaker order of the
MBk covariance function iss = k − 1. For example an MB1 process hass = 0 and
hence the generalisation error shows an−1/2 asymptotic decay. In the case thatX ⊂ R, the
asymptotically optimal design of the input space is the uniform grid.

Silverman (1985) proved a similar result for random designs. Haussler and Opper (1997)
have developed general (asymptotic) bounds for the expected log-likelihood of a test point
after seeingn training points.

In the following we introduce upper and lower bounds on the learning curve of a GP in a
non-asymptotic regime. An upper bound is particularly useful in practice as it provides an
(over) estimate of the number of examples needed to give a certain level of performance.
A lower bound is similarly important because it contributes to fix the limit which can not
be outperformed by the model.

The bounds presented are derived from two different approaches. The first approach
makes use of the particular form assumed by the generalisation error atx (Eg

Dn
(x) = σ 2

n (x)).
As the error bar generated by one data point is greater than that generated byn data points,
the former can be considered as an upper bound of the latter. Since this observation holds for
the variance due to each one the data points, the envelope of the surfaces generated by the
variances due to each data point is also an upper bound ofσ 2

n (x). In particular asσ 2
n (x) =

Eg
Dn
(x) (cf. Eq. (5)), the envelope is an upper bound of the generalisation error of the GP.

Following this argument, we can assert that an upper bound onEg
Dn
(x) is the one generated

by every GP trained with a subset ofDn. The larger the subset ofDn the tighter the bound.
The two upper bounds we present differ in the number of training points considered in

the evaluation of the covariance: the derivation of the one-point upper boundEu
1(n) and

the two-point upper boundEu
2(n) are presented in Section 5.1 and Section 5.2 respectively.

Section 5.3 reports the asymptotic expansion ofEu
1(n) in terms ofλ andσ 2

ν .
The second approach is based on the expansion of the stochastic process in terms of the

eigenfunctions of the covariance function. Within this framework, Opper proposed bounds
on the training and generalisation error (Opper & Vivarelli, 1999) in terms of the eigenvalues
of Cp(x, x′); the lower boundEl (n) obtained is presented in Section 5.4.

In order to have tractable analytical expressions, all the bounds have been derived by
introducing three assumptions:

i. The input spaceX is restricted to the interval[0, 1];
ii. The probability density distribution of the input points is uniform:p(x)= 1, x ∈ [0, 1];
iii. The prior covariance functionCp(x, x′) is stationary.
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5.1. The one-point upper bound Eu
1(n)

For the derivation of the one-point upper bound, let us consider the error bar generated by
one data pointxi . SinceC(0) = Cp(xi , xi )+ σ 2

ν = K , Eq. (2) becomes

σ 2
1 (x) = C(0)− C2

p(x − xi )

C(0)
.

For x far away from the training pointxi , σ 2
1 (x) ∼ C(0): the confidence on the prediction

for a test point lying far apart from the data pointxi is quite low as the error bar is large. The
closerx to xi , the smaller the error bar on̂y(x). Whenx = xi , σ 2

1 (x) = σ 2
ν (1+ r ) where

r = Cp(0)/C(0). Irrespective of the value ofCp(0), r varies from 0 to 1. As normally
Cp(0) À σ 2

ν , r ∼ 1 and thusσ 2
1 (x) ∼ 2σ 2

ν . So far we have not used any hypothesis
concerning the dimension of the variablex, thus this observation holds regardless the
dimension of the input space.

The effect of just one data point helps in introducing the first upper bound. The interval
[0, 1] is split up inn subintervals [ai , bi ], i = 1 . . n (whereai = (xi + xi−1)/2 andbi =
(xi+1+ xi )/2) centred around thei -th data pointxi , with a1 = 0 andbn = 1.

Let us consider thei -th training point and the error barσ 2
1 (x) generated byxi . When

x ∈ [ai , bi ], Eg
Dn
(x) ≤ σ 2

1 (x); this relation is illustrated in figure 3, where the envelope
of the surfaces of the errors due to each datapoint (denoted byEg

D1
(x)) is an upper bound

Figure 3. The figure suggests a pictorial argument for the upper boundEu
1(n). The solid and the dash-dotted

lines indicate the bound and the actual generalisation error, respectively. The dotted lines are the generalisation
errors evaluated considering training sets composed by each training point singularly, i.e.D1 = {xi−1},D1 = {xi }
andD1 = {xi+1}. As explained in the text,Eg

Dn
(x) ≤ Eg

D1
(x) for all the input points of the input space and thus

the latter is regarded as an upper bound of the former. [ai , bi ] specifies the interval of integration of Eq. (8).
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of the overall generalisation error. Since we are dealing with positive functions, an upper
bound of the expected generalisation error on the interval [ai , bi ] can be written as∫ bi

ai

Eg
Dn
(x)p(x) dx ≤

∫ bi

ai

σ 2
1 (x)p(x) dx (8)

wherep(x) is the distribution of the test points. Summing up the contributions coming from
each training datapoint in both sides of Eq. (8) and settingp(x) = 1, we obtain

Eg
Dn
=

n∑
i=1

∫ bi

ai

Eg
Dn
(x) dx ≤

n∑
i=1

∫ bi

ai

σ 2
1 (x) dx (9)

The interval where the contribution of the variance due toxi contributes to Eq. (8) is also
shown in figure 3.

Under the assumption of the stationarity of the covariance function, integrals such as
those in the right hand side of Eq. (9) depend only upon differences of adjacent training
points (i.e.xi − xi−1 andxi+1− xi ). The right hand side of Eq. (9) can be rewritten as

Eg
Dn
≤

n∑
i=1

∫ bi

ai

σ 2
1 (x) dx

= C(0)
n∑

i=1

(bi − ai )− 1

C(0)

n∑
i=1

[∫ xi

ai

C2
p(x

i − x) dx+
∫ bi

xi

C2
p(x − xi ) dx

]
(10)

= C(0)− 1

C(0)

[
I (x1)+ 2

n∑
i=2

I

(
xi − xi−1

2

)
+ I (1− xn)

]
(11)

where

I (τ ) =
∫ τ

0
C2

p(ξ) dξ. (12)

Equation (11) can be derived changing the variables in the two integrals of Eq. (10) as
ξ = xi − x andξ = x− xi , respectively. Equation (11) is an upper bound onEg

1,Dn
and still

depends upon the choice of the training dataDn through the interval of integration. We note
that the arguments of the integralsI (·) in Eq. (11) are the differences between adjacent train-
ing points. Denoting those differences withωi = xi+1− xi , we can model their probability
density distribution by using the theory of order statistics (David, 1970). Given an uniform
distribution ofn training data over the interval[0, 1], the density distribution of the differ-
ences between adjacent points isp(ω) = n(1−ω)n−1. Since this is true for all the differences
ωi we can omit the superscripti and thus the expectation of the integrals in Eq. (11) over
p(ω) is

Eω
[

I (ω0)+ 2
n∑

i=2

I

(
ωi

2

)
+ I (ωn)

]
= 2(n− 1)Eω [ I (ω/2)] + 2Eω [ I (ω)] , (13)
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whereω0 = x1 andωn = 1− xn. Both the integralsEω [ I (ω/2)] andEω [ I (ω)] can be
calculated following a similar procedure. Let us considerEω [ I (ω)]:

Eω [ I (ω)] =
∫ 1

0
I (ω)n(1− ω)n−1dω

= −[ I (ω)(1− ω)n]1
0+

∫ 1

0
C2

p(ω)(1− ω)ndω

=
∫ 1

0
C2

p(ω)(1− ω)ndω,

where the second line has been obtained integrating by parts. The last line follows from the
fact that[ I (ω)(1− ω)n]1

0 = 0.
We are now able to write an upper bound on the learning curve as

Eg(n) ≤ Eu
1(n)

.= C(0)− 1

C(0)

[
(n− 1)

∫ 1

0
C2

p

(
ω

2

)
(1− ω)ndω

+ 2
∫ 1

0
C2

p(ω)(1− ω)ndω

]
. (14)

The calculations of the integrals in the above expression are straightforward though they
involve the evaluation of hyper-geometric functions (because of the term(1−ω)n). As the
evaluation of such functions is computationally intensive, we found it preferable to evaluate
Eq. (14) numerically.

5.2. The two-points upper bound Eu
2(n)

The second bound we introduce is the natural extension of the previous idea, using two
data points rather than one. By construction, we expect that it will be tighter than the one
introduced in Section 5.1.

Let us consider two adjacent data pointsxi andxi+1 of the interval[0, 1], with xi < xi+1.
By the same argument presented in the previous section, the following inequality holds:∫ xi+1

xi

Eg
Dn
(x) p(x) dx ≤

∫ xi+1

xi

σ 2
2 (x)p(x) dx (15)

whereσ 2
2 (x) is the variance on the predictionŷ(x) generated by the data pointsxi andxi+1.

Similarly to Eq. (9), summing up the contributions of both sides of Eq. (15) we get an upper
bound on the generalisation error:

Eg
Dn
=

n∑
i=0

∫ xi+1

xi

Eg
Dn
(x) dx ≤

n∑
i=0

∫ xi+1

xi

σ 2
2 (x) dx, (16)

where we have definedx0 = 0 andxn+1 = 1.
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After some calculations (see Appendix A) we obtain

Eg(n) ≤ Eu
2(n)

.= C(0)− 2(n− 1)Eω
[
(I1(ω)− I2(ω))

1(ω)

]
− 2

C(0)
Eω [ I (ω)] ,

(17)

where

I1(τ ) = C(0)
∫ τ

0
C2

p(ξ) dξ, I2(τ ) = Cp(τ )

∫ τ

0
Cp(ξ)Cp(τ − ξ) dξ

and1(ω) = C2(0)−C2
p(ω). The calculation of the integrals with respect toω in Eu

2(n) is
complicated by the determinant1(ω) in the denominator and by the distributionn(1−ω)n−1,
so we preferred to evaluate them numerically as we did forEu

1(n).

5.3. Asymptotics of the upper bounds

From Eq. (14), an expansion ofEu
1(n) in terms ofλ andσ 2

ν in the limit of a large amount of
training data can be obtained. The expansion depends upon the covariance function we are
dealing with. Expanding the covariance function around 0, the asymptotic form ofEu

1(n)
for MB1 is

Eu
1(n) ∼ C(0)

[
1− r 2+ r 2

nλ

]
+ O(n−2) (18)

whereas for the functions MB2, MB3 and SE it is

Eu
1(n) ∼ C(0)

[
1− r 2+ r 2

n2λ2

]
+ O(n−3) (19)

wherer = Cp(0)/C(0) (Vivarelli, 1998).
The asymptotic value ofEu

1(n) depends neither on the lengthscale of the process nor on
the order of the covariance function MBk for k ≥ 1 but is a function of the ratior :

lim
n→∞ Eu

1(n) = C(0)(1− r 2) = σ 2
ν (1+ r ). (20)

As we pointed out in Section 5.1, this is the minimum generalisation error achievable by
a GP when it is trained with just one datapoint. Then → ∞ scenario corresponds to the
situation in which every test point is close to a datapoints. As mentioned at the beginning of
this Section, the asymptotics of the learning curve for the MBk and SE covariance functions
areO(n(2k−1)/2k) andO(n−1 logn) respectively. Although the expansions ofEu

1(n) decay
asymptotically faster than the learning curves, they reach an asymptotic plateauσ 2

ν (1+r ) ≥
σ 2
ν . We also note that the asymptotic valuesĒg

1(n) get closer to the true noise level when
r ¿ 1, i.e. for the unrealistic caseσ 2

ν À Cp(0).
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The smoothness of the process enters into the asymptotics through a factorO(r 2/(λn))
for MB1 andO(r 2/(λ2n2)) for MB2, MB3 and SE . This factor affects the rate of approach
to the asymptotic valueσ 2

ν (1+ r ) of Eu
1(n). We notice that larger lengthscales and noise

levels increase the rate of decay ofEu
1(n) to the asymptotic plateau.

The asymptotic form ofEu
2(n) for the MB1, MB2, MB3 and SE covariance functions is

(Vivarelli, 1998)

Eu
2(n) ∼ C(0)

(
1− 2r 2

1+ r

)
+ a

n+ 1
+ O(n−2), (21)

where the value ofadepends upon the choice of the covariance function andr = Cp(0)/C(0).
Similarly to the expansion ofEu

1(n), the decay rate ofEu
2(n) is faster than the asymptotic

decay of the actual learning curves but it reaches an asymptotic plateau of

lim
n→∞ Eu

2(n) = C(0)

(
1− 2r 2

1+ r

)
= σ 2

ν

(
1+ r

1+ r

)
. (22)

It is straightforward to verify that the asymptotic plateau ofEu
2(n) is lower than the one

of Eu
1(n) and that it corresponds to the error bar estimated by a GP with two observations

located at the test point.

5.4. The lower bound El (n)

Opper (Opper & Vivarelli, 1999) proposed a bound on the learning curve and on the training
error based on the decomposition of the stochastic processy(x) in terms of the eigenfunc-
tions of the covarianceCp(x, x′).

Denoting with ϕk(x), k= 1 . .∞ a complete set of functions satisfying the integral
equation∫

Cp(x, x′)ϕk(x)p(x) dx = ηkϕk(x),

the Bayesian generalisation errorEg(x,Dn) = Ey[(y(x)− ŷ(x))2] (wherey(x) is the true
underlying stochastic function and̂y(x) is the GP prediction) can be written in terms of the
eigenvalues ofCp(x, x′). In particular, after an average over the distribution of the input
data,Eg(Dn) can be written asEg(Dn) = σ 2

ν Tr[3(σ 2
ν I+3V)−1], where3 is the infinite

dimension diagonal matrix of the eigenvalues andV is a matrix depending on the training
data, i.e.Vkl =

∑n
i=1 ϕk(xi )ϕl (xi ).

By using Jensen’s inequality, it is possible to show that a lower bound of the learning
curve and an upper bound of the training error is (Opper & Vivarelli, 1999)

El
y(n)

.= σ 2
ν

∞∑
k=1

ηk

(σ 2
ν + nηk)

. (23)
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In this paper we mean to compare this lower bound to the actual learning curve of a GP. As
our bounds are ont rather thany, we must addσ 2

ν to the expression obtained in Eq. (23)
giving an actual lower bound of

El (n)
.= σ 2

ν

(
1+

∞∑
k=1

ηk(
σ 2
ν + nηk

)) . (24)

6. Results

As we pointed out in Section 4, the analytic calculation of the learning curve of a GP is
infeasible. Since the generalisation error

Eg
Dn
=
∫ (

Cp(0)+ σ 2
ν − kT (x)K−1k(x)

)
p(x) dx (25)

is a complicated function of the training data (which are inside the elements ofk(x)
and K−1), it is problematic to perform an integration over the distribution of the train-
ing points. For comparing the learning curve of the GP with the bounds we found, we
need to evaluate the expectation of the integral in Eq. (25) over the distribution of the data:
Eg(n) = EDn [E

g
Dn

]. An estimate ofEg(n) can be obtained using a Monte Carlo approxi-
mation of the expectation. We used 50 generations of training data, sampling uniformly the
input space[0, 1]. For each generation, the expected generalisation error for a GP has been
evaluated using up to 1000 datapoints. Using the 50 generations of training data, we can
obtain an estimate of the learning curveEg(n) and its 95% confidence interval.

Since this study is focused on the behaviour of bounds on learning curve on GP, we
assume the true values of the parameters of the GP are known. So we chose the value of
the constantκν for the covariance functions MB1, MB2 and MB3 (see Eq. (4)) such that
Cp(0) = 1 and we allowed the lengthscaleλ and the noise levelσ 2

ν to assume several values
(λ = 10−4, 10−3, 10−2, 10−1, 1 andσ 2

ν = 10−4, 10−3, 10−2, 10−1, 1).
To begin with, we study how the smoothness of a process affects the behaviour of the

learning curve. The empirical learning curves of figure 4 have been obtained for processes
whose covariance functions are MB1, MB2 and MB3, with λ = 0.01 andσ 2

ν = 0.1. We can
notice that all the learning curves exhibit an initial linear decrease. This can be explained
considering that without any training data, the generalisation error is the maximum allowable
by the model (C(0) = Cp(0)+ σ 2

ν ). The introduction of a training pointx1 creates a hole on
the error surface: the volume of the hole is proportional to the value of the lengthscale and
depends on the covariance function. The addition of a new data pointx2 will have the effect
of generating a new hole in the surface. With such a few data points it is likely that the two
data lie down far apart one from the other, giving rise to two distinct holes. Thus the effect
that a small dataset exerts topull downthe error surface is proportional to the amount of
training points and explains the initial linear trend.

Concerning the asymptotic behaviour of the learning curves, we have verified that they
agree with the theoretical analysis carried out by Ritter (1996). In particular, a log-log plot
of the learning curves with a MBk covariance function shows an asymptotic behaviour as
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Figure 4. The figure show the graph of the learning curve computed for the covariance functions MB1, MB2 and
MB3 indicated by the dotted, solid and dash-dotted lines, respectively.

O(n−(2k−1)/2k). A similar remark applies to the SE covariance function, with an asymptotic
decay rate ofO(n−1 logn) (Opper, 1997). We have also noted that the smoother the process
described by the covariance function the smaller the the amount of training data needed to
reach the asymptotic regime.

The behaviour of the learning curves is affected also by the value of the lengthscale of the
process and by the noise level and this is illustrated in figure 7. The learning curves shown
in figure 5(a) have been obtained for the MB1 covariance function setting the noise level
σ 2
ν = 0.1 and varying the values of the parametersλ = 10−2, 10−1. Intuitively, figure 5(a)

suggests that decreasing the lengthscale stretches the early behaviour of the learning curve
and the approach to the asymptotic plateau lasts longer; this is due to the effect induced
by different values of the lengthscale which stretch or compress the input space. We have
verified that rescaling the amount of datan by the ratio of the two lengthscales, the two
curves of figure 5(a) lay on top of each other.

The variation of the noise level shifts the learning curves from the prior valueCp(0) by
an offset equal to the noise level itself (cf. Eq. (5)); in order to see any significant effect of
the noise on the learning curve, figure 5(b) shows a log-log graph ofEg(n)− σ 2

ν obtained
for a stochastic process with MB3 covariance function, settingλ = 0.1 and noise variance
σ 2
ν = 10−4, 10−1. We can notice two main effects. The noise variance affects the actual

values of the generalisation error since the learning curve obtained with high noise level is
always above the one obtained with a low noise level. A second effect concerns the amount
of data necessary to reach the asymptotic regime. The learning curve characterised by an
high noise level needs fewer datapoints to attain to the asymptotic regime.

Stochastic processes with different covariance functions and different values of length-
scales and noise variance behave in a similar way.

In the following we discuss the results in two main subsections: results about the bounds
Eu

1(n) and Eu
2(n) are presented in Section 6.1, whereas the lower bound of Section 5.4
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Figure 5. Figure 5(a) shows the graphs of the learning curves for the MB1 covariance function obtained for
a fixed noise levelσ 2

ν = 0.1 and lengthscalesλ = 10−2, 10−1; the lengthscale contributes to stretch the in-
put domain and a similar effect is observed on the learning curves. A log-log plot of the learning curve of a
MB3 stochastic process is shown in figure 5(b), withλ = 10−1 and the noise variance is set to 10−4 (solid
line) and 10−1 (dash-dotted line); the dotted line draws the asymptotic behaviour of the learning curve. The
curve with a larger noise level attains the asymptotic regime with fewer datapoints than with a lower noise
variance.
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Figure 6. Figure 6(a)–(d) show the graphs of the learning curves and their upper bounds computed for the
covariance functions MB1, MB2, MB3 and the SE respectively. In all the graphs, the learning curve is drawn by
the solid line and its 95% confidence interval is indicated by the dotted curves. The upper boundsEu

1(n) andEu
2(n)

are indicated by the dash dotted and the dashed lines, respectively.

is shown in Section 6.2. As the results we obtained for these experiments show common
characteristics, we show the bounds of the learning curve obtained by settingλ = 0.01 and
σ 2
ν = 0.1.

6.1. The upper bounds Eu1(n) and Eu
2(n)

Each graph in figure 6 shows the empirical learning curve with its confidence interval and
the two upper boundsEu

1(n) and Eu
2(n). The curves are shown for the MB1, MB2, MB3

and the SE covariance functions.
For a limited amount of training data it is possible to notice that the upper error bar

associated toEDn [E
g(n)] lies above the actual upper bounds. This effect is due to the

variability of the generalisation error for small data sets and suggests that the bounds
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are quite tight for smalln. The effect disappears for largen, when the estimate of the
generalisation error is less sensitive to the composition of the training set.

As expected, the two-point upper boundEu
2(n) is tighter than the one-point upper bound

Eu
1(n).
We note that the tightness of the upper bound depends upon the covariance function, being

tighter for rougher processes (such as MB1) and getting worse for smoother processes. This
can be explained by recalling that covariance functions such as the MBk correspond to
Markov processes of orderk (cf. Section 3). Although the Markov process is actually
hidden by the presence of the noise,Eg(n) is still more dependent on training data lying
close to the test pointx than on more distant points. Since the boundsEu

1(n) and Eu
2(n)

have been calculated by using only local information (namely the closest datapoint to the
test point, or the closest datapoints to the left and right, respectively), it is natural that the
more the variance atx depends on local data points, the tighter the bounds become.

For instance, let us consider MB1, the covariance function of a first order Markov process.
For the noise-free process, knowledge of data-points lying beyond the the left and right
neighbours ofx does not reduce the generalisation error atx.4 Although in the noisy case
more distant data-points reduce the generalisation error (because of the termσ 2

ν in the
covariance matrixK ), it is likely that local information is still the most important.

The bounds on the learning curves computed for MB2 and MB3 confirm this remark, as
they are looser than for MB1. For the SE covariance function, this effect still holds and is
actually enlarged.

In Section 5.3 we have shown that the asymptotic behaviour of the boundEu
1(n) depends

on the covariance function, beingO(n−1) for MB1 andO(n−2) for MB2 and MB3. Log-log
plots of the upper bounds confirm the analysis carried out in Section 5.3, where we showed
thatEu

1(n) andEu
2(n) approach asymptotic plateaux. In particular,Eu

1(n) tends toσ 2
ν (1+r )

asO(n−1) for MB1 andO(n−2) for MB2 and MB3, whereasEu
2(n) tends toσ 2

ν (1+r/(1+r ))
asO(n−1).

The quality of the bounds for processes characterised by different lengthscales and dif-
ferent noise levels are comparable to the ones described so far: the tightness ofEu

1(n) and
Eu

2(n) still depend on the smoothness of the process. As explained at the beginning of this
section, a variation of the lengthscale has the same effect of a rescaling in the number of
training data. This can be observed explicitly in the asymptotic analysis of Eqs. (18) and
(19), where the decay rate depends on the factornλ.

For a fixed covariance function, we note that the bounds are tighter for lower noise
variance; this is due to the fact that the lower the noise level the better the hidden Markov
process manifests itself. For smaller noise levels the learning curve becomes closer to the
bounds because the generalisation error relies on the local behaviour of the processes around
the test data; on the contrary, a larger noise level hides the underlying Markov Process thus
loosening the bounds.

6.2. The bound El (n)

We have also run experiments computing the lower bound we obtained from Eq. (24) for
processes generated by the covariance priors MB1, MB2, MB3 and SE.
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Figure 7. Figure 7(a)–(d) show the graphs of the learning curves and their lower bounds computed for the
covariance functions MB1, MB2, MB3 and the SE respectively. In all the graphs, the learning curve is drawn by
the solid line and its 95% confidence interval is signed by the dotted curves. The lower boundEl (n) is indicated
by the dashed lines.

Equation (24) shows that the evaluation ofEl (n) involves the computation of an infinite
sum of terms; we truncated the series considering only those terms which add a significant
contribution to the sums, i.e.ηk/σ

2
ν ≥ ε, whereε is the machine precision. Since each

contribution in the series is positive, the quantity computed is still a lower bound of the
learning curve.

Figure 7 shows the results of the experiment in which we setλ = 0.01 andσ 2
ν = 0.1.

The graphs of the lower bound lies below the empirical learning curve, being tighter for
large amount of data; in particular for the smoothest processes with large amount of data,
the 95% confidence intervals lay below the actual lower bound.

Forn→∞, the lower bound tends to the noise levelσ 2
ν . As with the empirical learning

curve, log-log plots ofEl
y(n) show an asymptotic decay to zero asO(n−(2k−1)/2k) and

O(n−1 logn) for the MBk and the SE covariance functions, respectively.
The graphs of figure 7 show also that the tightness of the bound depends on the smoothness

of the stochastic process; in particular smooth processes are characterised by a tight lower
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bound on the learning curveEg(n). This can be explained by observing thatEl (n) is a
lower bound on the learning curve and an upper bound of the training error. The values of
smooth functions do not have large variation between training points and thus the model
can infer better on test data; this reduces the generalisation error pulling it closer to the
training error. Since the two errors sandwich the bound of Eq. (24),El (n) becomes tight
for smooth processes.

We can also notice that the tightness of the lower bound depends on the noise level,
becoming tight for high the noise level and loose for small noise level. This is consistent
with a general characteristic ofEl (n) which is monotonically decreasing function of the
noise variance (Opper & Vivarelli, 1999).

7. Discussion

In this paper we have presented non-asymptotic upper and lower bounds for the learning
curve of GPs. The theoretical analysis has been carried out for one-dimensional GPs char-
acterised by several covariance functions and has been supported by numerical simulations.

Starting from the observation that increasing the amount of training data never worsens
the Bayesian generalisation error, an upper bound on the learning curve can be estimated as
the generalisation error of a GP trained with a reduced dataset. This means that for a given
training set the envelope of the generalisation errors generated by one and two datapoints
is an upper bound of the actual learning curve of the GP. Since the expectation of the
generalisation error over the distribution of the training data is not analytically tractable,
we introduced the two upper boundsEu

1(n) andEu
2(n) which are amenable to average over

the distribution of the test and training points. In this study we have evaluated the expected
value of the bounds; future directions of research should also deal with the evaluation of
the variances.

In order to highlight the behaviour of the bounds with respect to the smoothness of the
stochastic process, we investigated the bounds for the modified Bessel covariance function
of orderk (describing stochastic processesk− 1 times mean-square differentiable) and the
squared exponential function (describing processes mean square-differentiable up to the
order∞).

The experimental results have shown that the learning curves and their bounds are char-
acterised by an early, linearly decreasing behaviour; this is due to the effect exerted by each
datapoint in pulling down the surface of the prior generalisation error. We also noticed that
the tightness of the bounds depends on the smoothness of the stochastic processes. This is
due to the facts that the bounds rely on subsets of the training data (i.e. one or two data-
points) and the modified Bessel covariance functions describe Markov processes of order
k; although in our simulations the Markovian processes were hidden by noise, the learning
curves depend mainly on local information and our bounds become tighter for rougher
processes.

We also investigated the behaviour of the curves with respect to the variation of the
correlation lengthscale of the process and the variance of the noise corrupting the stochas-
tic process. We noticed that the lengthscale stretches the behaviour of the curves, effec-
tively rescaling the number of training data. As the noise level has the effect of hiding
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the underlying Markov process, the upper bounds become tighter for smaller noise vari-
ance.

The expansion of the bounds in the limit of large amount of data highlights an asymp-
totic behaviour depending upon the covariance function;Eu

1(n) approaches the asymptotic
plateau asO(n−1) (for the MB1 covariance function) and asO(n−2) for smoother processes;
the rate of decay to the plateau ofEu

2(n) is O(n−1). Numerical simulations supported our
analysis.

One limitation of our analysis is the dimension of the input space; the bounds have
been made analytically tractable by using order statistics results after splitting up the one
dimensional input space of the GP. In higher dimensional spaces the partition of the input
space can be replaced by a Voronoi tessellation that depends on the dataDn but averaging
over this distribution appears to be difficult. One can suggest an approximate evaluation
of the upper bounds by an integration over a ball whose radius depends upon the number
of examples and the volume of the input space in which the bound holds. In any case we
expect that the effect due to larger input dimension is to loosen the upper bounds. We note
that recent work by (Sollich, 1999) has derived some good approximations to the learning
curve, and that his methods apply in more than one dimension.5

We also ran some experiments by using the lower bound proposed by Opper, based on
the knowledge of the eigenvalues of the covariance function of the process. Since the bound
El (n) is also an upper bound on the training error, we observed that the bound is tighter for
smooth processes, when the learning curve becomes closer to the training error. Also the
noise can vary the tightness ofEl (n); a low noise level loosens the lower bound. Unlike the
upper bounds, the lower bound can be applied also in multivariate problems, as it is easily
extended to high dimension input space; however it has been verified (Opper & Vivarelli,
1999) that the bound becomes less tight in input space of higher dimension.

Appendix A: The two-points upper bound Eu
2(n)

In this Appendix we derive Eq. (17) starting from Eq. (16).
We start by calculatingσ 2

2 (x). As the covariance matrix generated by two data points is
a 2× 2 matrix, it is straightforward to evaluateσ 2

2 (x). Considering the two training dataxi

andxi+1, the covariance matrix of the GP is

K =
(

C(0) Cp(xi+1− xi )

Cp(xi+1− xi ) C(0)

)
.

From the evaluation of the determinant ofK as1(xi+1−xi ) = (C(0))2−(Cp(xi+1−xi ))2

follows that

K−1 = 1

1(xi+1− xi )

(
C(0) −Cp(xi+1− xi )

−Cp(xi+1− xi ) C(0)

)
.

As the covariance vector for the test pointx is k(x) = (Cp(x − xi ),Cp(xi+1 − x))T , the
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variance assumes the form

σ 2
2 (x) = C(0)−

C(0)
(
C2

p(x
i+1 − x)+ C2

p(x − xi )
)
− 2Cp(xi+1 − xi )Cp(x − xi )Cp(xi+1 − x)

1(xi+1 − xi )
.

Changing variables in the covariancesCp(xi+1 − xi ) andCp(x − xi ) (asξ = xi+1 − x
andξ = x − xi respectively), it turns out that the upper bound generated byσ 2

2 (x) in the
interval [xi , xi+1] (when i 6= 0, n), is∫ xi+1

xi

σ 2
2 (x) dx = C(0)(xi+1− xi )− 2(I1(xi+1− xi )− I2(xi+1− xi ))

1(xi+1− xi )

where

I1(τ ) = C(0)
∫ τ

0
C2

p(ξ) dξ and I2(τ ) = Cp(τ )

∫ τ

0
Cp(ξ)Cp(τ − ξ) dξ.

It is noticeable that, similarly to Eq. (11), also the integralsI1(·), I2(·) and the determinant
1(xi+1 − xi ) depend upon the length of the interval of integrationωi = xi+1 − xi . We
evaluate the contributions to the upper bound over the intervals [0, x1] and [xn, 1] by
integrating the varianceσ 2

1 (x) generated byx1 andxn over [0, x1] and [xn, 1] respectively.
Hence the right hand side of Eq. (16) can be rewritten as

Eg
Dn
≤ C(0)− 2

n−1∑
i=2

I1(ω
i )− I2(ω

i )

1(ωi )
− 1

C(0)
(I (ω1)+ I (ωn)) (26)

whereI (·) is defined in Eq. (12).
Equation (26) is still dependent on the distribution of the training data because it is a

function of the distances between adjacent training pointsωi . Similarly to Eq. (11), we
obtain an upper bound independent of the training data by integrating Eq. (13) over the
distribution of the differencesp(ω) = n(1− ω)n−1:

Eg(n) ≤ Eu
2(n)

.= C(0)− 2(n− 1)Eω
[
(I1(ω)− I2(ω))

1(ω)

]
− 2

C(0)
Eω [ I (ω)] .

(27)
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Notes

1. Note that the definition of a Markov process in discrete and continuous time is rather different. In discrete time,
a Markov process of orderk depends only on the previousk times, but in continuous time the dependence
is on the derivatives at the last time. However, function values at previous times clearly allow approximate
computation of derivatives (e.g. via finite differences) and thus one would expect that in the continuous-time
situation the previousk process values will contain most of the information needed for prediction at the next
time. Note that for the Ornstein-Uhlenbeck processY(t + s) depends only on the previous observationY(t).

2. Hansen (1993) showed that for linear regression models it is possible to average over the distribution of the
training sets.

3. Loosely speaking, a stochastic process possessings mean-square derivatives but nots+ 1 is said to satisfy the
Sacks-Ylvisaker conditions of orders.

4. This is because the process values at the training points and test point form a Markov chain, and knowledge of
the process values to the left and right of the test point ”blocks” the influence of more remote observations.

5. The reference to Sollich (1999) was added when the manuscript was revised in April 1999.
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