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Abstract. In this paper we introduce and illustrate non-trivial upper and lower bounds on the learning curves for
one-dimensional Guassian Processes. The analysis is carried out emphasising the effects induced on the bounds by
the smoothness of the random process described by the Modified Bessel and the Squared Exponential covariance
functions. We present an explanation of the early, linearly-decreasing behavior of the learning curves and the bounds
as well as a study of the asymptotic behavior of the curves. The effects of the noise level and the lengthscale on
the tightness of the bounds are also discussed.
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1. Introduction

A fundamental problem for systems learning from examples is to estimate the amount of
training samples needed to guarantee satisfactory generalisation capabilities on new data.
This is of theoretical interest but also of vital practical importance; for example, algorithms
which learn from data should not be used in safety-critical systems until a reasonable
understanding of their generalisation capabilities has been obtained. In recent years several
authors have carried out analysis on this issue and the results presented depend on the
theoretical formalisation of the learning problem.

Approaches to the analysis of generalisation include those based on asymptotic expan-
sions around optimal parameter values (e.g. AIC (Akaike, 1974), NIC (Murata, Yoshizawa,

& Amari, 1994)); the Probably Approximately Correct (PAC) framework (Valiant, 1984);
uniform convergence approaches (e.g. Vapnik, 1995); and Bayesian methods.

The PAC and uniform convergence methods are concerned with frequentist-style con-
fidence intervals derived from randomness introduced with respect to the distribution of
inputs and noise on the target function. A central concern in these results is to identify the
flexibility of the hypothesis clasg to which approximating functions belong, for example,
through the Vapnik-Chervonenkis dimensionfafNote that these bounds are independent
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of the input and noise densities, assuming only that the training and test samples are drawn
from the same distribution.

The problem of understanding the generalisation capability of systems can also be ad-
dressed in a Bayesian framework, where the fundamental assumption concerns the kinds of
function our system is required to model. In other words, from a Bayesian perspective we
need to pupriors over target functions. In this context learning curves and their bounds can
be analysed by an average over the probability distribution of the functions. In this paper we
use Gaussian priors over functions which have the advantage of being more general than
simple linear regression priors, but they are more analytically tractable than priors over
functions obtained from neural networks.

Neal (1996) has shown that for fixed hyperparameters, a large class of neural network
models will converge to Gaussian process priors over functions in the limit of an infinite
number of hidden units. The hyperparameters of the Bayesian neural network define the
parameters of the corresponding Gaussian Process (GP). Williams (1997) calculated the
covariance functions of GPs corresponding to neural networks with certain weight priors
and transfer functions.

The investigation of GP predictors is motivated by the results of Rasmussen (1996),
who compared the performances obtained by GPs to those obtained by Bayesian neural
networks on a range of tasks. He concluded that GPs were at least as good as neural
networks. Although the present study deals with regression problems, GPs have also been
applied to classification problems (e.g. Barber & Williams, 1997).

In this paper we are mainly concerned with the analysis of upper and lower bounds on
the learning curve of GPs. A plot of the expected generalisation error against the number of
training samplen is known as a learning curve. There are many results available concerning
leaning curves under different theoretical scenarios. However, many of these are concerned
with the asymptotic behaviour of these curves, which is not usually of great practical
importance as it is unlikely that we will have enough data to reach the asymptotic regime.
Our main goal is to explain some of the early behaviour of learning curves for Gaussian
processes.

The structure of the paper is as follows. GPs for regression problems are introduced in
Section 2. As will be shown, the whole theory of GPs is based on the choice of the prior
covariance functio(x, X'): in Section 3 we present the covariance functions we have been
using in this study. In Section 4 the learning curve of a GP is introduced. We present some
properties of the learning curve of GPs as well as some problems may arise in evaluating
it. Upper and lower bounds on the learning curve of a GP in a non-asymptotic regime are
presented in Section 5. These bounds have been derived from two different approaches: one
makes use of main properties of the generalisation error, whereas the other is derived from
an eigenfunction decomposition of the covariance function. The asymptotic behaviour of
the upper bounds is also discussed.

A set of experiments have been run in order to assess the upper and lower bounds of
the learning curve. In Section 6 we present the results obtained and investigate the link
between tightness of the bounds and the smoothness of the stochastic process modelled
by a GP. A summary of the results and some open questions are presented in the last
Section.
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2. Gaussian processes

A collection of random variablegy (X) | x € X'} indexed by a sek’ defines a stochastic
process. In general the domathmight beRY for some dimensiod although it could be

even more general. A joint distribution characterising the statistics of the random variables
gives a complete description of the stochastic process.

A GP is a stochastic process whose joint distribution is Gaussian; it is fully defined by
giving a Gaussian prior distribution for every finite subset of variables.

In the following we concentrate to the regression problem assuming that the value of the
target functiort (x) is generated from an underlying functigix) corrupted by Gaussian
noise with mean 0 and variansé. Given a collection of training dataD,, = {(X', t'), i =
1..n} (where each is the observed output value at the input poit we would like to
determine the posterior probability distributigdy | X, Dp).

In order to set up a statistical model of the stochastic process, the seanfom vari-
ablesy = (y*, y?, ...,y modelling the function values at', x?, . . ., x" respectively, is
introduced. Similarlyt is the collection of target valugs= (t*..t")T. Let X" denote the
set of training inputst, X2, ..., x". We also denote witfy the vector whose components
arey and the test valug at the poinix. The distributionp(y | X, Dy) can be inferred using
Bayes’ theorem. In order to do so, we need to specify a prior over functions as well as
evaluate the likelihood of the model and the evidence for the data.

A choice for a prior distribution of the stochastic vecjas a Gaussian prior distribution:

N 114
P | X, X") o exp[—EyTZ 13/].

This is a prior as it describes the distribution of the true underlying values without any
reference to the target valuesThe covariance matriX can be partitioned as

. ( Kp kX )
kT(x) Cp(x,x) /)"
The elemeni(K,);; is the covariance between tleh and thej-th training points, i.e.
(Kpij = LX) — n(xH))(y(x)) — n(x)))]. The components of the vectkrx) are the
covariances of the test point with all the training dékax) = Cp(x, X')); Cp(X, X) is the
covariance of the test point with itself.
A GP is fully specified by its meafy(x)] = n(X) and covariance functioG(x, X') =
E[(y(X) — n))(y(X) — n(x))]. Below we setu(x) = 0; this is a valid assumption
provided that any known offset or trend in the data has been removed. We can also deal
with ©(X) # 0, but this introduces some extra notational complexity. A discussion about
the possible choices of the covariance functidf(x, x') is given in Section 3. For the
moment we note that the covariance function is assumed to depend upon the input variables
(X, X). Thus the correlation between function values depends upon the spatial position of
the input vectors; usually this will be chosen so that the closer the input vectors, the higher
the correlation of the function values.
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The likelihood relates the underlying values of the function to the target data. Assuming
a Gaussian noise corrupting the data, we can write the likelihood as

1 To-1
p(t|y)o<exp[—§(y—t) 2 (Y—t)}

whereQ2 = o2I. The likelihood refers to the stochastic variables representing the data; so
t,y € R" andQ is ann x n matrix.
Given the prior distribution over the values of the functiofy | x, x*, ..., x"), Bayes’
rule specifies the distributiop(y | X, Dy) in terms of the likelihood of the mode(t | y)
and the evidence of the dapdD,,) as

Pt | y)p | %, X")
p(t [ XM '

Given such assumptions, it is a standard result (e.g. Whittle, 1963) to derive the analytic
form of the predictive distribution marginalising owerThe predictive distribution turns out

to bey(x) ~ N (¥(x), cr ,(X)) where the mean and the variance of the Gaussian function
are

py I x,t, X") =

900 = kT 0Kt @
o5 n () = Cp(x, X) — kT () KK(X). @)

The most probable valug(x) is regarded as the prediction of the GP on the test point
X; K is the covariance matrix of the targeétK = K, + o”I. The estimate of the variance

o ,(X) of the posterior distribution i |s considered as the error bar®f. In the following,

we always omit the subscrigtin ay , taking it as understood. Since the estimate 1 is a
linear combination of the training targets, GPs are regarded as linear smoother (Hastie &
Tibshirani, 1990).

3. Covariance functions

The choice of the covariance function is a crucial one. The properties of two GPs, which
differ only in the choice of the covariance function, can be remarkably diverse. This is
due to the ofe of the covariance function which has to incorporate in the statistical model
the prior belief about the underlying function. In other words the covariance function is
the analytical expression of the prior knowledge about the function being modelled. A
misspecified covariance function affects the model inference as it has influence on the
evaluation of Egs. (1) and (2).

Formally every function which produces a symmetric, positive semi-definite covariance
matrix K for any set of the input spack can be chosen as covariance function. From an
applicative point of view we are interested only in functions which contain information
about the structure of the underlying process being modelled.

The choice of the covariance function is linked to toeriori knowledge about the
smoothness of the functioy(x) through the connection between the differentiability of
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the covariance function and the mean-square differentiability of the process. The relation
between smoothness of a process and its covariance function is given by the following
theorem (see e.g. Adler, 1981):8i¥Cp(x, x")/9x; 0%/ exists and is finite atx, x), then the
stochastic procesg(x) is mean square differentiable in theh Cartesian direction at.
This theorem is relevant as it links the differentiability properties of the covariance function
with the smoothness of the random process and justifies the choice of a covariance function
depending upon the prior belief about the degree of smoothnegx)of

In this work we are mainly concerned with stationary covariance functions. A stationary
covariance function is translation invariant (iG(x, x') = Cp(x — x’)) and depends only
upon the distance between two data points. In the following, the covariance functions we
have been using are presented. In order to simplify the notation, we consider the case
X =R.

The stationary covariance functisquared exponentidSE) is defined as

3

(x —x)?
S

Cpo(x —x) = exp[—

wherej is the lengthscale of the process. The paramedefines the characteristic length of

the process, estimating the distance in the input space in which the fugctipis expected

to vary significantly. A large value of indicates that the function is almost constant over

the input space, whereas a small value of the lengthscale designates a function which varies
rapidly. The graph of this covariance function is shown by the continuous line in figure 1.
As the SE function has infinitely many derivatives it gives rise to smooth random processes
(y(x) posses mean-square differentiability up to oreer

10

Figure 1 The figure shows the covariance functions used in this work. The solid line is the SE covariance
function; the dotted, dash-dot and dashed lines draw the graph of the®Briance functionswith= 1, 2 and 3
respectively. The values @k — x’|/2 are reported on the-axis.
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It is possible to tune the differentiability of a process, introducing the modified Bessel
covariance function of ordde (MBy). It is defined as

n(IX=X\ L IX =X
Cp(x—x)_xv< . )lCU( . )

k—1 VIR oy
:Kuzai(|X)LX|) exp[—lxkxq, 4

i=0

wherelC, (+) is the modified Bessel function of ordefsee e.g. Equation868 in Gradshteyn
and Ryzhik (1993)), witv = k — 1/2 for integralk. Below we set the constainj such that
C,(0) =1. The factorsa, are constants depending on the ordeaf the Bessel function.
Matérn (1980) shows that the functions MBefine a proper covariance. Stein (1989)
also noted that the process with covariance functionyMdBk — 1 times mean-square
differentiable.

In this study we deal with modified Bessel covariance function of orkess 1, 2, 3;
their explicit analytic form is

k=1, Cp(x—x)=exp —|X;X|
r X = X|] IX — x|
k=2 Cpix—x)=e — 1
, p(X — X)) xp_ . _( + . >
[ Ix =X IX—xX| 1/Ix—x]\?
k=3, C —x) = — 1 _ .
p(X —X") exp_ . _<+ . +3< . )

We note that MB corresponds to the Ornstein-Uhlenbeck covariance function which de-
scribes a process which is not mean square differentiable.

If kK —> oo, the MB behaves like the SE covariance function; this can be easily shown
by considering the power spectra of MBnd SE which are

242
S(w) x and S(w) Aexp[—w; ] .

(14 w2r2)¥

Since

w212 —k w212
k~w< " Zk) p[ 2 ]

the MBx behaves like SE for larde provided that. is rescaled accordingly.

Modified Bessel covariance functions are also interesting because they describe Markov
processes of ordek. lhara (1991) define¥ (x) to be astrict senseMarkov process of
orderk if it is k — 1 times mean-square differentiable at everg R and if P(Y(t 4 s)




UPPER AND LOWER BOUNDS 83

<y|Yu,u<t)=PXYt+s) <y]|Y@®),YH),...,Y<(t)).! Ihara also states that

a Gaussian process is a Markov process of dkderthe strict sense if and only if it is an

autoregressive model of ordefAR(k)) with a power spectrum (in the Fourier domain) of
the form

K 1
S(w) ]"[

i 2
i1 o+ aj]

As the power spectrum of MBhas the same form of the power spectrum of an KAR(
model, the stochastic process whose covariance function ig iSIB strict sensé&-ple
Markov process. This characteristic of the MBovariance functions is important as it
ultimately affects the evaluation of the generalisation error (as we shall see in Section 6).
Figure 2 shows the graphs of four (discretised) random functions generated using¢he MB
covariance functions (witk = 1, 2, 3) and the SE function. We note how the smoothness of

2 2
< 0 M - Of
x x
= =
-2 -2
-4 X -4 X
(a) (b)
2 2
=0 ~ 0
x X
= =
-2 -2
-4 < -4 y

(c) (d)

Figure 2 Discretised sample of random functions generated from the MB covariance function of first (2(a)),
second (2(b)), third order (3(c)), and the SE function (2(d)) with 0.01. The order — 1 of a process refers to
the number of mean square derivatives of the random process. In all cageaxisas the interval [01].
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the random function specified is dependent of the choice of the covariance function. In par-
ticular, the roughest function is generated by the Ornstein-Uhlenbeck covariance function
(figure 2(a)) whereas the smoothest one is produced by the SE (figure 2(d)). An interme-
diate level of regularity characterises the functions of figures 2(b) and (c), corresponding
to MB, and MB; respectively. Note that the number of zero-level upcrossings,ifi] [0
(denotedNu) |s only weakly dependent on the order of the process. Fop Eidl MB;

E[Nu] = ( 2c O 9112 s (1)1 and(+/37 1) ~! respectively (see Papoulis (1991) eqn 16-7
for detalls) For the SE proce&N,] = (27A)~L. As the Ornstein-Uhlenbeck process is
non-differentiable, the formula given f&[ N,] cannot be applied in this case.

4. Learning curve for Gaussian processes

A learning curve of a model is a function which relates the generalisation error to the
amount of training data; it is independent of the test points as well as the locations of the
training data and depends only upon the amount of data in the training set. The learning
curve for a GP is evaluated from the estimation of the generalisation error averaged over
the distribution of the training and test data.

For regression problems, a measure of the generalisation capabilities of a GP is the
squared di1‘ferencE%n (X, 1) between the target value on a test poirand the prediction
made by using Eq. (1):

Ef (x.1) = (t —kT 00K '),

The Bayesian generalisation error at a poiris defined as the expectation Eﬁ x,t)

over the actual distribution of the stochastic prodesEg X) = St[Eg x, O] Under the
assumption that the data set is actually generated from a GP, it is possible to read Eq. (2)
as the Bayesian generalisation errox given training datéd,. To see this, let us consider

the (n + 1)-dimensional distribution of the target values<atx?, ..., x" andx. This is a
zero-mean multivariate Gaussian. The prediction at the test pagn(x) = k™ (x)K ~1t,
whereK = K, + o2I. Hence the expected generalisation errof iatgiven by

ED, () = E[t — kT (0K '1)?]
= &[t?] — 2kT O K LEt] + E[kT (K Lt T K Tk (x)]
= Cp(0) + 02 — 2kT () K k(%) + TrK "tk 0k T () K L&t ]
= Cp(0) + 02 — kT () K k(%) (5)

where we have usefltt] = k(x) and&[ttT] = K. Equation (5) is identical to;>(x) as
given in Eq. (2) with the addition of the noise variancg(since we are dealing with noisy
data). The variance af — kT (x)K ~1t)? can also be calculated (Vivarelli, 1998).

The covariance matrix pertinent for these calculations is the true prior; if a GP predictor
with a different (incorrect) covariance function is used, the expression for the generalisation
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error becomes
C(0) — 2k{ 0O KK (%) + kT (0K KKk (),

where the indices andi denote the correct and incorrect covariance functions respectively.
It can be shown (Vivarelli, 1998) that this is always larger than Eq. (5).

Another property of the generalisation error can be derived from the following obser-
vation: adding more data points never increases the size of the error bars on prediction
(crnz+1(x) < 02(x)). This can be proved using standard results on the conditioning of a
multivariate Gaussian (see Vivarelli, 1998). It can also be understood by the information
theoretic argument that conditioning on additional variables never increases the entropy of
a random variable. Consideringx) to be the random variable, we observe that its distri-
bution is Gaussian, with variance independent @flthough the mean does dependthn
The entropy of a Gaussian%ﬂog(&reoz(x)). As log is monotonic, the assertion is proved.
This argument is an extension of that in (Qazaz, Williams, & Bishop, 1997), where the
inequality was derived for generalized linear regression.

Sinces?(x) = E%n (x), a similar inequality applies also to the Bayesian generalisation
errors and hence

E3,., (%) < E} (%). (6)

This remark will be applied in Section 5 for evaluating upper bounds on the learning curve.
Equation (5) calculates the generalisation error at a poijt‘.t/eragingE%n (X) over the
density distribution of the test poin{xx), the expected generalisation erE%n is

Ep, = f (Cp(0) + 02 — KT () K 71k (%)) p(x) dX. @

For particular choices gi(x) andC,(x) the computation of this expression can be reduced

to an x n matrix computation agy[kT (x)K ~*k(x)] = Tr[K & [k(x)kT (x)]]. We also

note that Eq. (7) is independent of the test poirdut still depends upon the choice of

the training dataD,,. In order to obtain a proper learning curve for Gﬂ%n needs to be
averageé over the possible choices of the training d&a However, it is very difficult to

obtain the analytical form oE? for a GP as a function af. Because of the presence of
thek T (x)K ~1k(x) term in Eq. (5), the matriX and vectok(x) depend on the location of

the training points: the calculations of the averages with respect to the data points seems
very hard. This motivates looking for upper and loviundson the learning curve for

GP.

5. Bounds on the learning curve

For the noiseless case, a lower bound on the generalisation errar afiservations is due
to Michelli and Wahba (1981). Let;, 12, . . . be the ordered eigenvalues of the covariance
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function on some domain of the input spate They showed thaE%(n) > > .1 .
Plaskota (1996) gives a bound on the learning curve for the noisy case; since the bound
uses observations consisting of projections of the random function onto thi faisen-
functions, it is not expected that it will be tight for observations which consist of function
evaluations.

Other results that we are aware of pertain to asymptotic propertids? @f). Ritter
(1996) has shown that for an optimal sampling of the input space, the asymptotics of the
generalisation error i©(n~(tD/(25+2)) for a random process which obeys to the Sacks-
Ylvisaker conditions of ordes (see Ritter, Wasilkowski, and Wozniakowski (1995) for
more details on Sacks-Ylvisaker conditions). In general, the Sacks-Ylvisaker order of the
MBy covariance function is = k — 1. For example an MBprocess has = 0 and
hence the generalisation error shows &2 asymptotic decay. In the case tiatc R, the
asymptotically optimal design of the input space is the uniform grid.

Silverman (1985) proved a similar result for random designs. Haussler and Opper (1997)
have developed general (asymptotic) bounds for the expected log-likelihood of a test point
after seeing training points.

In the following we introduce upper and lower bounds on the learning curve of a GP in a
non-asymptotic regime. An upper bound is particularly useful in practice as it provides an
(over) estimate of the number of examples needed to give a certain level of performance.
A lower bound is similarly important because it contributes to fix the limit which can not
be outperformed by the model.

The bounds presented are derived from two different approaches. The first approach
makes use of the particular form assumed by the generalisation exr@E%nt(x) = 02(X)).

As the error bar generated by one data point is greater than that generatddtaypoints,

the former can be considered as an upper bound of the latter. Since this observation holds for
the variance due to each one the data points, the envelope of the surfaces generated by the
variances due to each data point is also an upper bouad(gf. In particular as2(x) =

E%n (X) (cf. Eq. (5)), the envelope is an upper bound of the generalisation error of the GP.
Following this argument, we can assert that an upper bourE%g(x) is the one generated

by every GP trained with a subsetBf,. The larger the subset &1, the tighter the bound.

The two upper bounds we present differ in the number of training points considered in
the evaluation of the covariance: the derivation of the one-point upper bejid and
the two-point upper bounB; (n) are presented in Section 5.1 and Section 5.2 respectively.
Section 5.3 reports the asymptotic expansiofbfn) in terms ofa ando?2.

The second approach is based on the expansion of the stochastic process in terms of the
eigenfunctions of the covariance function. Within this framework, Opper proposed bounds
onthe training and generalisation error (Opper & Vivarelli, 1999) in terms of the eigenvalues
of C,(x, X); the lower bouncE! (n) obtained is presented in Section 5.4.

In order to have tractable analytical expressions, all the bounds have been derived by
introducing three assumptions:

i. The input spacet’ is restricted to the intervaD, 1];
ii. The probability density distribution of the input points is uniforpix) =1, x € [0, 1];
iii. The prior covariance functio(x, x’) is stationary.
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5.1. The one-point upper bound' &)

For the derivation of the one-point upper bound, let us consider the error bar generated by
one data poink'. SinceC(0) = Cp(x', X') + 02 = K, Eq. (2) becomes

Cax —x)

2 — —
01(x) =C(0) co

For x far away from the training point', c2(x) ~ C(0): the confidence on the prediction
for a test point lying far apart from the data poihis quite low as the error bar is large. The
closerx to x', the smaller the error bar gh(x). Whenx = x', 02(x) = 02(1+r) where

r = Cp(0)/C(0). Irrespective of the value dE,(0), r varies from 0 to 1. As normally
Cp(0) > 02,1 ~ 1 and thuso?(X) ~ 202. So far we have not used any hypothesis
concerning the dimension of the variabte thus this observation holds regardless the
dimension of the input space.

The effect of just one data point helps in introducing the first upper bound. The interval
[0, 1] is split up inn subintervals &', b'],i =1..n (wherea = (X' + x~1)/2 andb' =
(x'*+1 4+ x1)/2) centred around theth data point', with a> = 0 andb" = 1.

Let us consider thé-th training point and the error bar?(x) generated by'. When
x € [a,b], E%n(x) < oZ(x); this relation is illustrated in figure 3, where the envelope
of the surfaces of the errors due to each datapoint (denoteﬁf)lt(y)) is an upper bound

Figure 3 The figure suggests a pictorial argument for the upper bdtle). The solid and the dash-dotted

lines indicate the bound and the actual generalisation error, respectively. The dotted lines are the generalisation
errors evaluated considering training sets composed by each training point singuldly,&gx' ~1}, D; = {x}

andD; = {x'*1}. As explained in the texE%n X) < E%l(x) for all the input points of the input space and thus

the latter is regarded as an upper bound of the forrakrbf] specifies the interval of integration of Eq. (8).
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of the overall generalisation error. Since we are dealing with positive functions, an upper
bound of the expected generalisation error on the inteayab[] can be written as

b' b
/ EZ. (x)p(x) dx < / o () p(x) dx ®)

wherep(x) is the distribution of the test points. Summing up the contributions coming from
each training datapoint in both sides of Eq. (8) and sefticg = 1, we obtain

n 8] n b
= Z/ Ef (x)dx < Z/ o2(x) dx (9)
i=1/a i=1/a

The interval where the contribution of the variance dug'toontributes to Eq. (8) is also
shown in figure 3.

Under the assumption of the stationarity of the covariance function, integrals such as
those in the right hand side of Eq. (9) depend only upon differences of adjacent training
points (i.ex’ — x'~1andx'*! — x'). The right hand side of Eq. (9) can be rewritten as

n b
EJ. < Zf o?(x) dx
i=1v/a
_ L i i . d 2y o 2 i
_C(O);(b _a)_C(O)Z[/a. Ci(x' —x)dx+ /X Cp(x—x)dx}

(10)
=C(0)—%[|(x1)+22| (¥>+I(l—x”)] (11)

where
|(0) = /0 C2(e) de. (12)

Equation (11) can be derived changing the variables in the two integrals of Eq. (10) as
£ = x' —xand¢ = x —x, respectively. Equation (11) is an upper bound:‘(f% and still
depends upon the ch0|ce of the training dagahrough the interval of integration. We note
that the arguments of the integrais) in Eq. (11) are the differences between adjacent train-
ing points. Denoting those differences with= x'+1 — x|, we can model their probability
density distribution by using the theory of order statistics (David, 1970). Given an uniform
distribution ofn training data over the intervf), 1], the density distribution of the differ-
ences between adjacent pointpi®) = n(1—w)" 1. Since this is true for all the differences

o' we can omit the superscripiand thus the expectation of the integrals in Eq. (11) over
p(w) is

&, {I @) +2) 1 (%) + 1 (a)”)i| =20 —DE, [ (/2] + 28, [ ()], (13)
i=2
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whereo® = x! ande" = 1 — x". Both the integral€,, [| (w/2)] and&, [| (w)] can be
calculated following a similar procedure. Let us consiflgf! (w)]:

1
E [N ()] = /0 I (@)n(1 — )" de
1
= —[I(a))(l—w)"]é—i—/ Ch(@)(1 - »)"dw
0

1
=/ Ch(@)(1— w)"do,
0

where the second line has been obtained integrating by parts. The last line follows from the
fact that[1 (w)(1 — w)"]5 = 0.
We are now able to write an upper bound on the learning curve as

1
E9(n) < EY(n) = C(0) — % [(n —1) /0 C%(%)(l — w)"dw

1
+ 2[0 Ci@(1 - a))ndwi|. (14)

The calculations of the integrals in the above expression are straightforward though they
involve the evaluation of hyper-geometric functions (because of the(termw)"). As the
evaluation of such functions is computationally intensive, we found it preferable to evaluate
Eq. (14) numerically.

5.2. The two-points upper bound, &)

The second bound we introduce is the natural extension of the previous idea, using two
data points rather than one. By construction, we expect that it will be tighter than the one
introduced in Section 5.1.

Let us consider two adjacent data poixtsindx' ** of the interval0, 1], with x' < x'*1.
By the same argument presented in the previous section, the following inequality holds:

J

whereo2(x) is the variance on the predictigiix) generated by the data pointsandxi 1,
Similarly to Eqg. (9), summing up the contributions of both sides of Eq. (15) we get an upper
bound on the generalisation error:

e,=>
i=0 VX

where we have defined® = 0 andx"+! = 1.

Xi+l Xi+1

E3, () po) dx < / o3 () p(x) dx (15)

Xi

xi+1 xi+l

Ep (x)dx < Z/ o2 (x) dx, (16)
i=0 /X
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After some calculations (see Appendix A) we obtain

Eo [l ()],
(17)

E9(n) < EX(n) = C(0) — 20 — D&, [('1(“’) ~ '2(‘“))] 2

A(w) ~ C(0)

where
11(t) = C(0) /O C2E)ds.  1o(r) = Cp(r) /O Col&)Cp(r — £) 2

andA(w) = C?(0) — C3(w). The calculation of the integrals with respecttdn E5(n) is
complicated by the determinaf{w) in the denominator and by the distributiofl—o)" 2,
so we preferred to evaluate them numerically as we didefgn).

5.3. Asymptotics of the upper bounds

From Eqg. (14), an expansion &'(n) in terms ofs ando 2 in the limit of a large amount of
training data can be obtained. The expansion depends upon the covariance function we are
dealing with. Expanding the covariance function around 0, the asymptotic foiay @f

for MB1 is

2

EY(n) ~ C(0) [1 —r? 4+ ;—J +0(n™? (18)

whereas for the functions MBMB3 and SE it is

2

u r -
Ef(n) ~ C(0) [1‘r2+nz—x2} +0(n™) (19)

wherer = C(0)/C(0) (Vivarelli, 1998).
The asymptotic value dE}'(n) depends neither on the lengthscale of the process nor on
the order of the covariance function MBor k > 1 but is a function of the ratio:

lim Ef(n) = C(O)(1~ ) =o2(1+r). (20)

As we pointed out in Section 5.1, this is the minimum generalisation error achievable by
a GP when it is trained with just one datapoint. The> oo scenario corresponds to the
situation in which every test point is close to a datapoints. As mentioned at the beginning of
this Section, the asymptotics of the learning curve for thedid SE covariance functions

are O(n®-1/2) and O(n~*logn) respectively. Although the expansionsEf(n) decay
asymptotically faster than the learning curves, they reach an asymptotic pigtéaer ) >

o2. We also note that the asymptotic valux:e%(n) get closer to the true noise level when

r < 1, i.e. for the unrealistic cage? > Cp(0).
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The smoothness of the process enters into the asymptotics through adactgein))
for MB; andO(r?/(x?n?)) for MB,, MB3 and SE . This factor affects the rate of approach
to the asymptotic value?(1 + r) of E’'(n). We notice that larger lengthscales and noise
levels increase the rate of decayif(n) to the asymptotic plateau.

The asymptotic form oE} (n) for the MB;, MB,, MB3 and SE covariance functions is
(Vivarelli, 1998)

EY(n) ~ C(0) (1 2r2> & Lom? 1)
2 BT A ’

where the value ai depends upon the choice of the covariance functiom aadC,(0)/ C(0).
Similarly to the expansion dEj'(n), the decay rate oE% (n) is faster than the asymptotic
decay of the actual learning curves but it reaches an asymptotic plateau of

lim E“(n)—C(O)(l 2r2>— 2(1 S > 22)
nooo 200 “1ixr) o\t )

It is straightforward to verify that the asymptotic plateauEf(n) is lower than the one
of Ej'(n) and that it corresponds to the error bar estimated by a GP with two observations
located at the test point.

5.4. The lower bound '#n)

Opper (Opper & Vivarelli, 1999) proposed a bound on the learning curve and on the training
error based on the decomposition of the stochastic progegsn terms of the eigenfunc-
tions of the covarianc€p(x, X).

Denoting with gx(X), k=1..00 a complete set of functions satisfying the integral
equation

f Cp (X, X (X) p(x) dx = mepx (X),

the Bayesian generalisation erte? (x, Dn) = &y[(y(X) — ¥(x))?] (wherey(x) is the true
underlying stochastic function andx) is the GP prediction) can be written in terms of the
eigenvalues o, (x, X'). In particular, after an average over the distribution of the input
data,E9(Dy) can be written a&9(Dp) = o 2Tr[A (o2l + AV) Y], whereA is the infinite
dimension diagonal matrix of the eigenvalues & a matrix depending on the training
data, i.eMa = Y11 ok(X)er (X).

By using Jensen’s inequality, it is possible to show that a lower bound of the learning
curve and an upper bound of the training error is (Opper & Vivarelli, 1999)

I .2 = Nk
E\(n) = o7 k; pE— (23)
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In this paper we mean to compare this lower bound to the actual learning curve of a GP. As
our bounds are ohrather thany, we must add2 to the expression obtained in Eq. (23)
giving an actual lower bound of

E'(n) = o2 (1+Z o? +nnk) (24)

6. Results

As we pointed out in Section 4, the analytic calculation of the learning curve of a GP is
infeasible. Since the generalisation error

EY = / (Co(0) + 02 — KT (0K k(%)) p(x) dx (25)

is a complicated function of the training data (which are inside the elemenkgxpf

and K1), it is problematic to perform an integration over the distribution of the train-
ing points. For comparing the learning curve of the GP with the bounds we found, we
need to evaluate the expectation of the integral in Eq. (25) over the distribution of the data:
E%9(n) = SDH[Egn]. An estimate ofE9(n) can be obtained using a Monte Carlo approxi-
mation of the expectation. We used 50 generations of training data, sampling uniformly the
input spacg0, 1]. For each generation, the expected generalisation error for a GP has been
evaluated using up to 1000 datapoints. Using the 50 generations of training data, we can
obtain an estimate of the learning curiz@(n) and its 95% confidence interval.

Since this study is focused on the behaviour of bounds on learning curve on GP, we
assume the true values of the parameters of the GP are known. So we chose the value of
the constank, for the covariance functions MBMB, and MB; (see Eg. (4)) such that
Cp(0) = 1 and we allowed the lengthscal@and the noise IeveisL)2 to assume several values
(A =10%103,102101,1ando? = 1074,10°3,10°2,10°%, 1).

To begin with, we study how the smoothness of a process affects the behaviour of the
learning curve. The empirical learning curves of figure 4 have been obtained for processes
whose covariance functions are BB, and MBs, with > = 0.01 ands?2 = 0.1. We can
notice that all the learning curves exhibit an initial linear decrease. This can be explained
considering that without any training data, the generalisation error is the maximum allowable
by the model€(0) = C,(0) + o2). The introduction of a training point creates a hole on
the error surface: the volume of the hole is proportional to the value of the lengthscale and
depends on the covariance function. The addition of a new datayzaivitl have the effect
of generating a new hole in the surface. With such a few data points it is likely that the two
data lie down far apart one from the other, giving rise to two distinct holes. Thus the effect
that a small dataset exertspall downthe error surface is proportional to the amount of
training points and explains the initial linear trend.

Concerning the asymptotic behaviour of the learning curves, we have verified that they
agree with the theoretical analysis carried out by Ritter (1996). In particular, a log-log plot
of the learning curves with a MBcovariance function shows an asymptotic behaviour as
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Figure 4 The figure show the graph of the learning curve computed for the covariance functiandBBand
MB3 indicated by the dotted, solid and dash-dotted lines, respectively.

O(n~@&-D/2 A similar remark applies to the SE covariance function, with an asymptotic
decay rate 0O (n~tlogn) (Opper, 1997). We have also noted that the smoother the process
described by the covariance function the smaller the the amount of training data needed to
reach the asymptotic regime.

The behaviour of the learning curves is affected also by the value of the lengthscale of the
process and by the noise level and this is illustrated in figure 7. The learning curves shown
in figure 5(a) have been obtained for the M&yvariance function setting the noise level
o2 = 0.1 and varying the values of the parameters 10-2, 10~2. Intuitively, figure 5(a)
suggests that decreasing the lengthscale stretches the early behaviour of the learning curve
and the approach to the asymptotic plateau lasts longer; this is due to the effect induced
by different values of the lengthscale which stretch or compress the input space. We have
verified that rescaling the amount of datdy the ratio of the two lengthscales, the two
curves of figure 5(a) lay on top of each other.

The variation of the noise level shifts the learning curves from the prior V@}ié) by
an offset equal to the noise level itself (cf. Eqg. (5)); in order to see any significant effect of
the noise on the learning curve, figure 5(b) shows a log-log graj@? 6f) — o2 obtained
for a stochastic process with MBovariance function, setting= 0.1 and noise variance
02 = 1074, 10°1. We can notice two main effects. The noise variance affects the actual
values of the generalisation error since the learning curve obtained with high noise level is
always above the one obtained with a low noise level. A second effect concerns the amount
of data necessary to reach the asymptotic regime. The learning curve characterised by an
high noise level needs fewer datapoints to attain to the asymptotic regime.

Stochastic processes with different covariance functions and different values of length-
scales and noise variance behave in a similar way.

In the following we discuss the results in two main subsections: results about the bounds
ES'(n) and E5(n) are presented in Section 6.1, whereas the lower bound of Section 5.4
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(®)

Figure 5 Figure 5(a) shows the graphs of the learning curves for the bt®ariance function obtained for

a fixed noise leveb? = 0.1 and lengthscales = 1072, 10-%; the lengthscale contributes to stretch the in-

put domain and a similar effect is observed on the learning curves. A log-log plot of the learning curve of a
MB3 stochastic process is shown in figure 5(b), with= 10! and the noise variance is set to*0(solid

line) and 10! (dash-dotted line); the dotted line draws the asymptotic behaviour of the learning curve. The
curve with a larger noise level attains the asymptotic regime with fewer datapoints than with a lower noise
variance.
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Figure 6. Figure 6(a)—(d) show the graphs of the learning curves and their upper bounds computed for the
covariance functions MB MB2, MB3 and the SE respectively. In all the graphs, the learning curve is drawn by
the solid line and its 95% confidence interval is indicated by the dotted curves. The upper BE§amdsndE (n)

are indicated by the dash dotted and the dashed lines, respectively.

is shown in Section 6.2. As the results we obtained for these experiments show common
characteristics, we show the bounds of the learning curve obtained by settirig01 and

2
oy =01.

6.1. The upper bounds}n) and E/(n)

Each graph in figure 6 shows the empirical learning curve with its confidence interval and
the two upper boundgj'(n) and E5(n). The curves are shown for the MBVIB,, MB3
and the SE covariance functions.

For a limited amount of training data it is possible to notice that the upper error bar
associated t&p, [E?(n)] lies above the actual upper bounds. This effect is due to the
variability of the generalisation error for small data sets and suggests that the bounds
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are quite tight for smalh. The effect disappears for large when the estimate of the
generalisation error is less sensitive to the composition of the training set.

As expected, the two-point upper bouB(n) is tighter than the one-point upper bound
ES(n).

We note that the tightness of the upper bound depends upon the covariance function, being
tighter for rougher processes (such asyl&nd getting worse for smoother processes. This
can be explained by recalling that covariance functions such as thedgiBespond to
Markov processes of ordér (cf. Section 3). Although the Markov process is actually
hidden by the presence of the noi&(n) is still more dependent on training data lying
close to the test point than on more distant points. Since the bouif¢n) and E5(n)
have been calculated by using only local information (namely the closest datapoint to the
test point, or the closest datapoints to the left and right, respectively), it is natural that the
more the variance at depends on local data points, the tighter the bounds become.

For instance, let us consider MBhe covariance function of a first order Markov process.

For the noise-free process, knowledge of data-points lying beyond the the left and right
neighbours ok does not reduce the generalisation errax.4tAlthough in the noisy case
more distant data-points reduce the generalisation error (because of thezémthe
covariance matrixX), it is likely that local information is still the most important.

The bounds on the learning curves computed for,MBd MB; confirm this remark, as
they are looser than for MB For the SE covariance function, this effect still holds and is
actually enlarged.

In Section 5.3 we have shown that the asymptotic behaviour of the d8{umJj depends
on the covariance function, beit@(n—1) for MB; andO(n—?2) for MB, and MBs. Log-log
plots of the upper bounds confirm the analysis carried out in Section 5.3, where we showed
thatE} (n) andEY (n) approach asymptotic plateaux. In particuf(n) tends tar2(1+r)
asO(n~1) for MB; andO(n—2) for MB, and MB;, wheread} (n) tends torf(1+r/(1+r))
asO(n1).

The quality of the bounds for processes characterised by different lengthscales and dif-
ferent noise levels are comparable to the ones described so far: the tightigsa)oéind
EY (n) still depend on the smoothness of the process. As explained at the beginning of this
section, a variation of the lengthscale has the same effect of a rescaling in the number of
training data. This can be observed explicitly in the asymptotic analysis of Egs. (18) and
(19), where the decay rate depends on the fattor

For a fixed covariance function, we note that the bounds are tighter for lower noise
variance; this is due to the fact that the lower the noise level the better the hidden Markov
process manifests itself. For smaller noise levels the learning curve becomes closer to the
bounds because the generalisation error relies on the local behaviour of the processes around
the test data; on the contrary, a larger noise level hides the underlying Markov Process thus
loosening the bounds.

6.2. The bound En)

We have also run experiments computing the lower bound we obtained from Eq. (24) for
processes generated by the covariance priors,MWHB,, MB3 and SE.
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Figure 7. Figure 7(a)—(d) show the graphs of the learning curves and their lower bounds computed for the
covariance functions MB MB2, MB3 and the SE respectively. In all the graphs, the learning curve is drawn by
the solid line and its 95% confidence interval is signed by the dotted curves. The lower Blamnds indicated

by the dashed lines.

Equation (24) shows that the evaluationB8{n) involves the computation of an infinite
sum of terms; we truncated the series considering only those terms which add a significant
contribution to the sums, i.ex /o2 > e, wheree is the machine precision. Since each
contribution in the series is positive, the quantity computed is still a lower bound of the
learning curve.

Figure 7 shows the results of the experiment in which wei.set0.01 ando? = 0.1.
The graphs of the lower bound lies below the empirical learning curve, being tighter for
large amount of data; in particular for the smoothest processes with large amount of data,
the 95% confidence intervals lay below the actual lower bound.

Forn — oo, the lower bound tends to the noise lewgl As with the empirical learning
curve, log-log plots ofE}(n) show an asymptotic decay to zero @gn~~/%) and
O(n~tlogn) for the MB, and the SE covariance functions, respectively.

The graphs of figure 7 show also that the tightness of the bound depends on the smoothness
of the stochastic process; in particular smooth processes are characterised by a tight lower
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bound on the learning curvgd(n). This can be explained by observing tt#i(n) is a

lower bound on the learning curve and an upper bound of the training error. The values of
smooth functions do not have large variation between training points and thus the model
can infer better on test data; this reduces the generalisation error pulling it closer to the
training error. Since the two errors sandwich the bound of Eq. ®4))) becomes tight

for smooth processes.

We can also notice that the tightness of the lower bound depends on the noise level,
becoming tight for high the noise level and loose for small noise level. This is consistent
with a general characteristic & (n) which is monotonically decreasing function of the
noise variance (Opper & Vivarelli, 1999).

7. Discussion

In this paper we have presented non-asymptotic upper and lower bounds for the learning
curve of GPs. The theoretical analysis has been carried out for one-dimensional GPs char-
acterised by several covariance functions and has been supported by numerical simulations.

Starting from the observation that increasing the amount of training data never worsens
the Bayesian generalisation error, an upper bound on the learning curve can be estimated as
the generalisation error of a GP trained with a reduced dataset. This means that for a given
training set the envelope of the generalisation errors generated by one and two datapoints
is an upper bound of the actual learning curve of the GP. Since the expectation of the
generalisation error over the distribution of the training data is not analytically tractable,
we introduced the two upper bounHl$(n) andEj; (n) which are amenable to average over
the distribution of the test and training points. In this study we have evaluated the expected
value of the bounds; future directions of research should also deal with the evaluation of
the variances.

In order to highlight the behaviour of the bounds with respect to the smoothness of the
stochastic process, we investigated the bounds for the modified Bessel covariance function
of orderk (describing stochastic processes 1 times mean-square differentiable) and the
squared exponential function (describing processes mean square-differentiable up to the
orderco).

The experimental results have shown that the learning curves and their bounds are char-
acterised by an early, linearly decreasing behaviour; this is due to the effect exerted by each
datapoint in pulling down the surface of the prior generalisation error. We also noticed that
the tightness of the bounds depends on the smoothness of the stochastic processes. This is
due to the facts that the bounds rely on subsets of the training data (i.e. one or two data-
points) and the modified Bessel covariance functions describe Markov processes of order
k; although in our simulations the Markovian processes were hidden by noise, the learning
curves depend mainly on local information and our bounds become tighter for rougher
processes.

We also investigated the behaviour of the curves with respect to the variation of the
correlation lengthscale of the process and the variance of the noise corrupting the stochas-
tic process. We noticed that the lengthscale stretches the behaviour of the curves, effec-
tively rescaling the number of training data. As the noise level has the effect of hiding
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the underlying Markov process, the upper bounds become tighter for smaller noise vari-
ance.

The expansion of the bounds in the limit of large amount of data highlights an asymp-
totic behaviour depending upon the covariance functigh(n) approaches the asymptotic
plateau a® (n~1) (for the MB, covariance function) and &(n—?2) for smoother processes;
the rate of decay to the plateauB§(n) is O(n~1). Numerical simulations supported our
analysis.

One limitation of our analysis is the dimension of the input space; the bounds have
been made analytically tractable by using order statistics results after splitting up the one
dimensional input space of the GP. In higher dimensional spaces the partition of the input
space can be replaced by a Voronoi tessellation that depends on tt2,dathaveraging
over this distribution appears to be difficult. One can suggest an approximate evaluation
of the upper bounds by an integration over a ball whose radius depends upon the number
of examples and the volume of the input space in which the bound holds. In any case we
expect that the effect due to larger input dimension is to loosen the upper bounds. We note
that recent work by (Sollich, 1999) has derived some good approximations to the learning
curve, and that his methods apply in more than one dimension.

We also ran some experiments by using the lower bound proposed by Opper, based on
the knowledge of the eigenvalues of the covariance function of the process. Since the bound
E'(n) is also an upper bound on the training error, we observed that the bound is tighter for
smooth processes, when the learning curve becomes closer to the training error. Also the
noise can vary the tightness Bf(n); a low noise level loosens the lower bound. Unlike the
upper bounds, the lower bound can be applied also in multivariate problems, as it is easily
extended to high dimension input space; however it has been verified (Opper & Vivarelli,
1999) that the bound becomes less tight in input space of higher dimension.

Appendix A: The two-points upper bound E5(n)

In this Appendix we derive Eq. (17) starting from Eq. (16).

We start by calculatingzz(x). As the covariance matrix generated by two data points is
a 2x 2 matrix, it is straightforward to evaluatg (x). Considering the two training datkh
andx*1, the covariance matrix of the GP is

C(0) Cp(xI+1 —x1)
K = ) ) .
Cp(x'*1 —x1) C(0)

From the evaluation of the determinantofasA (x 1 — x') = (C(0))? — (Cp(x'*1 —x1))2
follows that

K71

_ 1 C(0) —Cp(x'+1 — xh
- A(Xi+t — Xi) _Cp(xi+1 _ Xi) C(0)

As the covariance vector for the test poinis k(x) = (Cp(x — X'), Cp(X'*1 — x))T, the
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variance assumes the form

C(O)(C,Z)(x“rl =X) +C3(x —x )) —2Cp (X1 — x)Cp(x — X )Cp(xI+! — x)

UZZ(X) =C0O - AT —xi)

Changing variables in the covariand@g(x'** — x') andCp(x — x') (asé = x'* — x
andé = x — x' respectively), it turns out that the upper bound generatedigy) in the
interval [x', x'*1] (wheni # 0, n), is

Xi+l

. . i+l iy i+l i
i o2(x) dx = COx 1 — xi) — 2T =X) = LU = X))

A(XHl _ Xi)

where
11(t) = C(0) /O C2¢)ds and I(r) = Cy(r) /O Col&)Cp(r — &) dé.

It is noticeable that, similarly to Eq. (11), also the integtals), 1.(-) and the determinant
A(xI*? — x) depend upon the length of the interval of integratign= x'*1 — x'. We
evaluate the contributions to the upper bound over the intervats'JGand [x", 1] by
integrating the varianoef(x) generated by andx" over [0, x!] and [x", 1] respectively.
Hence the right hand side of Eq. (16) can be rewritten as

E (@) — ) 1

E3, <C(0) - 2; e _cod (@ + 1 (@) (26)

wherel (-) is defined in Eq. (12).

Equation (26) is still dependent on the distribution of the training data because it is a
function of the distances between adjacent training paiftsSimilarly to Eq. (11), we
obtain an upper bound independent of the training data by integrating Eq. (13) over the
distribution of the differencep(w) = n(1 — w)"

(I1(0) = I2(w)) 2

E9(n) < E¥(n) = C(0) — 2(n — 1)&, [
(27)
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Notes

1. Note that the definition of a Markov process in discrete and continuous time is rather different. In discrete time,
a Markov process of ordde depends only on the previolstimes, but in continuous time the dependence
is on the derivatives at the last time. However, function values at previous times clearly allow approximate
computation of derivatives (e.g. via finite differences) and thus one would expect that in the continuous-time
situation the previouk process values will contain most of the information needed for prediction at the next
time. Note that for the Ornstein-Uhlenbeck proc¥ss+ s) depends only on the previous observatit().

2. Hansen (1993) showed that for linear regression models it is possible to average over the distribution of the
training sets.

3. Loosely speaking, a stochastic process possessirgan-square derivatives but et 1 is said to satisfy the
Sacks-Ylvisaker conditions of order

4. This is because the process values at the training points and test point form a Markov chain, and knowledge of
the process values to the left and right of the test point "blocks” the influence of more remote observations.

5. The reference to Sollich (1999) was added when the manuscript was revised in April 1999.
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