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UPPER AND LOWER FREDHOLM SPECTRA

JOHN J. BUONI, ROBIN HARTE AND TONY WICKSTEAD

Abstract. Joint upper and lower Fredholm spectra are defined for «-tuples

of bounded linear operators, and the upper Fredholm spectrum is represen-

ted both as the simultaneous eigenvalues and as the simultaneous approxi-

mate eigenvalues of an /i-tuple of operators obtained by a Berberian-Quigley

construction.

Introduction. A bounded linear operator T: X -> Y between Banach spaces

is said to be upper Fredholm if it has finite dimensional null space (T~x0) and

closed range T(X), and is said to be lower Fredholm if its range T(X) is

closed and has finite codimension. / is Fredholm iff it is upper and lower

Fredholm. In this note we show that T is upper Fredholm iff a related

operator P(T): <$(X) -> <$(Y) is bounded below, where 9(X) is obtained as

a certain quotient of the space lx(X) of all bounded A'-valued sequences. It is

then shown that T is Fredholm iff P(T) is invertible. This construction is

obtained in §1, the basic two theorems are established in §2, some immediate

consequences in §3, and some consequences for joint upper and lower

Fredholm spectra are obtained in §4.

I. If X is a complex Banach space then let lx(X) denote the Banach space

obtained from the space of all bounded sequences x = (xn) in X by imposing

term-by-term linear combination and the supremum norm \\x\\ = supn||.xB||.

Berberian [1] and Quigley [11, Theorem 1.5.11] have, essentially, considered

the quotient

(1.1) Z(X) = lx(X)/c0(X),

where c0(X) is the subspace of all sequences converging to 0. By applying T

term-by-term to elements of x = (xn) E lx(X), it induces a well defined

operator Q(T): 2,(X) -> Q(Y). For given X and Y the correspondence

T-> Q(T) has the following fundamental property ([3] and [5]):

(1.2) Q( T) one-one <=> T bounded below «=> Q(T) bounded below.

This is the essence of the space 'H(X): it is a space in which "approximate

eigenvectors" of an operator are represented as true eigenvectors.

Lotz [10, Theorem 2.4] also observes
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(1.3) Q ( T ) dense =s> T dense

and hence

(1.4) Q ( T) invertible <=> T invertible.

In the present paper we are concerned with the quotient of lœ(X) by a

much larger subspace:

Definition 1. If X is a Banach space then m(X) denotes the space of those

sequences x = (xn) of which every subsequence x' has a convergent subsequence

x".

Equivalently, x is in m(X) iff its range {xn} is totally bounded.

Theorem I. If X is a Banach space then m(X) is a closed linear subspace of

lx(X). IfTE B(X, Y) is bounded then there is inclusion Tm(X) Q m(Y). If

and only if T G K(X, Y) is compact there is inclusion Tlx(X) C m(Y).

Proof. Clear.

We use m(X) in place of c0(X) in our analogue of the Berberian-Quigley

construction:

Definition 2. If X is a Banach space then 9(X) is the quotient

lx(X)/m(X), and if T: X ^> Y is bounded linear then P(T) is the operator

induced from 9{X) to 9{Y).

Theorem 1 makes it clear that P(T) is well defined, and is evidently

bounded and linear, with norm less than or equal to that of T. Also

P(T) = P(0) if and only if T is compact; thus there is a well defined

mapping.

(1.5) T-*P(T):B(X, Y)/K(X, Y)-*B(9{X),Q(Y)).

This is one-one and norm-decreasing; however, it is an open question whether

or not it is also isometric, or at least bounded below [9, Theorem 3.6].

2. Our main result is the analogue of the logical equivalence (1.2):

Theorem 2. If T: X -» Y is a bounded linear operator between Banach spaces

then the following are equivalent:

(2.1) P(T):<í?(X)-*q,(Y)is one-one;

(2.2) T: X -» Y is upper Fredholm;

(2.3) P(T): 9(X) -» 9{Y) is bounded below.

Proof. If (2.2) fails then either T ~ '0 is infinite dimensional or not. If T ~ '0

is infinite dimensional then repeated applications of the Riesz lemma yield a

sequence x = (x„) in X for which x„ G ^"'O, ||jc„|| = 1 and m =£ n

=*\\xn — xm\\ >\. Evidently x is in lx(X) but not in m(X), while trivially

Tx E m(Y). On the other hand, if r_10 is finite dimensional then the range

T(X) cannot be closed, so there exists a bounded projection E: X -*• X with

its null space E ~ '0 = T ~~ '0. The restriction of T to the range E (X) of E

does not have closed range, therefore cannot be bounded below. Thus there

exists x = (x„) for which x„ = E, x„ G E(X), \\xn\\ = 1 and Txn ->0 (n -»
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oo). We claim that x cannot have any convergent subsequence x'. For if

x'x = lim„< E E(X), then x'x E E(X)\\x'x\\ = 1 and Tx'x = 0; but this

contradicts the fact that T is one-one on E(X). It follows that the sequence x

is again not in m(X), while Tx is in m(Y). Thus the operator P(T) is not

one-one, violating (2.1).

If (2.2) holds then again there is a projection E = E2 E B (X) with

E~x0 = T~x0, and now restricted to EX the operator T is one-one with

closed range, therefore bounded below. Thus there is k > 0 for which

(Vx E X)\\Tx\\ = ||7TEjc|| > k\\Ex\\. We claim that

(2.4) Vx E lx (X),   àist(Tx, m(Y)) >\k dist(x, m(X)).

To see this, suppose that 8 > dist(7x, m(Y)) and select any e > 0. Then

there must be v E fw(y) with ||7x - v|| < 5 where x = {x„} and v = {v„}.

Now there exists a finite e-net 5 for {v„} in F. Evidently the set S is also a

(5 + e)-net for {Txn}. Thus to each n corresponds a vector jaeS such that

|| 7jc„ - ij| < 5 + e. Now select a finite subset W of terms from the

sequence {x„} in such a way that for each n there is an x'n E W with

\\Tx'n - s„\\ < 8 + e. The sequence x' = (x'„) is evidently in m(X), while

|| Tx - 7x'|| < 2(5 + e). Finally

dist(x, m(X)) = dist(£x, m(X)) <\\Ex - Ex'\\

<±\\Tx-Tx'\\<l(ô + e).

From the choice of 5 and e we obtain (2.4), so that (2.3) holds.

We have proved that (2.1) => (2.2) and that (2.2) =*> (2.3); the implication

(2.3) => (2.1) is of course trivial.

The argument for the implication (2.1) => (2.2) is taken from Lebow and

Schechter [9, Corollary 4.12]; see also Vernon Williams [13]. An alternative

version of the argument for the implication (2.2) => (2.3) has been shown to us

by Marc de Wilde of Liege. Similar arguments also show that, on the space

of operators B(9(X), ^(Y)), an equivalent norm is obtained by the

expression sup9(i2)<1(i7(r(ß))), where q(Q) denotes the "measure of noncom-

pactness" of a bounded subset 0 of a Banach space. This means that the

equivalence (2.2) «=> (2.3) is obtained implicitly by Lebow and Schechter [9,

Theorem 4.11]. The equivalence (2.1) <=> (2.2) is also a theorem of Yood [2,

Theorem 1.3.2]; [9, Corollary 4.11].

We can also obtain the analogue for P(T) of Lotz's result (1.4):

Theorem 3. The following are equivalent:

(   ,. T is Fredholm;

P(T)isinvertible.

Proof. If T is Fredholm then by Atkinson's theorem ([2, Lemma 3.2.6], [9,

Lemma 4.2]) T has an essential inverse, T': Y—> X for which I — T'T and

/ - TT are compact on X and Y respectively. It then follows immediately

that P(T) is invertible, with inverse P(T'). Conversely, if P(T) is invertible
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then by Theorem 2, the operator T is upper Fredholm. In particular, T has

closed range. We claim that

(2.6) T(X) is closed and P(T) onto => 71 is lower Fredholm,

which will complete the argument.

To this end, assume T is not lower Fredholm; that is, T(X) is not finite

codimension. Then by repeated application of the Riesz lemma, there exists a

sequence/ = (y„) in Y with

(2.7) \\yn\\ < 2   and   distUn+1, T(X) + ¿ Cjy\ > 1.

Thus y G ¡X(X). However, we shall show that y is not in the subspace

Ty^X)) + m(Y) which will contradict the fact that P(T) is onto and

complete the proof. If to the contrary there existed x E l^X) for which

y - Tx E m(Y) then y — Tx would have a Cauchy subsequence, and in

particular there would be n and m > n for which

\\Txn- Txm-yn+ym\<\

which contradicts (2.7).

It is familiar [9, Lemma 4.5] that the Fredholm operators, and the upper

and the lower Fredholm operators, form open subsets of B(X, Y). From

Theorem 2 and Theorem 3 we find that relative to the upper Fredholm

operators, the Fredholm operators are closed.

3. As an immediate application of the "easy part" of Theorem 2, the

equivalence between T upper semi-Fredholm and P(T) one-one, we have the

implication, for T: X -* Y and S: Y -» Z [2, Corollary 1.3.3, 1.3.4], that

(3.1) S, T upper Fredholm => ST upper Fredholm => T upper Fredholm.

For some further applications recall that T: X-> Y has an essential left

inverse if there is S: Y -> X for which I - ST is compact on X, and an

essential right inverse if I - TS is compact on Y. We shall call T: X -» Y

essentially one-one if there is implication, for bounded U: X —> X,

(3.2) TU compact => U compact,

and essentially dense if there is implication, for bounded U: Y -> Y,

(3.3) UT compact => U compact.

Theorem 4. Let T be a bounded operator, T: X -> Y, then the following

implications hold:

essentially left invertible => upper Fredholm

=> essentially one-one

and

essentially right invertible => lower Fredholm

*• ' ' => essentially dense.

Proof. If T has an essential left inverse 5 then P(S) is a left inverse for
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P(T). Since P(T) is one-one, then by Theorem 2, / is upper Fredholm. This

proves the first implication of (3.4). Now, given that T is upper Fredholm

then again by Theorem 2 P(T) is one-one. So suppose that TU is compact. It

must be shown that U is compact. However, for any x E lx(X), we have that

TUx E m(Y) and, hence, Ux E m(X) (P(T) is one-one). Thus U is compact.

This then shows that T is essentially one-one completing (3.4). Now (3.5)

follows by taking adjoints and recalling that / is lower Fredholm iff J* is

upper Fredholm and that T is compact iff T* is compact.

If X and Y are Hilbert spaces then the implications in Theorem 4 all hold

in reverse. Indeed if A1 is a Hilbert space then it is very easy to reverse the

first implication of (3.5), while the second implication of (3.4) can be reversed

for the more general "sub-projective" space [9, Theorem 6.8]. Similarly if Y is

a Hilbert space then the first implication of (3.4) reverses, and if more

generally Y is "super-projective" then so does the second implication of (3.5)

[9, Theorem 6.10]. Dash [4, Theorem 5] has obtained this version of (3.4);

compare also [6, Theorem 4.1] and [9, Corollary 6.11].

4. We recall the joint spectrum aA(a) and [8, Definitions 1.1, 1.2, 1.3] its
various subsets uA(a), for w = oleft, aright, 7Tleft, 7Tright, Tleft and Tright, where

a = (ax, a2, . . . , an) is an «-tuple of elements of a Banach algebra A. If in

particular A = B (X) then [8, Theorem 2.4] these concepts can be expressed,

for an /i-tuple A =(AX, A2,.. ., A„) of operators, in terms of the two

auxiliary operators

(4.1) Col(v4): x -► (Axx, A2x, . . . Anx),from X to X",

and

(4.2) Row(/l): (x„ x2,. . . x„) -» A,x, + ,42x2 + • • • + A„xn,from X" to X.

We use them here:

Definition 3. The upper Fredholm spectrum of A is the set

(4-3) °Zs(A) = {■* E C": Co\(A - si) is not upper Fredholm)

and the lower Fredholm spectrum is the set

(4-4) <J-S(A) = {s E C: Col(A - si) is not lower Fredholm).

We shall write w(A) = uB(X)(A) and wess(^) = u>B(X)/k(X)(.A")> f°r eacn °f ine

to introduced above. Thus for example an operator A is bounded below if and

only if 0 is not in Tleft(a). and is essentially one-one (3.2) iff 0 is not in irl^(A).

With these conventions, Theorems 2 and 3 give the following information

about the upper Fredholm spectrum:

Theorem 5. If A E B(Xf is arbitrary there is equality

(4-5) ttx«x(P(A)) = oUA) = t^(A)

and if n = 1 then

(4.6) o(P(A)) = a;ss(A) U ce~s(A) = atss(A).
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The last part of (4.6) is of course Atkinson's theorem. From Theorem 4 we

get

Theorem 6. If A E B(Xy is arbitrary there is inclusion

(4.7)   ¿£{A) C o:ss(A) C ol£(A) and *%"(A) C o^{A) C o^(A)

with equality throughout if X is a Hilbert space.

Theorem 6 lends support for an affirmative answer to the following open

question [7, page 22]:

Problem 1. If A G B(X)" is arbitrary, is there equality o+s(A) = ^(A)?

There is obviously an affirmative answer to Problem 1 if A' is a Hilbert

space (Theorem 6), or under more general assumptions about the Banach

space X, i.e., see [9].

Theorem 5 shows that if ai = 1 then the upper and lower essential spectrum

are nonempty, and contain the topological boundary of the essential

spectrum. More generally, using the spectral mapping theorem for the

approximate point spectrum [3], [5], [12], we obtain

Theorem 1. If A E B(X)" is a commuting system of operators then its upper

and lower Fredholm spectra are nonempty, and there is equality for systems of

polynomials

f: C" -* Cm,

(4-8) f(a;ss(A)) = o;sJ(A)   and   f(o^s(A)) = o^(f(A)).
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