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UPPER AND LOWER PROBABILITY INFERENCES FOR FAMILIES OF
HYPOTHESES WITH MONOTONE DENSITY RATIOS
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Harvard University

0. Summary. Models of the second kind, described in Section 2, are applied to
define inferences about single parameter families having monotone density
ratio structure. A definition and some properties of this structure are given in
Section 3 along with basic general formulas for inferences. Mixture families
always have the monotone density ratio property, and some theory and illus-
trations are given in Section 4. Location and scale parameter families sometimes
have the property, as shown and illustrated in Section 5 where the examples
congist of uniform and normal location parameters and exponential and normal
scale parameters.

1. Introduction. The aim of this paper is to apply a general theory of statistical
inference [1], [2], [3], [4], [5] to some single parameter families of hypotheses which
have often been used in the past to illustrate other theories of inference. The
discussion is limited to models of the second kind [1], [5] which apply when the
observations represent a sample from an unknown member of a specified family
of multinomial populations. But as remarked in [1] and illustrated in Section 4, 5,
continuous observables can be unambiguously included as limiting cases of
multinomial observables.

Uncertain knowledge or information about the true or actual point of some
sample space is represented by a distribution of random subsets of the sample
space, which in turn induces [2] upper and lower probabilities for events defined
as fixed subsets of the sample space, and upper and lower expected values for
real-valued functions defined over the sample space. When the random subsets
are single point subsets, the model specifies an ordinary distribution over the
sample space so that the upper and lower bounds coincide. Correspondingly [5],
the approach to inference may be viewed as a generalization of Bayesian in-
ference, which reduces to ordinary Bayesian inference when the prior informa-
tion assumes the form of an ordinary prior distribution. In generalized Bayesian
inference, the prior information may consist simply of a restriction to a parametric
family of hypotheses or may consist of such a restriction together with a prior
distribution over the parametric space. The former type is that included directly
in models of the second kind, while the latter or more general types are not
explicitly considered in this paper. See Section 2 for an elaboration of the dis-
cussion of prior knowledge.
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The families of hypotheses considered here are single parameter families with
monotone density ratio, as defined in Section 3. It follows that the inferences are
expressible in terms of random closed intervals for which some elementary
theory has been developed in [4]. Single parameter families are not of much
practical interest, for excepting very small sample sizes the differences among
various approaches to inference tend to be slight. The promise of the new methods
lies in multiparameter situations, where older approaches to inference give
more trouble. The present paper explores foothills before tackling more dif-
ficult peaks.

2. Models of the second kind: a review. Consider multinomial sampling with
k specified categories, for some fixed positive integer £ = 2. The % categories
will be indexed by the set

(21) K = {13 2, .- :k}!

for convenience, although each model of the second kind treats the k categories
symmetrically under all permutations. Denoting a population frequency in
category ¢ by () for 7¢ K, any complete set of population frequencies is
specified by a vector

2.2) =), ), -, 7 ()]
belonging to the simplex
(2.3) M= {mn({) 20VieK, Y ixn(s) =1}

The true population frequency vector =, while not precisely known, will be
agsumed to lie in a given parametric family

(24) 7‘(0) = [7"(1; 0)7 7"(2, 0)) )T(k, 0)]

for 6 ¢ ©. This familiar type of assumption has an unfamiliar role in generalized
Bayesian inference; specifically, the assumption expresses a special form of
prior information. The general form is expressed by a specified distribution of
random subsets of II, and the special case is the distribution which assigns
probability unity to the single subset

(2.5) H(O) = {=(9); 0 6}.

Such prior information says that, although it is certain that = is somewhere in
I1(®), there is no further information at all about 6 in the sense that every proper
nonempty subset of II(®) has upper probability unity and lower probability
zero. An important technical property of this informationless prior knowledge is
that the corresponding inferences may be combined with nontrivial prior in-
formation according to a simple rule of combination [2], [5] to produce the
inferences appropriate to the nontrivial prior information. In other words, the
inferences described in this paper may be viewed as inferences based on sample
information plus parametric assumption only, but ready for combination with
any particular user’s more detailed prior knowledge within II(©). In particular
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[4], [5], the user whose prior knowledge is represented by a distribution over the
single point subsets of II(®), i.e. by an ordinary prior distribution, will be led
back to ordinary Bayesian inferences.

A distinctive feature of the models of generalized Bayesian inference is a
space U whose points are conceived as being in one-one correspondence with the
members of the population being sampled. The points of U are not directly
observable but are logically related to the observation space K and the unre-
stricted parameter space IL. In the case of models of the second kind, the space U
is taken to be a mathematical copy of II, i.e.,

(2.6) U= {uul) 20VieK, Duxu@) = 1}
where
(2.7) u=[u@),u?®), - ,uwk)]

corresponds to a general point of the population. The operation of drawing a
single random member of the population is viewed as governed by a uniform
distribution over the simplex U, and the member u thus drawn is supposed to be
compatible with points [, =] ¢ K x I if and only if

2.8) r(@u@) £ r@lu@E)Yie K.

There are two equivalent ways to fit the assumptions of the previous sentence
into an abstract framework. The first, adopted as standard in [4], [5], is to in-
terpret (2.8) as specifying a multivalued mapping from U to K x 1II, i.e., as
defining a subset of points [, =] ¢ K x II for each point u e U. Accordingly, the
uniform distribution over U induces a distribution of random subsets of K x II
which in turn defines upper and lower probabilities for fixed subsets of K x II.
The second viewpoint, mentioned briefly in [5], is to interpret the model as
specifying a distribution over a partition of U x K x II. Here, the subsets
defining the partition may be indexed by u ¢ U, the subset corresponding to a
given u consists of triples [u, 7, =] satisfying (2.8), and the distribution over sub-
sets is induced by the uniform distribution over U. The second way to concep-
tualize the model is important because it shows that acceptance of the model
amounts to putting one’s trust in a certain marginal distribution. See the author’s
reply to diseussants in [5].

An essential feature of the new theory of inference is a concept of conditioning
[4], [5]. When the model is conditioned on a fixed = and conditional probabilities
are computed for the categories in K to be observed in a single drawing, then =
has the desired interpretation as the vector of probabilities associated with the
elements of K. On the other hand, if = remains unknown while an observation
j € K is recorded, then the suggested inferences about = are defined by condition-
ing the model on the subset {7} x II(®) of K x II, where {j} is the subset of K
consisting of the single point j. These inferences are expressible through a
distribution of random subsets of II(@®), or through the equivalent distribution of
random subsets of ©®. Suppose that Q(j, u) denotes the random subset of 6
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determined via (2.8) by the random u £ U when j is fixed. Only those u for which
Q(J, u) is not empty contribute to the relevant conditional distribution with fixed
7. The remainder of Section 2 sketches the derivation of an explicit formula for
Pr (2(j,u) D A) according to this relevant distribution, where A denotes a fixed
subset of @.

Events expressible by conditions on the random subset 2(j, u) are also ex-
pressible by conditions on the random point u ¢ U. Thus, if {6} denotes the fixed
subset of © consisting of the single point 6, then the condition @(j, u) O {6}
is also expressible as u ¢ U (5, §) where U (j, 8) consists of points satisfying (2.8)
with = (0) in the role of =. U (7, 8) is the subsimplex of U determined by replacing
the vertex whose jth coordinate is unity with = (9), while leaving the remaining
k — 1 vertices the same. It follows that

(29) Pr (@@, u) D {6}) = Cx(5,6)

where C is a normalizing factor which enters because the restriction of = to
II(®) means that u is restricted in the conditional model to Uso U, 8). Spe-
cifically, C" is the (¢ — 1)-dimensional volume of Us.o U (4, 8). More generally,
the condition 2(7, u) D A is also expressible as

(2.10) ue Una U (5, 6)

from which it follows [1] that

(2.11) Pr(Q@,u) D A) = C[2r_isupspan(t,8)/x(j,0)]" if infeeaw(4,6) >0
=0 otherwise.

The explanation of (2.11) is (i) that clearly M. U (j, 8) has volume zero if any
component U (5, ) or limit of such components, has volume zero, while (ii)
if all such subsimplexes of U have positive content, then their intersection is a
similar simplex of positive content whose volume is easily computed [1] to yield
(2.11).

Topological considerations have been ignored in the preceding discussion,
but it is clear that (2.11) holds when A is a closed set according to some topology
on O and the mapping 8 — =(8) is continuous and one-one. Such conditions,
although not very tight, suffice for the examples of this paper.

3. Families of hypotheses with monotone density ratio. Henceforth it will
be assumed that the parameter 6 is real-valued on a < 6 < B, allowing a = —
and B = 4+ as limiting cases, and that the corresponding hypotheses = (8)
trace a continuous curve in the simplex II as 8 runs from « to 8. Such a family of
hypotheses will be said to have a monotone density ratio if for all , j & K the ratio
x (5, 9)/7(j, 8) is a monotone nonincreasing or nondecreasing function of § on
a £ 8 < Bignoring values of 8 for which « (2, 8) = v (j,0) = 0. Within the class of
families of hypotheses with continuous = (6), the subclass consisting of families
with monotone density ratio has an important property relative to the cor-
responding models of the second kind.



HYPOTHESES WITH MONOTONE DENSITY RATIOS 957

LemMa 3.1. The region Q(j, u) defined in Section 2 is either empty or a closed
wnterval for all j € K and all u interior to U if and only +f the family of hypotheses
=(0) for o £ 0 < B has a monotone density ratio.

Proor. First suppose that = (f) has a monotone density ratio. Consider a
fixed j ¢ K and a fixed u interior to U for which Q (7, u) is not empty. If 8 ¢ @(5, u),
then # (7, 8) > 0, because (2.8) together with 7 (4, 8) = 0 would imply u(j) = 0
against the assumption that u is interior to U. Thus Q(j, u) consists of those 8
for which

(3.1) 7, 8)/7(j,0) = u(@)/u(j) for 7¢ K.
Setting
(3.2) 64 = lim inf {6; 6Q(j, u)} and 0" = lim sup {6;0 £Q(j, u)},

it follows, since = (9) is continuous in 6, that 64 and 8% both belong to 2(j, u)
while no 6 outside the range 6« < 6 =< 6* does so. To assume that some 0 on
05 < 6 < 6™ is outside (4, u) would be to assume that (3.1) fails for some ¢ K,
implying a contradiction of the monotonicity of « (¢, 8)/x (7, 8) as 6 ranges over

04,0, 0%. Thus
(3.3) Q(j, u) = {0;04 < 0 < 6%},

Conversely, suppose that 2(j, u) is a closed interval or empty for all j ¢ K and
all u interior to U. If at the same time the monotone density ratio property were
to fail, then there would exist ¢, j ¢ K and 6, < 0 < 6, such that = (¢, ) /7 (5, 8)
lies outside the closed interval determined by = (2, 61)/= (5, 61) and = (¢, 6:)/
w(j, 6:). But then the point u whose coordinates are proportional to
max {r (2, 01)/7 (4, 01), 7 (%, 6.) /7 (j, 62)} forz = 1, 2, - - - , k would be such that
6: and 8 belong to ©(j, u) while 6 did not, thus contradicting the hypothesis
that ©(7, u) is a closed interval. Note that the u found here may lie on the bound-
ary of U, but by continuity some neighboring but interior u would have the same
property.

In view of Lemma 3.1, inferences about 8 in the case of a family withmonotone
density ratio depend on the theory of random closed intervals [4]. In particular,
if A is taken to be the closed interval [6:, 6], then Pr (2(7, u) D A) asin (2.11)
may be written

(34:) H(()I, 02) = PI’ (T1 § 01, Tz g 02)

where [T'1, T:] denotes the random closed interval 2(j, u). It is clear from (3.4)
that the function H (6;, 6:) defined for « < 6; < 6, < 8 determines the full dis-
tribution of the random closed interval [T, T]. The task of computing H (6; , 6:)
from (2.11) is simplified in the case of a family with monotone density ratio by
the fact that for each ¢ ¢ K the supremum appearing in (2.11) is attained either
for8 = 61 0r @ = 6, . More explicit representations of H (6, , 6,) will be given below,
depending on a second property of families with monotone density ratio:
Lemma 3.2. Suppose that =(8) for « < 6 =< (8 represents a family of hypotheses
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with monotone denstty ratto. Then = (6) induces a partial ordering on the elements of
K. Specifically, K may be expressed as the union of mutually exclusive subsels
Ki, Ky, - -, K, for somer onl < r =k, where, of © and j belong to a common
subset K, , then

(35) 77(1:7 01)77(.7.7 02) = 7'_(1‘.; 02)77(j7 01)
forallo,0,0mna < 6, < 0 = B, while, if i e K; and j ¢ K, with s < t, then
3.6) 7 (4, 01)w (J, 02) 2 (3, 02)7 (J, 61)

for all 61,6, on a < 61 < 0 < B with strict tnequality holding for some pair 6., 6 .

Proor. The subsets defining the partition of K may be constructed to satisfy
(3.5) by grouping into equivalence classes those j ¢ K which define the same
likelihood function of 6, where likelihood functions Cw (5, 6) are regarded as
determined only up to an arbitrary constant multiplier. If K" and K” denote a
pair of distinet equivalence classes, then, in view of the monotone density ratio
property, either (3.5) holds for i e K" and j e K” with strict inequality for some
pair 8y, 6: or the analogous property holds with the direction of inequality
reversed. Accordingly, it may be said that K < K” in the first case and that
K’ > K" in the sccond case. It is easily checked that the transitivity property
holds for this ordering and hence that it is a complete ordering of the equivalence
classes defined by (3.5). It remains only to label the equivalence classes K, K,
- .+, K, in accordance with their established order.

In view of Lemma 3.2 and (2.11), the function H (6:, 6:) determined by a
single observation je& K, may be written

H61,6:) = 2 ece Dier, m (G 00) /0 (§, 61) + Dok, (1)
3.7) + Dote Yier, w0, 62)/m (5, 62)
fx(j,0) >0 on 6 =<6 =06,
=0 otherwise,

or
H@®:,0) = ClY s kiR (01) + ks 4 Doie keRus (82)]
(38) 1f1l'(],0)>0 on 015__0_5_02
=0 otherwise,

where k; denotes the number of points in K, and R.(#) denotes the ratio
7 (%,0)/7(j,0) common to ¢ e K, and ¢ K; .

If the integer labels 1, 2, - .- , k ¢ K are arranged to have natural order con-
sistent with the order of their associated equivalence classes Ky, K;, -+, K.,
then (3.7) or (3.8) may also be written

H:,0,) = CLULG, 6:)/(j, 01)) + (1 — IL(, 6))/w (G, 6))]
(39) ifﬂ'(j,O) >0 on =050,

0 otherwise,

[
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where

(3.10) 0(j,0) = 2usim(,0), VYjek,

expresses the cumulative distribution function of the discrete distribution
=().

Although formula (3.9 ) is more compact than (3.7) or (3.8), it is less illuminat-
ing. For example, it is clear from (3.7) or (3.8) that H (61, 6.) does not depend
on 6, if j ¢ K; and does not depend on 8; if j £ K, . In the former case, a random
closed interval [T, T,] whose distribution is specified as in (3.4) has a fixed T},
while in the latter case it has a fixed T . Another pair of closely related properties
of H (6, 8,) follow directly from (3.7) or (3.8). First, the function H (6;, 6:)
is the same for all 7 in the same equivalence class. Second, if the model were
altered by pooling the categories defining each equivalence class, and reporting
only the observed equivalence class rather than the original category j, the func-
tion H (6,, 6;) would be altered only in its normalizing constant C. Thus, it is
sufficient for inference purposes to know the equivalence class of an observation,
not the observation itself. Moreover, it is permissible without affecting inferences
to make an initial simplification in any model with monotone density ratio by
pooling the categories within equivalence classes K,. These properties extend
immediately to samples of size n, and imply in particular that the inferences
depend only on 7y, %z, - - - , 1, where %, denotes the number of sample observa-
tions in K, .

Since the intersection of n closed intervals is either a closed interval or is empty,
the rule of combination [1], [2], [5] for passing from a single observation j ¢ K
to a sample of n observations j1, J2, - -+, J» &€ K yields inferences which are also
expressible in terms of a random closed interval. The funection H (61, 6:) which
characterizes the inferences based on a sample of size n is found up to a scalar
multiplier by multiplying the H (6;, 6:) functions of the observations taken
singly, i.e., the resultant H (61, 6;) function is expressible as

H b, 6,)
@.11) = O Il (@G, 6)/7 G, 6)) + (U — TG, 6))/m(Ga, 687
if7(jn,8) >0 for 6 £0=6,1=<h=n,
=0 otherwise,

where ¢’ is a normalizing constant.

The computation [4] of upper and lower probabilities from (3.11) directs
attention to certain derived functions. Setting ¢; = 6 = 6 in (3.11) yields the
likelihood function

(3.12) H@®,0) = C' [lian G, 0).
If the bivariate cdf H (8;, 6:) defines an absolutely continuous bivariate distribu-

tion, then the partial derivative Hi(6:, 6;) = (9/861)H (61, 82) is also of in-
terest at 8, = 6, = 6, and it is easily shown that

(3.13) H1(6,6) = C' D211 [D (i, 8) T icama (G, 0)] = H (6, 8)2 11 E (1 ,0)
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where

(3.14)  D(j, 0) = 1(j, 6)(d/d0)x (5, 6) — = (j, 0)(d/dO)IL(F, 6)
and

(3.15) E(j,0) = D(j,0)/7(j, 0).

Note that D(j, 8) = E(j, 8) = 0 when j ¢ K;. As indicated in [4], upper and
lower probability inferences in the absolutely continuous case are expressible as

(3.16) P*([61,65]) = [2H1(6,9)d6 + H (61, 61)
and
B17)  Pu(0r, 6)) = [£H.(0,0)d0 — H@,6:) + H:, 6).

The normalizing constant C’ follows from P*(le, 8]) = 1.

There are alternatives to formulas (3.13) through (3.17) which involve
Hy (61, 0y) = (3/36,)H (61, 82) rather than Hy (6, 6;). The alternatives need not
be presented in detail since they follow by changing the sign of the parameter and
applying the original formulas. 4

In most applications the integrals appearing in (3.16) or (3.17) will not be
analytically tractable, and numerical approximations will be required. From the
second line of (3.13), the integrals are formally the same as those involved in
an ordinary Bayesian analysis with the role of the prior density played by
>t E(ji, 0). For moderately large , it will often happen that the likelihood
factor has approximately the form of a normal density; specifically,

(3.18) log H 9, 0) = log C" — nI ()6 — 0T,

where €” is a normalizing constant, § is the maximum likelihood estimator of 6
and I(0) is Fisher’s information function. For extremely large n, the factor
> T E(j:, 0) will be effectively constant over the narrow region about b over
which H (6, 8) varies significantly, and the size of the factor ST E3:, 9) in
(3.13) will be such as effectively to eliminate the difference between upper and
lower probabilities in (3.16) and (3.17). For extremely large n, therefore, the
inferences will be practically indistinguishable from Bayesian inferences. For
moderately large n, it may be possible to retain (3.18) while approximately
log >_1 E(ji, 8) by a linear or quadratic expansion about 8, and thence to obtain
approximate expressions for upper and lower probability inferences requiring
only tables of the normal cumulative and density functions.

Illustrations will be presented in Section 4, 5 where K is replaced by the real
line or more generally by ordinary p-space R”, and the family of discrete densities
= (9) is replaced by a family of densities f(x, 6) defining absolutely continuous
distributions over R?. The upper and lower probability inferences derived for such
illustrations should be conceived as limits of upper and lower probability in-
ferences defined for an approximating sequence of finite multinomial families of
distributions. In fact, however, the inferences will be derived from the obvious
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limiting forms of formula (3.11) and its consequences. In these early stages of
development of generalized Bayesian inference, it seems unnecessary to justify
rigorously this substitution of one limiting operation by another, but it may be
worthwhile to reiterate the heuristic basis of the substitution, first mentioned in
[1]. Consider a sequence of finite partitions K of R? and the corresponding
sequence of families of distributions =‘” (@) over K induced by the family
f(x, 6) over R”. Suppose that the partitions K increase in fineness in such a way
that sums over K approach integrals over R”. It is plausible then that the cor-
responding sequence of expressions (2.15) tends to a similar expression with the
sum over K replaced by an integral over R® and with the discrete densities
= (8) replaced by limiting f(x, 8). From (2.11), the chain of development leads
to (3.7) and thence to (3.11) and formulas for inferences. Note that the definition
of monotone density ratio extends directly to f (%, #), and that Lemma 3.2 extends
directly. As before, the equivalence classes coming from Lemms 3.2 may be
pooled, meaning that the observation space R* may sometimes be replaced by a
simpler partition of itself.

4. Mixture families. If

p=1[1),»p2) - ,pk)] and q = [gQ1), ¢2), -, gk)]
are distinet given points in IT, then the mixiure family
(4.1) =(@) =6p+ (1 — 9)q, for 0=0=<1,

is obviously a family with montone density ratio. It will be supposed, in order to
eliminate irrelevant categories, that at least one of p () and ¢ (¢) is nonzero for
all 7 ¢ K. The equivalence classes K of Lemma 3.2 are sets of ¢ ¢ K for which the
ratio p (¢)/q(¢) is constant, and the implied ordering of the K, is the same as the
numerical ordering of the associated ratios p (2)/q (z). It will be assumed that the
elements of K are arranged to possess an order consistent with that of the K, ,
i.e., an order such that

(4.2) p(1)/q(1) = p(2)/q2) = --- = pk)/qk).
To apply (3.11), it is convenient to set

4.3) P@G) = Xisip@)  and Q@) = Xisiq(),
so that

(4.4) I, 60) = 0P() + (1 — 0)Q@)

for0 < ¢ = 1 and 7 ¢ K. Formula (3.13) reduces to

(4.5) DG, 0) = p(RG) — ¢()HP()

for j ¢ K. Since D (4, 0) does not depend on 4, the first form of H, (9, ) in (3.13)
shows that H; (9, 6) is a linear combination of the likelihood functions defined by
omitting the observations one at a time, where each such likelihood function is a
product of # — 1 monomials in 6. The integrals in (3.15) and (3.16) do not in
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general have simple analytic expressions, but for moderate n it would be easy to
compute sequentially, adding observations one at a time, the coefficients in the
polynomial H, (6, 8) and thence to compute values of the integrals. For larger n,
asymptotic approximations as discussed in Section 3 may be used.

ExampLE 1. Suppose that ¥ = 4 and that the 4 categories arise from a 2 X 2
contingency table

“ == [ 78]

whose margins £ = (1) + »(4) and 9 = 7w (1) + 7 (3) are assumed fixed and
known. Without loss of generality it may be assumed that 0 < £ < 4 < 1. The

family of hypotheses with fixed margins has the form (4.1) where

TS P
7) P [ﬂ 1 —£&—9 and g 7—§& 1—n]°

The arguments in (4.6) are arranged to satisfy (4.2).
If n(¢) denotes the number of sample observations in cell ¢ for ¢ = 1, 2, 3, 4,
then (3.11) specializes to

H ., 6)
= [0 — 6)F-[((A + £ — %) — 208)/ (A — 1) — 6:))
(4.8) + (0~ &) + 20:8)/((1 — 1) — 6:£))?
(@~ 6E)/ (@ — &) + 6E)) + 08/ (0 — £)+ 6:))] 7
[0,

while (3.12) simplifies to
@9) H@®,8) = CEA — OPPYIA — n) — 6"P[(n — &) + 0" Vo™,
and (3.13) yields
(4.10) H:(0,0) = H(@, 0)[E(L — & — n)/((L — n) — 68))
+ EQ + 1 — £)/(0 — &) + 08)) + (§/68)]

Inferences follow directly, but, as remarked above, analytic expressions for the
required integrals are not generally available. An exception occurs when
¢ = 4 = 1. In this case categories 1 and 2 form an equivalence class K; while
categories 3 and 4 form an equivalence class K, . Pooling categories leads im-
mediately to the binomial model which has been treated elsewhere [1], [4].

ExampLE 2. If the finite observation space K is replaced by B?, then the mix-
ture model should specify a pair of density functions f(x) and g (x) for x ¢ R?,
while (4.1) becomes

@.11) U(x,0) = 0f(x)+ (1 —8)gx) for 0<0<I.

The equivalence classes determined by Lemma 3.2 may be labeled by y =
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log [f(x)/g(x)], i.e., points x with a common y belong to the same class and
the order of the classes agrees with the order of y values. Of course, any monotone
strictly increasing function z of y would serve as well for describing equivalence
classes. The model may be reduced to a consideration of z alone, so that (4.11)
is replaced by

(4.12) Vi 0) = 0" e) + (1 — 0)g*() for 0s0=1,

where for simplicity it will be assumed that the induced distributions of z are
absolutely continuous with densities ¢* (2, 9). Similarly, (4.4) is replaced by

(4.13) ¥, 0) = 0F*e) + (1 — 0)G*@) for 0<0=<1
where
(4.14) T, 0) = [Zoy®(u, 0)du. "

Formulas (3.11) through (3.18) apply directly with observations 71, 72, - -+ , jn
replaced by 21, 22, - -+ , 2, With 7 (j1, 9) replaced by ¢*(2;, ), with I (j;, )
replaced by ¥* (2, , 6), and with D (j, 0) and E (7, 8) replaced by

(4.15) D, 8) = f*@)6* @) — g*@)F* )
and
(4.16) E(, 6) = D, 0)/4*(z, 9).

In particular, f and ¢ could be taken to be multivariate normal distributions
with different means but common nonsingular covariances. Then y would be a
linear function of x and z could be chosen by a further linear transformation so
that

(4.17) f@)=ek—2a), ¢*@) =oC+a),
F*@) = ¢ —4), G*¢)=2a@E+A),

for some A > 0, where ¢ and & denote the density and cumulative distribution
funetions of the standard N (0, 1) distribution.

5. Location or scale parameter families. A location parameter family of
distributions on the line may be represented by the family of density functions
f@ —0)on —w <z < o, where 6 is a location parameter on — w0 < § < o
and f or F specify a given absolutely continuous distribution on the line. This
location parameter family has a monotone density ratio with the ordering of
equivalence classes (Lemma 3.2) agreeing with the ordering of observables if and
only if for each ¢ > 0 the ratio f(x 4 ¢)/f () is a monotone nonincreasing function
of z for all z such that the ratio is not of the form 0/0. Under this condition,
formula (3.9) yields

H01,0,) = C[(F(z — 6.)/f(x — 6:)) + ((1 — F(x—6,))/f(x—6:))"
(5.1) if fx—8)>0 on 6,656,
=0 otherwise,

where = denote a single observation.
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Under exponentiation a location parameter family becomes a scale parameter
family, so that the theory of the preceding paragraph may also be applied to
scale parameter families. It is convenient, however, to have the monotonicity
condition and the formula for H (6, , 6;) expressed directly in terms of the density
g (x) and cumulative G'(z) on > 0 which determine the scale parameter family
with densities 6 g (z6™") for § > 0. This scale parameter family has a monotone
density ratio with ordering of equivalence classes agrecing with ordering of ob-
servables if and only if for each w > 1 the ratio g (xu)/g(x) is a monotone non-
increasing function of z for all z such that the ratio is not of the form 0/0. The

analog of (5.1) is
H(6:,6,) = C[(Gb)/0 g (@8 ")) + ((1 — G(abs"))/6x g (@8 "))
(5.2) if g@d™)>0 for 6, <0 <6,
=0 otherwise,

for a single observation z > 0.

Two examples of location parameter families and two examples of scale param-
eter families will now be introduced.

ExampiE 3. Uniform location parameter family. Take

(5.3) flx) =1 for 0 =251,

=0 otherwise.
When0 < ¢ = 1,

fe+t)/f@) =4+« i —t=22<0

(54) =1 if 0fsx=1-1¢

=0 if t—-1<z<1,
and is of the form 0/0 for other values of . When ¢ > 1,
(5:5) f@e+t)/fl@)=+o i —t=z=1-1

=0 if 0

A

z =1,

and is of the form 0/0 for other values of . The required monotonicity property
is therefore satisfied. From (5.1)

(56) H@®1,0)=Cl+6—6]" for x—1=6 =<6

=0 otherwise.

liA

,

The H (6 , 6;) function appropriate for a sample of n observations z,, 2, - - - , @,
is the product of the H (6;, 6;:) functions yielded by the individual observations,

namely

(5.7) HG,0)=C1+6—6]" for 2u—1=6=26= 2,

i

=0 otherwise,
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where z, and ) denote respectively the minimum and maximum of the n
sample observations.

Considered as a bivariate cumulative distribution function, H (8; , 6;) in (5.7)
assigns all its probability to the closed triangle 22z — 1 < 6, < 6, < z,, which is
illustrated in Figure 1. The measure is conveniently considered as a sum of four
measures. Writing

(5.8) d=x,— (zx — 1),

the first eomponent measure consists of

(5.9) caQ+d

located at the point 6, = zy — 1, 6, = z,, . The second component consists of
(5.10) cn—a+a

distributed continuously along the line segment 6, = zyy — 1, 2y — 1 < 6 < 2w
according to the density function

(5.11) T m F 0 — zy 1)L

The third component is the mirror image of the second, along the line segment
Zy — 1 =6 £ 2, 02 = &,n, while the fourth component consists of

(5.12) C'lnd — 1+ 1+ d)™

distributed continuously over the triangle z,y — 1 < 6; < 6, £ x,, according to
the density function

(5.13) C'nn 4 1)1 + 6, — 6,)™ %

Summing the four components and setting the total probability to unity, one
finds

(5.14) C'(nd + 1)
62
X f-——---
|
Xy~ 1= ! :
o
: : Y
=1 x, !

Fig. 1. The shaded triangle represents the region of closed intervals [6; , 6;] which carry
posterior probability one in Example 3.
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As illustrations of the inferences implied by (5.7) it is easily checked that

(5.15) PPre<t)= mt—au+1)+1)/(nd+1)
while
(5.16) Pr@<t)=n(t—2zx+1)/(nd+ 1)

forzy — 1 =2t 2.

Example 3 has the interesting feature that, unlike the other examples of this
paper, the differences between meaningful upper probabilities and their cor-
responding lower probabilities do not tend to zero as sample size increases. This
phenomenon is associated with superefficient estimation. Since for given 8

(5.17) §=nd

has in the limit as n — o« a standard exponential distribution, it might be ex-
pected that various exponential approximations would be satisfactory for large n.
For example, (5.9) is approximately C’ exp (—8), and setting¢ = n(0 — za 4+ 1)
one may approximate (5.11) and (5.13) by

(5.18) ' C’ exp (—6)
for0 < ¢ = 8 and ‘
(5.19) C"exp (—[¢2 — 1))

for 0 < ¢ < ¢ = 4, respectively. Correspondingly, (5.15) and (5.16) may be
written

(5.20) P'o=<h)y=GR+1)/6G+1)
and
(5.21) Py =h)y=h/(3+1)

for 0 £ h =< §, respectively, exactly for any n.

ExampLE 4. Normal location parameter family. If f(x) is taken to be
¢(x) = 2% exp (—1a%), the ratio f(z + )/f(x) becomes exp (—at — %)
which is monotone decreasing in z for all £ > 0. Given a sample 2, %2, * -« , Z»
the inferences about 6 are determined from (3.11) which takes the specific form

(5.22) H(0:,6) = CI[Filexp G — 6:))®(@: — 6)
+ exp (@ — 6)"){1 — @ (2 — 62)}]7.

Since the distribution defined by (5.22) is absolutely continuous over the half
plane — » < 6; < 6, < o, formulas (3.16) and (3.17) may be used for the calcu-
lation of upper and lower probabilities. The functions H (61, 6:), H (9, 8), and
H; (8, 8) appearing in (3.16) and (3.17) are given respectively by (5.22),

(5.23) H®,0) = C"exp (—4(m — 1)§ — [z — 67),
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and

(5.24) Hy(0,0) = H(9,0) 2ia E(x:, 0),

where

(5.25) E(z,0) = ¢(x — 0) + [z — 6]®(x — 0),

and Z and s° denote the conventional sufficient statistics
(5.26) E=n" Dt and &= (n — 1) D0y w; — &

which do not, however, determine the inferences.

The integrations required by (3.16) and (3.17) could be carried somewhat
further analytically, but the results are not very elegant, nor are they practically
convenient since n bivariate normal table lookups are indicated for each integral.
Numerical approximations will be required for practical use, but these are not de-
veloped here.

Exampre 5. Exponential scale parameter family. When ¢g(x) = 1 — G(z) =
exp (—z), formula (5.2) becomes

(5:27) H 6, 6) = Cl{6 — 0} + 0™

on0 = 6; < 6, < . More generally, given a sample &1, 2, - - - , Z,, , the infer-
ences are determined by

(5.28) H@,6) = C T l{6, — 6} + 07,

for0 £ 6 £ 6, < . As always

(5.29) H,0) = C'6"exp (— > 11 2:/6)

gives the ordinary likelihood funection of 8. The function H; (6, 8) required for
(3.16) and (3.17) is
(5.30)  Hi(6,0) = H@, 6) 23 (1/6)[((wi/8) — 1) + ¢ "]
= T I(/0) — n) + e
where { = Z{‘ z; denotes the ordinary sufficient statistic which no longer com-
pletely determines the inferences.
Regarded as a density function, H, (6, ) is a linear combination of densities of

random variables which are scaled inverses of random variables with gamma,
densities. Thus, setting

(5.31) Co(w) = (1/T(n)) [§ 0" e " dv,
it is easily checked that
[6: Hy (9, 0) do
(5.32) = C'[0 (0 + 1)¢7"{Coya (t/0:) — Cra (t/65)}
— nl () {Cra (t/01) — Cayai(8/62)}
+ 2 T ) @+ ) "{Cu((t + @:)/61) — Cul((t + @:)/62)}].
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The normalizing constant C” follows from the relation 1 = p* (0, =]) =
Jo Hi(6,8) db, so that (5.32) may finally be given as

o Hi(8,0) d8 = [{Cor1(t/61) — Cuy1(t/62)} — {Ct/61) — Cn(t/8:)}
(5.33) + 2B {Ca (4 20)/61) — Cul((t + 2:)/62)}
(1 @)/ (U @/))T

From (5.28), (5.29), and (5.33) together with the general formulas (3.16) and
(3.17), expressions for P*([6:, 6:]) and Py ([6: , 6:]) may be immediately written
down.

These inferences may be compared with the inferences yielded by a formal
Bayesian analysis with prior pseudodensity § . For the latter,

(5.34) P*(61, 6]) = Pu(l6r, 6:]) = Ca(t/6:1) — Cal(t/62).

It is clear that for large n the inferences become indistinguishable. For small n,
(5.33) offers as a tradeoff for increased complexity, the use of a logical system
which does not demand the introduction of a necessarily somewhat arbitrary prior
distribution.

ExamprLE 6. Normal scale parameter family. Take for g (xz) and G (z),¢ (x) and
¥ (x) defined as

(5.35) V() = 2¢() = ©2/r) exp (—32")
and
(5.36) V(x) =20() — 1= [5¢u)du

Since ¢ (zu)/¥ (z) = exp (—i[w’ — 1]z) is monotone decreasing in z for fixed
u > 1, formula (5.2) may be applied directly. More generally, formulas (3.11)
through (3.17) apply directly to a sample 21, 22, - -+ , 2, . In particular

(5.37) H{@,0) = e exp (—3% Z?ﬂl x{"/@)
and
H1(6,6) = H®,0) 2 im E(x,0)
(5.38) = C"07" exp (—% Diter 2l /0)[ D i { (wi/O )Y (2:/6)

+ [(z:/8)" — 11% (x:/0)}].

As with the normal location parameter example, integration of (5.38) will re-
quire numerical techniques as yet undeveloped.
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