UPPER AND LOWER PROBABILITIES INDUCED BY A
MULTIVALUED MAPPING!
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0. Summary. A multivalued mapping from a space X to a space S carries a
probability measure defined over subsets of X into a system of upper and lower
probabilities over subsets of S. Some basic properties of such systems are ex-
plored in Sections 1 and 2. Other approaches to upper and lower probabilities
are possible and some of these are related to the present approach in Section 3.
A distinctive feature of the present approach is a rule for conditioning, or more
generally, a rule for combining sources of information, as discussed in Sections
4 and 5. Finally, the context in statistical inference from which the present
theory arose is sketched briefly in Section 6.

1. Introduction. Consider a pair of spaces X and S together with a multi-
valued mapping T which assigns a subset I'c C S to every z ¢ X. Suppose that u
is a probability measure which assigns probabilities to the members of a class
§ of subsets of X. If 4 is acceptable for probability judgments about an uncertain
outcome z ¢ X, and if this uncertain outcome z is known to correspond to an un-
certain outcome s & 'z, what probability judgments may be made about the
uncertain outcome s £ S? The answer to this question would be a familiar one if
I' were single-valued, for under wide conditions a single-valued I would carry the
measure p over subsets of X into a unique probability measure over subsets of S.
For multivalued T, however, one is led to consider upper and lower probabilities
defined as follows over subsets of S.

For any T < S define

(1.1) T* = {zeX, Ten T #= I}
and
(1.2) Te = {xeX, Tz = & Tz Tl

In particular, S* = S is the domain of I'. Define & to be the class of subsets
T of 8 such that T* and T« belong to F. Suppose that S ¢ &. Finally, define the
upper probability of T ¢ & to be

(1.3) PX(T) = w(T*)/u(S*)
and the lower probability of T ¢ & to be
(1.4) Pi(T) = w(Tx)/u(8%).

P*(T) and P«(T) are defined only if x(S8*) = 0.
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Since T™* consists of those & ¢ X which can possibly correspond under I' to an
s ¢ T, one may naturally regard u(T™) to be the largest possible amount of prob-
ability from the measure u which can be transferred to outcomes s ¢ T. Similarly
T« consists of those z ¢ X which must lead to an s & T', so that u( T'x) represents
the minimal amount of probability which can be transferred to outcomes s ¢ 7'.
The denominator u(S*) in (1.3) and (1.4) is a renormalizing factor necessitated
by the fact that the model permits, in general, outcomes in X which do not map
into a meaningful subset of S. The offending subset {z ¢ X, I'Z = &} must be
removed from X and the measure of the remaining set S* renormalized to unity.

It would have been possible to restrict the formulation so that u(S*) = 1,
but it will be convenient in Sections 4 and 5 to have the general model.

The case of finite S = {s, 8z, -+ , sm} Will now be developed somewhat fur-
ther. Suppose that S;,s,...s,, denotes the subset of S which contains s; if §; = 1
and excludes s;if §; = 0,for< = 1, 2, - - - , m. The 2" subsets of S so defined are
the possible I'z, and they determine a partition of X into
(1.5) X = Uiy, Xossoes,
where
(16) X515z"'5m = {.’1} & X, Tz = S515z"'5m}'

Forany T C S, the subsets 7* and T are unions of subsets of the form Xj,s,...s,,
and hence P*(T) and P«(T) are uniquely determined by the 2™ quantities

(17) Psibge by = [I.(Xslag...%l).

It is assumed, of course, that each Xj,...s, is in §. Note that any set of 2™
non-negative numbers ps,s,...s,, with sum unity determines a possible set of upper
and lower probabilities forall T < 8 = {s1, 82, -+ , Sm}-

Table 1 displays formulas for all possible upper and lower probabilities when
m = 3. For example, if T = Sno = {81 , Sz}, then T* = X190 U Xo10 U X110 U X1

TABLE 1
Upper and lower probabilities when S = {s1, s2, $3}.
T PXT) Py(T)
& 0 0
{s1} (Pro0 + puo + pron + pur)/ A — Pooo) Proo/ (1 — Pooo)
{82} (Poro + Prro + Pour + Pus)/ (1 — Pooo) Paro/ (1 — Pooo)
{ss} (@oor + Prox + Porr + P1)/ (1 — Pooo) Poor/ (1 — Pooo)
{s1, 82} (pwo + poo + puo + pra + Pour + P111)/ A — Poos) (Proo + Pore + Pr1o)/
(1 - Pooo)
{s1, 83 (Proo + poor + Pue + Prov + Pour + P1)/ (A — Pose)  (Proo + Poor + Pro1)/
a- pooo)
{sz, 83} (Pae + ponr + pue + Pra + Pon + P11)/ (1 — Poos) (Poro + Poar + pou)/
(1 — pooo)

S 1 1
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U Xou U X and T« = X100 U Xowo U X110, and therefore

(1.8) p(T*) = pio + Powo + Puo + prr + Pou + pm
and

(1.9) #(T%) = pro + Poo + Puo -

These need only be divided by

(1.10) £(8*) = 1 — pow

to become upper and lower probabilities as defined in (1.3) and (1.4). Similar
arguments yield the rest of Table 1.

This section closes with several more definitions. The term variate will be used
for a real-valued function defined over S. Subject to measurability requirements,
any variate V has an upper distribution function F*(v) and a lower distribution
function F4(v) defined by
(1.11) F*(v) = P*(V 2 v),

Fu(v) = Po(V = v),
for —o < » < . The corresponding upper and lower expected values ¥ *(V)
and E(V) are defined by
(1.12) EX(V) = [2ovdF«(v);
Eu(V) = [ZovdF*(v).

(The interchange of upper and lower stars is necessary here in order to have both
Fu(v) < F*(v) and Ex(V) £ E*(V).)

The concepts of upper expected value and lower expected value generalize

the concepts of upper probability and lower probability, respectively. For, if
the variate Z is defined to be the indicator function of ' < §, i.e., if

(1.13) Z(s) =1 forseT,
=0 otherwise,

then it follows from (1.12) that
(1.14) E*Z) = PX(T);
EW(Z) = P«(T).

2. The class of compatible measures over S. Given a system of upper and
lower probabilities for the subsets & of S determined as above from (X, §, W)
and T, it is natural to ask for the class € of probability measures P such that

(2.1) P«(T) = P(T) £ PXT)
for all T ¢ &. Clearly € is the same as the class of probability measures P such that
(2.2) Ex«(V) = E(V) = EX(V)
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for all variates V for which E+(V) and E*(V) are defined and finite, and where
E(- ) refers to expectation with respect to P. The class € will be called the class
of measures compatible with the given system of upper and lower probabilities.

It is convenient to begin with a constructive definition of a class €, of measures
P and to prove ultimately that @ = €;. A general member of the class @, is de-
fined by specifying a probability measure yr, over each possible I'c € S and
taking P(T) = [ vr«(T n Tz) du(z). To avoid topological complexities only the
case of finite S8 will be considered in detail. Consider, therefore, the following
method of constructing a probability measure P over the finite sample space
S = {81, 8, -, s given the 2™ quantities p;3,...s,, defined in (1.7).

Suppose that each ps,s,...5,, other than pe...o is partitioned into a sum of m
non-negative pieces

(2.3) Possaritm = Doimt Pordyim

where /péf;z...sm = 0 unless §; = 1. Define the measure P from

(2.4) Plsd = D sispeeom Dsidgeetn/ (1 — Dog-owo)

fori = 1,2, ---, m. The motivation behind this definition of P is that in the

logic of the situation ps,s,..-s,, is & piece of probability that may attach to any s;

for which §; = 1. The partition (2.3) specifies the subpieces to be attached to

each eligible s; and (2.4) collects the appropriate subpieces from all ps,s,...5,, -
For example, when m = 3, one needs the decompositions

(1) (2)
P1e = Piro -+ P1io 5

¢ 1) 3)
(2.5) Pror = p§o1 -+ p§01 ;
2) 3)
Pour = p(()u -+ p(()u s
(1) (2) (3) .
i1 = Pin -+ P11 -+ P11 5

and the corresponding measure P is defined from
P{si} = (pwo + pis + pinr + pin) /(1 — pow);
(2.6) P{s)} = (powo + pils + L + pit1) /(1 — pow);
Pfss} = (pon + piit + péit + piD/(1 — pow).

The class of all measures P determined by such partition schemes will be
denoted by €;. These measures are compatible in the sense of (2.1); indeed,

(2.7) Py«(T) = ming.e, P(T),
P*(T) = maxpe, P(T)

for each T C S. More generally,

(2.8) Ey(V)
EX(V)

Il

ming.e, B(V),
maxpee, E(V)

Il

for any variate V.
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Before proving (2.8), it is convenient to introduce a finite subclass of @;
with several important properties, including the property that the extremes in
(2.7) and (2.8) are all attained within this finite subclass. Suppose that =(1),
7(2), -+, w(m) is a permutation of 1, 2, ..., m. The partition (2.3) may be
determined in such a way that pss,..s, = Di's,...s, for that ¢ which appears
first in the permutation (1), =(2), ---, w(m) subject, of course, to the re-
striction §; = 1. Determining this partition for each 8, 8, ---, 8, deter-
mines a specific member of @; associated with the permutation =(1), =(2),

-, w(m). The m! members of @ which are determined in this way are not
necessarily distinct. They will be called the exiremal members of @, for reasons to
become evident.

Given any variate V there is at least one permutation = (1), #(2), --- , x(m)
such that

(2.9) Visrw) £ V(sz) £ -+ = V(8rm)-

It will now be shown that ming.e, E+(V) is achieved when P is the extremal
measure associated with any such #(1), #(2), - - -, #{m). Note first that for any
measure P and any permutation satisfying (2.9)

(2.10) E(V) = V(sew) + 252 1V(s:)) — V(srin)]

“Plsciy , Srany s =+ 5 Seemy} -

Second, it is claimed that the (m — 1) terms in the sum on the right side of
(2.10) are simultaneously minimized by choosing P to be the extremal measure
associated with any permutation satisfying (2.9). Indeed, P{s.¢;, Szt ,

-, Sremy} 18 minimized by requiring that the partition (2.3) concentrate as
much as possible on péf%z...sm with ¢ = =(1), #(2), ---, #(§ — 1). The partition
defining the extremal measure corresponding to #(1), #(2), - -+ , #(m) is clearly
one means of assuring such a concentration. Furthermore, the definition of lower
probability implies that this minimum of P{s.¢) , Sr¢41), = ** » Srem} 18 P{sz¢iy
Sr41) , *°* , Seemy}. The first half of (2.8) is thus proved; the other half follows
similarly using the reverse permutation =(m), #(m — 1), --- , x(1).

Defining @, to be the class of measures P formed by taking mixtures of the
extremal measures, it is clear from their definitions that each of the classes
@, G, and @ are closed under the operation of mixing. It is also clear from the
relations proved above that € C @, < €. This section concludes by showing
that € = @€, = @, l.e., that these three possible definitions of compatibility are
equivalent.

Any measure P determines a point

(2.11) P=(p" p® -, p™)

in the (m — 1)-dimensional simplex with the m vertices (1, 0, ---, 0),
(Oy 17 70)7 ] (O’O: B 1) where

(2.12) p*? = Plsi)
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forz = 1,2, --- , m. Any class of measures P defines a subset of the simplex and
a class closed under mixing defines a convex subset. Thus €, €, , and €; may be
identified with convex subsets of the simplex. Any convex set in (m — 1)-
dimensional space is uniquely determined by the pairs of planes of support de-
termined by all families of parallel planes of dimension m — 2. To show that
© = @, one need only check that they have all the same planes of support.

In the present formulation, the intersection of the simplex with any plane of
dimension m — 2 consists of all those measures P for which a variate V has the
same expectation. For example, the plane of points P such that

(2.13) ap® + ap® + - + ap™ = ¢

contains all measures P such that E(V) = ¢ where V is defined by

(2.14) V(s:) = a:

fort = 1,2, .-+, m. Of course, V is unique only up to a linear transformation of

the form a 4+ bV and the family of planes parallel to (2.13) shares the family of
variates a 4 bV. It follows that the planes of support of a closed convex subset of
the simplex in the family of planes parallel to (2.13) are those which maximize
and minimize E(V) over choices of P in the closed convex subset. From (2.2)
and (2.8), and because the extrema in (2.8) occur in @, it follows that the
closed convex subsets € and @, have the same pairs of planes of support, as was
required to prove.

From all this, it is seen that the class of compatible measures is a closed
convex polygon in the simplex, having at most m! vertices, namely, the extremal
measures P. There may be as few as m distinct vertices; for example, the class of
compatible measures may be the whole simplex in the “informationless” model
where p1..1 = 1 and all other p;5,...5,, = 0.

3. Other approaches. The approach to upper and lower probabilities intro-
duced above may be placed in a clearer perspective by considering a hierarchy
of approaches, suggested to the author by L. J. Savage. Again consider for
simplicity the case of finite S.

Any class € of probability measures P over the subsets T C 8 defines upper
and lower probabilities

(3.1) P*(T) = supp.e P(T);
P*(T) = infpte P(T).

Since the same upper and lower probabilities are yielded by the convex closure
of € as by € itself, one might as well restrict € to be a closed convex set of
measures.

Define @ to be the class of all closed convex subsets of the simplex, i.e., all sets
of probability measures over the subsets of S which are closed under mixing.
Define €, C @ to consist of those closed convex sets of measures defined solely by
inequalities on probabilities of events. Finally, define 2 to consist of sets of
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4 .

(a) (b) (c)

Fic. 1. Three types of convex subsets of the triangle: case (a) a general convex subset,
case (b) a subset in ©; but not in ©, as described in the text, and case (c¢) a subset in Q,
with pioo = Pore = Poar = 1 and puoe = Pror = Poun = P11 = .

compatible measures as defined in Section 2, where the definition (2.1) assures
that @, C Q. It is clear, see for example Figure 1, that & is properly contained
in Q. It will next be shown that Q, is properly contained in &, .

For any member of Q. , define

(32) p;laz...sm = p5152...5m/(1 — pog...o)

if at least one 8; = 1, and define péo...o = 0. The set of p; 185 --8,, determine the same
€ as do the original pss,...s,, with the simplification that the normalizing factor
1 — poo...o may be ignored. Thus, for example when m = 3, all lower probabilities
(and hence upper probabilities from (3.6)) may be formed from

Pufsi} = piw;
Pu{ss} = powo;
(3.3) Pufss} = pon ;
Pfsi, &1} = Pioo + Poo + Piro;
Py{si, 83} = p{oo + pém + p;m ;
Pyfs, s3} = Poto + Poo + P -
These relations may be solved to yield
P = Pafsi}, and similarly for peoe and pou ;
(3.4) pro = Palsi, 82} — Pafsi} — Palss) and similarly for pio and po ;
pm = 1(= Puls, 82, 88}) — Pufsi, 83} — Palsr, s} — Pals2, s3}
+ Pufsi} + Pafse} + Palss}.

The obvious extension of (3.4) to general m is easily proved by induction, and is
omitted here.

The relations (3.4) may be applied to any member of Q; using on the right side
the bounding planes of support for that member. The result is a set of pj,s,...,,
which may be used as in (3.3) to determine the bounds of probabilities and hence
give back the member of @ . It also follows from (3.4) that the ps,s,...s,, sum to
unity, but a difference between @; and ; arises because the ps,s,...s,, need not all
‘be non-negative in @; . A simple example of the latter when m = 3 is pictured in



332 A. P. DEMPSTER

case (b) of Figure 1. For this example, Ps{s;} = Ps{ss} = Pu{s;} = 0 while
Pufs1, s} = Pafsi, %) = Pafsr, ) = and (3.4) yields plo = piwo = poor = 0,
Puo = Pin = Ppou = % and pi = —3%. Thus there are closed convex subsets in
Q1 which are not in @, , where @, is the class of primary interest in this paper.
Many of the basic relationships of ordinary probability theory have analogues

for systems of upper and lower probabilities. For example, in £ one has

(3.5) P(&) = P(D) =0, P«(8) = P*8) = 1;
if the complement of T is denoted by T, then
(3.6) P«(T) + PXT) = 15

if 7 and R are mutually exclusive, then
(3.7) P«(T) + P«(R) = P«(T u R) = P«(T) + P*(R)
< PYT u R) = PXT) + P*(R);

if BE«(V) = infpee BE(V) and E*(V) = suppee E(V) are used to define upper and
lower expectations, then

(3.8) Eu(V) = —E*(—~V)
or more generally
(3.9) Eu(a+bV) =a-+bE«(V) if 620

=a+bE¥V) if b0
together with a similar formula for E*(a 4+ bV) ; for any pair of variates V and W,
(3.10) Ex(V) + E«(W) < Ex(V+ W) £ Ex(V) + E*(W)
S EYV +W) 2 EXV) + E*W).

Note that (3.10) and (3.8) generalize (3.7) and (3.6), respectively. To prove
(3.10), for example, note that there exists a measure in € such that E.(V + W)
=E(\V+W)=EV)+ EW)=FEJ{V)+ E«W). The remaining parts of
(3.10) follow from the first part together with (3.8).

It is interesting to note that the definitions (1.12) and (2.8) do not coincide
in Q as they do in Q, , i.e., for general convex sets it can happen that

(3.11) [20v dF*(v) < infpee B(V).

This comes about because there is in general no measure P which simultaneously
minimizes each of the terms in (2.10).
Another relation which holds in Q2 but not in general in Q is

(8.12) P(T) + P«(R) < P«(T u R) + P«(T n R) < P«(T) + P*(R)
SPYTuR) + PYTnR) = PNT) + PXR)

for any 7, B C S. Simple counterexamples may be found in @ even for m = 3.
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To prove (3.12) in Qy define 7y = TnR, To =T — Ty, Ts = R — Ty, and
T, =8 — (T1u T2 u T;). Then, analogous to (3.4) define

too = Px(Th1), ete.,
tno = Px(Tiu Ty) — Py(Ti) — P«(Ty), etc,
(3.13) tuwe = Pe(ThuTeuT;) — Pe(ThuTy) — Pe(Tiu T3) — Pe(Tou T)
+ Pu(T1) + P«(T2) + P«(Ts), ete.,
t = 1 — Po(TsuTouTy) — - 4 Pu(Tyu Ts) + -+ — Py(Th)
— o — P(TY).

By a simple argument of inclusion and exclusion, these 2* — 1 quantities are non-
negative and sum to unity. Like (3.4), the relations (3.13) may be solved to yield
lower probabilities and thence upper probabilities in terms of ¢,s,s,5, for every
event determined by Ty, Ts, T3, and T’ or equivalently by T and R. The rela-
tions (3.12) follow simply by replacing each quantity with its expression in
terms of the £ 5,5,5, and using the fact that each #;5,5,5, = 0.

I do not know whether (3.11) can happen or whether (3.12) can fail in € .

The literature on upper and lower probabilities is to my knowledge quite small.
Good (1962) has presented an axiomatic approach which he believes simplifies
but does not necessarily agree with an earlier axiomatic approach of Koopman
(1940a), (1940b). I have not attempted to produce a compact set of probability
axioms sufficient to characterize Q, @ or Q. , as the case may be. Nor does Good
appear to discuss models with the mathematical concreteness of the families
Q, @ or @, . Smith (1961), (1965) has also discussed upper and lower probabilities,
largely in the context of upper and lower betting odds. Since upper and lower
odds for any bet are equivalent to a pair of planes of support for a convex set
€ of measures P, it appears that Smith is considering the family Q. Fishburn
(1964) considers upper and lower probabilities and their corresponding expecta-
tions apparently in the framework ©; . There appears to be no hint of the family
2, in any of the work referred to.

From the viewpoint of a reader to whom probabilities are essentially de-
terminants of bets or rational decisions, it may seem undesirable to restrict the
class of convex subsets € to & or even less to Q2 , since any member of @ would
seem t0 be a defensible position for a rational consistent man. On the other hand,
when upper and lower probabilities can be traced back to a single measure u,
a more stringent kind of logic can be introduced in the area of conditioning. This
concept of conditioning and its generalization to the concept of combining in-
dependent sources of information are the crux of this paper and, I believe, the
most attractive feature of restriction to Q, .

4. Upper and lower conditional probabilities. Given a system of upper and
lower probabilities defined over subsets 7' < S by (X, &, ) and I', what are the
appropriate upper and lower conditional probabilities of 7" given R, i.e., proba-
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bilities appropriate when 8 — R is ruled impossible? The obvious answer is to
use the same (X, &, p) and T' except restricting ' to subsets of R, or more pre-
cisely, using the multivalued mapping I from X to R defined by

(4.1) Iz = TznR.
The upper and lower conditional probabilities defined by I'" may be expressed

simply in terms of the unconditional upper and lower probabilities defined by
T, ie.,

(4.2) P*(T|R) = P*(T n R)/P*(R);
P«(T|R) =1—PXT|R) =1~ P*TaR)/P*R).

The first line of (4.2) is an application of (1.3) with I in place of T, and the
second line of (4.2) follows from (3.6) and the first line of (4.2). Note that upper
and lower conditional probabilities given R are undefined unless P*(R) > 0,
i.e., unless the range of I includes more than .

The following lemma is a consequence of the above definitions.

Lemma. If Ty and T, are mutually exclusive subsets of R, then

(43) Po(T0)/P*(Ty) £ P«(T1|R)/P(T:|R) £ P*(Tu| R)/P«(T:|R)
P¥(T1)/P+(Th).

Only the first inequality need be proved, since the second is obvious and the third
follows from the first. To prove the first write

P«(T,|R)/P*(T:|R) = (1 — P(R — T:| R))/P*(T:| R)
(44) = (P*(R) — PR — Ty))/P*(T»)
= Pw(T:)/P*(T2)

where the inequality between the last two numerators follows from (3.7).
Relations (4.3) assert that the elimination of possibilities extraneous to a given
bet serves to tighten the upper and lower betting odds appropriate to that bet.
Note that these upper and lower betting odds do not in general come together,
even when B = Tyu T, .

The definition of upper and lower conditional probabilities given above relies
for its motivation on the structure of Q2. In @ or € one could use (4.2) but it
would no longer appear natural; instead, one might regard

(4.5) P**(T|R) = supree P(T | R), Pyx(T | R) = infp.e P(T | R)
as the natural definitions of upper and lower conditional probabilities. The rela-
tionship between (4.2) and (4.5) as alternatives in Q@ may be clarified as fol-

lows:
Define Ty, = TnR,T: = R — T,and T; = S — R. Analogous to (3.13),

define
tio = P*(T1), etc.,

lIA
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(4.6) tuo = Px(ThuTy) — Pu(T1) — Py(T2), ete.,
tn=1— Ps(Thu T) — Pe(Tru T3) — Pe(Teu Ts) + Pu(Th)
+ Pu(T2) + Px«(Ts),

which in Q; are seven non-negative quantities summing to unity. From (4.2) and
(4.6) it follows that

P*(T|R) = (two + tuo + tin + 1)/
(4.7) (two + too + tuo + tor + fou + ),
Py«(T | R) = two/ (two + toro + tuo + tror + tou + funr).

On the other hand, the maximum and minimum of P(T |R) = P(T1)/(P(T1)
+ P(T,)) are found by distributing the pieces (4.6) appropriately among 7',
T» and Ts where f100 must go to T , while 110 may go to T or T%, and so on. Thus

(4.8) P*™(T|R) = (tiwo + tuo + tin + t11)/(tioo + o + i + 1 + fowo),
Pusx(T | R) = two/(two + toro + o + fou + tur).

From (4.7) and (4.8)

(4.9) P**(T|R) = P*(T|R) = P«(T|R) = P«(T|R).

Thus the additional structure used in the definitions (4.2) serves to pull the upper
and lower probabilities inward relative to the less structured definitions (4.5).

In Section 5 the definitions (4.2) will be seen as a very special case of a method
of assimilating new information into a system of upper and lower probabilities

5. Combination of independent sources of information. A probability measure
may be regarded as defining degrees of belief which quantify a state of partial
knowledge. Any such measure arises in some way from a limited range of human
experience which will be called a source of information. A mechanism for com-
bining such sources of information is a virtual necessity for a theory of proba-
bility oriented to statistical inference. The mechanism adopted here assumes
independence of the sources, a concept whose real world meaning is not so easily
described as its mathematical definition. Opinions of different people based on
overlapping experiences could not be regarded as independent sources. Different
measurements by different observers on different equipment would often be
regarded as independent, but so would different measurements by one observer
on one piece of equipment: here the question concerns independence of errors.
In the application referred to in Section 6, the independent sources are taken to
be non-overlapping random samples from a population, together with prior
information which may be regarded as a distillation of previous samples or
experiences.

The sources considered here are mathematically defined by their basic proba-
bility spaces (X;, F:, u:) and multivalued mappings I';, where 7 indexes the
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source. The space S into which I'; maps is the same for each 7, i.e., thedifferent
sources are giving information about the same uncertain outcome in S. If the n
sources ¢ = 1, 2, -+ | n are assumed independent, then the combined source
(X, &, u) and T is defined from

X=X xXp x --- x X,,

(5.1) F=8F XF X --+ xXFy,
Bo=p1 X pg X v X g,
Te=TwnaTlexn - ---nle

for all z ¢ X. The product measure space (X, &, u) is motivated by the usual
definition of statistical independence. The definition of T' reflects the idea that
z; & X, is consistent with a particular s ¢ S if and only if s e I';z;, for ¢ = 1, 2,

, n, and consequently x = (21, 22, - -+, To) € X is consistent with that s if
and only if s belongs to all of the I';z; simultaneously.

It is a characteristic of the above combination rule that neither upper proba-
bilities, nor lower probabilities nor probabilities of the type ps,s,...s,, have a simple
product rule of combination. A set of probabilities ¢.( T') which do obey a simple
product rule is defined as follows: For the systems (X, &, u) and I' defined by
(5.1) from the systems (X:, F;, ui) and I';, and for any 7' C S, set

(5.2) T={zeX, Tz DT} and T:= {z:eX,, Tx:D T}
and set

(5.3) «T) = w(T) and g(T) = u(T:).

It follows immediately that

(5.4) T=TxTy x---xT,

and hence that
(5.5) oqT) = q(T) x ¢(T) x --- x qu(T).

It will be seen shortly that, at least for finite S, the probabilities ¢( T') are sufficient
to determine all upper and lower probabilities defined by a system (X, ¥, u) and
I and hence from (5.5) they provide a convenient form, ready for further combi-
nation, for storing the information in a given source. Note also that, if T’ consists
of a single element s & S, then T = T™ so that q( T) = u(T*) whence from (1.3)
the g{s} as s ranges over S are proportional to P*{s}.

The foregoing ideas w111 now be concretely illustrated using a finite S beginning
with m = 3. A source is characterized here by pos , P10o , Poto , Poot , P10 , Pro1 , Port
and pu . If the ¢(T) corresponding to the T = &, {1}, {82}, {83}, {s1, 82}, - -,
{s1, sz, 83} are denoted by gowo, G0, goto , Goor 5 Guo, * -« , qu1 , it follows directly
that

Gooo = 1= P1oo + Po1o + Poor + P10 + P1o1 + Poun -+ Pua,
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(5.6) Qoo = pio + Pro + P11 + pus, and similarly for gno and g,
quo = puo + P, and similarly for ¢ and gy, and
qui = P .

The relations (5.6) may be solved to yield
Poe = 1 —~ quoo — qoro — Qonn + Guo + quor + Qo — quu

(5.7) Do = quo — quo — quon -+ quu1 , and similarly for pao and pon ,
Do = Quo — Qui , and similarly for pin and pan, and
P = qu,

thus showing that the set of a ¢(7T) determine the p;;s,5, - Note also that the
extensions of (5.6) and (5.7) from m = 3 to general m are evident and easily
proved.

A pair of sources z = 1, 2 may be characterized by their p%f};zaa or by their
@855, . The relations gs,s,s, = g5is,8,05 3,5, from (5.5) together with the relations
(5.6) and (5.7) applied to the two sources and their combination yield

poe = plobpiid + plitplsl + plaplll + piilpll + phllpill + plilpidl

[11_12] 11 12} [1] [2] (1] (2] {11, [2] [11, [2]
—+ Poo1Pioo + Poo1Peio -+ Poo1Piie -+ PiioPico + p101p([)10 -+ Poi1Pioo ,

[1]_[2] [1], 12] 1] [2]) [1]_12]
P1oo = Pi1ooPioo + P1ooP110 + pioopml -+ PiooPr11
(1], 12] [1], 2] 1] _[2] [1] [2] 11_[2]
(5.8) -+ piwpion + piepion + p£01p100 + puapine + piupﬁoo,

and similarly for pee and  poo ,
11, 2] {11 (2] (1, 12]
Puo = PiwePite + piopin + pinipiit
and similarly for pin and pa1, and
{1, [2]

P = Puipii .
The general rule here, extended to any m, is that
(59 ) p5152' By = Z pg}lszf e '5m'pl[5?}'52”‘ IRF
with summation over all (8,85, -+, 8w, 8,8, -+, dn ) such that §; = 8.8
fori =1,2, -- - , m. It is clear, however, that combining sources directly in terms

of Pss,..-5,, 18 awkward, and by referring from (5.8) back to Table 1 one sees that
the situation is no better in terms of upper and lower probabilities.

This section concludes with two important properties of the combination rule.
To introduce the first of these, note that, if a source (X, , &1, p1) and Ty is com-
bined with an informationless source, then the result is again the original source
(Xi, %1, m) and Ty . By an informationless source is meant an (Xa, 3, , ps) and
T, such that Teze = 8 for all 2, & X3, i.e., a source for which P*(T) = 1and
P«(T) = Ofor every T other than & and S. The more general version of the first



338 A. P. DEMPSTER

property asserts that, if a source (X, &1, w) and Iy is combined with a source
(X2, Fa, uz) and I'; where Iz, = B C S for all z; ¢ X, , then

(5.10) PXT) = P"(T|R), P«T) = Pu(T|R)

for T < S, where P,*(T | R) and Pi+(T | R) are upper and lower conditional
probabilities for the system (X, , §1, u1) and I'; according to the definitions (4.2).
In other words, the rule of this section is sufficiently general to include the defi-
nition of conditioning as a special case. The relations (5.10) are immediate conse-
quences of the definitions adopted.

The second property concerns sharp sources. A source will be called sharp if it
is sharp with respect to T for all T ¢ &, and will be called sharp with respect to T if
P*(T) = P«(T). Thus a sharp source is an ordinary probability measure over
the events 7' ¢ &. Assuming finite S, it will be shown that a source which is sharp
with respect to a given T remains sharp with respect to T after combination with any
other source. A similar property therefore holds for sharpness with respect to all T'.
Thus, if sharpness is once achieved by a user of this theory, it remains a character-
istic of all subsequent states of knowledge of the user.

The demonstration depends on a simple lemma:

LEMMA. A source is sharp with respect to T & & if and only if ¢q(R) = O for every
Rsuchthat RnT 5 & and Rn T » . Clearly, P*(T) — P«(T) 2 g(R) for
any Rsuchthat Rn T » Zand Rn T # &, so that P*(T) = P«(T) implies
g(R) = O for all such R. Conversely, if g(R) = 0 for all such B, then no I'z which
intersects both 7 and T may have positive probability, which implies that
P*(T) = P4«(T). In view of the simple combination property of the g(R)
function, the sharpness property of the preceding paragraph follows immediately
from the above lemma.

A new kind of limit theorem becomes possible in discussions of upper and
lower probability, namely results about convergence to sharpness. For example,
in view of (5.1) one would expect the combination of n sources to be sharper than
a typical member of the sources combined. Thus rates of convergence to sharp-
ness deserve definition and study. An illustration of this may be found in equa-
tion (4.18) of Dempster (1966).

6. An application. The theory proposed in this paper has been implicitly
applied to statistical inference in an earlier paper (Dempster (1966)). The nature
of the application will be sketched briefly. Individual sample observations may
be regarded as sources whose information may be combined according to the
rule of Section 5. In such an individual source, the role of X is played by a space
representing the possible sample individuals, and the role of 8 is represented by
a parameter space or more generally by the product of a parameter space and a
space of future observations. Before a particular sample observation is recorded,
the source defined by that sample individual is informationless, but after con-
ditioning by the sample observation one generally gets a non-trivial system of
upper and lower probabilities referring to the parameters or to the parameters
and future observations jointly.
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The combination of many sample individuals appears to lead to sharp infer-
ences which agree with standard asymptotic inferences given either by Bayesian
methods or by confidence methods. It is also suggested as valid to treat a prior
distribution as a source of information independent of sample data. If source 1 is
taken to be combined sample data and source 2 is taken to be the prior informa-
tion, and if this prior information is sharp and has a density, then (5.13) applies
and in fact reduces to the familiar formula for a Bayes posterior distribution.
The reason for this is that, in the particular models defined for the inferential
situation, uy*{s} turns out to be the familiar likelihood function.

Further concrete examples of these applications to inference will be forth-
coming soon.
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who read an earlier version of this paper.
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