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Abstract The goal of this work is to detect and track the

articulated pose of a human in signing videos of more than

one hour in length. In particular we wish to accurately lo-

calise hands and arms, despite fast motion and a cluttered

and changing background.

We cast the problem as inference in a generative model

of the image, and propose a complete model which accounts

for self-occlusion of the arms. Under this model, limb de-

tection is expensive due to the very large number of possible

configurations each part can assume. We make the following

contributions to reduce this cost: (i) efficient sampling from

a pictorial structure proposal distribution to obtain reason-

able configurations; (ii) identifying a large number of frames

where configurations can be correctly inferred, and exploit-

ing temporal tracking elsewhere.

Results are reported for signing footage with challeng-

ing image conditions and for different signers. We show that

the method is able to identify the true arm and hand loca-

tions with high reliability. The results exceed the state-of-

the-art for the length and stability of continuous limb track-

ing.
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1 Introduction

We investigate the task of articulated pose estimation and

tracking of a person using sign language in long sequences

of continuous video. Our work is motivated by a long term

goal of automatic sign language recognition (Buehler et al.

2009), where extraction of the hand position and shape is

a pre-requisite. Our source material is the signing which

typically accompanies TV broadcasts, such as BBC news

footage or educational programs. As illustrated in Fig. 1,

this is very challenging material for a number of reasons, in-

cluding self-occlusion of the signer, self-shadowing, motion

blur due to the speed of motion, and in particular the chang-

ing background (since the signer is superimposed over the

moving video).

1.1 Related Work and Motivation

Previous approaches for hand localisation and tracking in

signing video have concentrated on locating the hands by

using their skin colour (Cooper and Bowden 2007; Farhadi

et al. 2007; Starner et al. 1998) or by hand detectors based

on “Viola & Jones” (Viola and Jones 2002) sliding-window

classifiers (Kadir et al. 2004; Ong and Bowden 2004) using

Haar-like image features and AdaBoost training. However,

methods concentrating solely on the hands suffer when the

hands overlap, or are in front of the head, and lose track due

to the ambiguities which routinely arise. Ultimately, identi-

fying the wrist position, hand angle, and assigning hands to

be left or right with these approaches is not robust enough

for reliable performance on long sequences.

mailto:patrick@robots.ox.ac.uk
mailto:M.Everingham@leeds.ac.uk


Int J Comput Vis (2011) 95:180–197 181

Fig. 1 Challenges for upper-body pose estimation. There are a number

of image characteristics which render arm and hand detection ambigu-

ous: (a) Shading and self-occlusions significantly change the appear-

ance of the left arm. Note, here and in the rest of the paper, ‘left’ refers

to left in the image, rather than the person’s left arm; (b) Similar fore-

ground and background colours render the colour cue less informative;

(c) Motion blur removes much of the edge and illumination gradients

of the arms; (d) Proximity of the two hands makes the assignment to

left and right hand ambiguous. Note also that the background changes

continuously

The solution to these problems that we adopt here is to

use the arms to disambiguate where the hands are. This is

taking on a larger pose estimation problem (since now mul-

tiple limbs must be located) but in the end the constraint

provided by the arms is worth the cost. Our approach is able

to find the correct pose of the arms in hour-long continuous

signing sequences, even though the background is complex

(see Fig. 1), constantly changing (hence background sub-

traction would perform poorly), and can even contain other

people. Furthermore, the arms move quickly, can be signifi-

cantly foreshortened, do not follow simple motion patterns,

and have a similar colour to the torso.

There has been much previous work on 2D human pose

estimation, mainly using pictorial structures (Felzenszwalb

and Huttenlocher 2000; Fischler and Elschlager 1973) based

on tree-structured graphical models. Their great advantage

is the low complexity of inference (Felzenszwalb and Hut-

tenlocher 2005) and hence they have been used in numer-

ous applications (Ramanan et al. 2005; Ramanan 2006;

Sivic et al. 2006). While the run-time performance is very

compelling, this approach has several limitations as a con-

sequence of the independence assumptions implied by the

Fig. 2 Inherent drawbacks of tree-structured pictorial structure mod-

els. For the input images in (a), the corresponding images in (b) show

arm configurations with high posterior probability under a tree-struc-

tured pictorial structure model; images in (c) show arm configurations

estimated using the proposed method. (b, left) An example of ignoring

evidence—the model only explains the foreground, i.e. pixels which

are covered by the model. Each of the arm parts lie on the appropriate

colour, even though this leaves skin pixels (the true hand) unexplained.

(b, middle) An example of over-counting of evidence—each pixel can

erroneously contribute evidence for multiple parts. In this example, the

left and right hand of the estimated configuration are predicted to oc-

cupy the same image area. (b, right) If occlusions are not modelled

correctly, the estimated upper and lower arms are very unlikely to lie

at their true locations, which are occluded by the hand—note the esti-

mated position of the left elbow marked with a cross

use of a tree-structured model (see Fig. 2): (i) ignoring

evidence—only pixels which are covered by the model con-

tribute to the overall probability of a given limb configu-

ration, i.e. any negative evidence (such as a skin coloured

region in the background) is missed; (ii) over-counting of

evidence—pixels can contribute more than once to the cost

function and hence multiple parts can explain the same

image area (as noted also by e.g. Sigal and Black 2006);

(iii) no/poor modelling of occlusions.

To overcome problem (ii) of over-counting, Lan and Hut-

tenlocher (2005) augment the tree-like topology in order to

capture correlations between pairs of parts not connected

in the tree. Jiang (2009) finds the pose of a person in rel-

atively uncluttered and static images by maximally covering

extracted foreground silhouettes with an articulated model

of the body.
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Problem (iii) of un-modelled occlusions arises because

tree-structured models limit the possibility of modelling oc-

clusions to those between parent and child in the tree struc-

ture (Kumar et al. 2009) (though allowing individual parts to

be occluded requires a doubling of the number of states for

each part). One possible solution is to use multiple trees,

but this also incurrs additional computational cost (Wang

and Mori 2008). Alternatively, the restriction to trees can

be removed. For example, Kumar et al. (2004) introduce

a binary occlusion indicator for every part, and Sigal and

Black (2006) approximate the global image likelihood us-

ing per-pixel binary variables which encode the occlusion

relationships between parts. Both approaches sacrifice the

computational efficiency and global optimality of inference

in tree-structured graphs, and instead use variants of loopy

and approximate belief propagation for inference.

Instead of tackling the main drawbacks of pictorial

structures, other work has focused on improving appear-

ance models for the individual parts. Gradient based cues

have been used to design better part detectors, for exam-

ple based on templates of Histogram of Oriented Gradi-

ents (this work), variants of shape context descriptors (An-

driluka et al. 2009), or discriminatively learned Histogram

of Oriented Gradients descriptors (Johnson and Everingham

2009). Eichner and Ferrari (2009) have improved the colour

cue by exploiting relations between the appearance of dif-

ferent body parts.

Other approaches detect the pose of a person by iter-

atively assembling a person from low-level features, from

part detections, or from locally optimal candidate configura-

tions (Fleck et al. 1996; Micilotta et al. 2005; Siddiqui and

Medioni 2007); or by learning a direct mapping from the

image to the 3D pose (Agarwal and Triggs 2006).

1.2 Outline

We present a model which addresses the identified problems

of (i) ignoring evidence, (ii) over-counting, and (iii) lack of

occlusion modelling. The model includes an articulated part

configuration for the foreground and also a model for the

background. Every pixel in the image is generated using

the part model or the background model. Self-occlusions

are taken properly into account on a per-pixel basis and

hence parts can be partially or fully occluded. In addition,

the depth ordering of the two arms is modelled to indi-

cate which arm is closer to the camera. Our model is sim-

ilar in form to some previous work (Fossati et al. 2007;

Kumar et al. 2005; Lee and Cohen 2006; Lin et al. 2007;

Sigal and Black 2006) and described in detail in Sect. 2.

Although we show that the pose with minimum cost corre-

lates well with the true configuration of the upper body, it is

too expensive to fit exhaustively. Consequently, we propose

inference methods which avoid such search, but achieve ac-

ceptable results. Inspired by the work of Felzenszwalb and

Huttenlocher (2005), we propose a sampling-based method

for single frames where a pictorial structure is used as a

proposal distribution (Sect. 3). Modifications to the sam-

pling framework are introduced to generate a higher num-

ber of samples around the true arm configuration. Most no-

tably this is achieved by sampling from the max-marginal

rather than the marginal distribution. Temporal information

is added by identifying “distinctive” frames for which the

correct pose of the signer can be detected with high accu-

racy, and subsequently linking these frames by tracking pose

configurations (Sect. 4). The advantage of this method is in-

creased robustness and accuracy since temporal information

helps to resolve otherwise ambiguous frames. Furthermore,

execution time is reduced since the arm configuration in all

non-distinctive frames can be found by tracking over time,

which is faster than using a sampling-based approach. We

evaluate our model and inference procedures on continuous

signing footage taken from BBC broadcasts, using ground

truth annotations. Quantitative results are reported in Sect. 5.

Finally, Sect. 6 offers conclusions and directions for future

work.

This submission is an extended version of our BMVC

2008 paper (Buehler et al. 2008). In addition to more de-

tailed exposition and experiments, we present here revised

methods for appearance modelling of the arms which re-

duces the requirement for training data, an improved proce-

dure for segmentation of the head and torso, and more prin-

cipled methods for the identification of distinctive frames.

2 Generative Hand and Arm Model

This section describes our generative model which explains

every pixel in the image and hence also takes into account

the background as well as occlusions. We start by intro-

ducing our complete cost function which assigns a cost

to a given configuration of the upper body. To reduce the

complexity of modelling and inference, the pose estimation

process is divided into two stages: First, the shape of the

head and torso and the position of the shoulders are esti-

mated (Sect. 2.3). Second, the configuration of both arms

and hands are estimated as those with minimum cost given

the head and torso segmentations. We describe the cost in

this section, and then methods for obtaining the minimum

cost efficiently in Sects. 3 and 4.

In the following, we refer to the arm on the left side of

the image as the “left” arm, and respectively the arm on the

right side of the image as the “right” arm.

2.1 Complete Cost Function

Formally, given a rectangular sub-image I that contains the

upper body of the person and background, we wish to find
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Fig. 3 (Color online) Overview of pose estimation process. Pose es-

timation for a given image (a) is performed using colour-based likeli-

hoods (b) and likelihoods based on image gradients (c) (Sect. 2.2). The

colour term in (b) is visualised by assigning the posterior probability

for skin and torso to red and green colour channels respectively. The vi-

sualisation of the gradient term in (c) shows, for a given HOG template

with fixed orientation and foreshortening, the likelihood at all locations

in the image, where red indicates high likelihood. The example shown

is for the right lower arm with orientation and foreshortening set to the

ground truth values. Note the maximum is at the true centre of the right

lower arm in the image. Using the colour term (b) the head and torso

can be segmented (d) (Sect. 2.3). The arm pose (e) is then estimated

using the predicted torso and head shape, and both colour and gradient

terms (Sect. 3)

Fig. 4 Upper body model. The pose is specified by 11 parameters—5

for each arm and an additional binary parameter d indicating which

arm is closer to the camera and hence visible in the case that the arms

overlap. The shape of the head and torso and position of the shoulders

are estimated in a pre-processing stage separate to estimation of the 2D

arm configuration

the arm and hand configuration L = (l1, l2, . . . , ln, d) which

best explains the image, where {li} specifies the parts (limbs)

and d is a binary variable indicating the depth ordering of the

two arms. In our application we deal with n = 6 parts: the

left and right upper arms, the lower arms and the hands. The

appearance (e.g. colour) and shape of the parts are learned

from manual annotation of a small number of training im-

ages (see Sect. 2.2). The background is continuously vary-

ing, and largely unknown.

Every part li = (si, αi) is specified by two parameters:

(i) an anisotropic scale factor si which represents the part’s

length relative to its width, in order to model foreshorten-

ing of the part due to out-of-plane rotation; (ii) orientation

αi representing in-plane rotation. Each part is connected to a

single “parent” part such that the connections are in the form

of a kinematic chain for the left and right arm respectively

(see Fig. 4). While the upper and lower arm can each un-

dergo foreshortening, the scale parameter for the two hands

is fixed. By searching over the scale si for each part, our

model can infer the correct arm configuration even in highly

foreshortened cases, for example when the signer points to-

wards the camera.

We define the probability of a given configuration L con-

ditioned on the image I to be

p(L|I) ∝ p(L)

N
∏

i=1

p(ci |λi)
∏

j∈{LL,LR}

p(hj |lj ) (1)

where N is the number of pixels in the input image, ci is the

colour of pixel i, and hj is a HOG descriptor computed for

limb j (see Sect. 2.2). The complete cost function is then

defined as the negative logarithm of (1).

This cost function incorporates two appearance terms

modelling the agreement between the image I and configu-

ration L. The first, p(ci |λi), models the likelihood of the ob-

served pixel colours. Given the configuration L, every pixel

of the image is assigned a label λi = �(L, i) which selects

which part of the model is to explain that pixel (background,

torso, arm, etc.). The depth ordering of the two arms is given

by the binary variable d which specifies which arm is closer

to the camera and hence visible in the case that the arms

overlap. The “labelling” function �(L, i) is defined algo-

rithmically essentially by rendering the model (Fig. 4) in

back-to-front depth order (the “painter’s algorithm”) such

that occlusions are handled correctly. For a given pixel, the

colour likelihood is defined according to the corresponding

label (see Sect. 2.2). Note that the pixel-wise appearance

term is defined over all pixels of the image, including back-

ground pixels not lying under any part of the upper body

model.

The second appearance term, p(hj |lj ), models the like-

lihood of observed gradients in the image. This is based on

HOG descriptors for the left and right lower arms (referred

to in (1) as “LL” and “LR”). Both likelihood terms are de-

scribed in more detail in Sect. 2.2.
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The third term, p(L), models the prior probability of con-

figuration L. This places plausible limits on the joint angles

of the hands relative to the lower arms, and enforces the

kinematic chain. The priors here are modelled as uniform

in a pre-defined range, i.e. as simple constraints, in contrast

to the spring-like quadratic costs between parts used in most

previous work (Felzenszwalb and Huttenlocher 2000).

2.1.1 Complexity of Inference

There are 11 degrees of freedom in the model: 5 for each

arm and 1 for the depth ordering. The state spaces of the

arm parts are discretized into 12 scales and 36 orientations.

The hand orientation is restricted to be within 50 degrees

relative to the lower arm and discretized into 11 orientations.

Hence, the total number of possible arm configurations is

2×((12×36)2 ×11)2 ≈ 1013. Brute force optimisation over

such a large parameter space is not feasible—the method

described in Sect. 3 addresses this problem using a sampling

approach.

2.2 Implementation Details

This section discusses how the likelihoods are computed

for a given configuration L (which in turn defines the pixel

labelling). The extent of user input necessary to learn the

model is also described.

2.2.1 Colour Cue

The colour distribution for each of the body parts is mod-

elled by a mixture of Gaussians using manually labelled

data. Signed TV broadcasts are typically recorded in studio

environments with controlled and constant lighting. There-

fore, the foreground colour distribution can be learned from

just a few training frames (see Sect. 2.4). Since the signer

appears only in a corner of the employed TV footage, the

background colour distribution is learned online from the

remaining image area. This distribution is modelled by an

RGB histogram and updated every frame to account for the

changing background.

Having learned the colour distributions for each body

part, every image pixel i with colour ci is assigned a likeli-

hood p(ci |λi) for each label λi . Given a hypothesised con-

figuration of parts L, which implies a label λi for each pixel,

the agreement with the image in terms of colour is evaluated

by lookup of the colour likelihoods according to the corre-

sponding pixel labels (1).

2.2.2 Histogram of Gradients Cue

In previous work the appearance of the different parts has

typically been described using edge information at their

boundaries. In our case these boundaries are often weak and

unreliable cues, due to motion blur, self-occlusions, shad-

ing, and strong folds in the clothing, as well as due to the

sleeves having the same colour as the torso (see Fig. 1). We

exploit both boundary and internal features to determine the

position and configuration of a part using Histogram of Ori-

ented Gradients (HOG) templates (Dalal and Triggs 2005;

Tran and Forsyth 2007). The HOG descriptor represents the

local distribution of image gradient orientation, over a grid

of spatial bins. Two stages of contrast normalisation are ap-

plied to give invariance to photometric variation. Employing

the HOG descriptor allows the appearance term to capture

not only boundary edges but also internal edges. The agree-

ment between the template of a given part with configuration

li and the HOG descriptor of the image is evaluated using a

distance function, described below.

A HOG template for each part, scale and orientation is

learned from manually labelled images for which the pose

of the upper body is given (see Fig. 5). The individual tem-

plates are computed as the mean over all training examples,

and hence each template can be seen as a rotated and scaled

version of every other template. Note that in Buehler et al.

(2008) templates for a specific scale and orientation were

learned only from training examples with similar scale and

orientation. Although this allows modelling of effects such

as gradient orientations due to the light source (and there-

fore independent of limb orientation), we found that in prac-

tise equal performance can be obtained by pooling examples

across orientation and scale, requiring less training data.

The likelihood function for the HOG appearance term,

p(hj |lj ), is evaluated by computing the L2 distance be-

tween the image and the template and normalising to the

range [0,1]. In our experiments we compute the HOG ap-

pearance term for the left and right lower arms alone (i.e. not

for the upper arms) since these are most often not occluded,

and provide the strongest constraint on the wrist position.

In contrast, occlusion of the upper arms, e.g. by the lower

arm, is very common in signing and therefore we would not

expect pose estimation to benefit greatly from adding upper

arm cues.

2.2.3 Hand Labelling

As shown in Fig. 4, rectangles are used to model upper and

lower arm parts when assessing the corresponding colour

likelihood terms. While a rectangle is an adequate model for

the arm parts, it is insufficient for the hands since they can

assume many different shapes. Instead, � is defined to label

a pixel as hand only if it is contained in the rectangle corre-

sponding to the hand part and if the pixel is skin-like (that is,

if the colour is more likely to be hand than any other part).

In effect this allows the hand shape to vary within the hy-

pothesised oriented bounding box. For example, in Fig. 3(e),
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Fig. 5 HOG template learning. The training data comprises images

with the position of the lower arms manually annotated. To capture

the inherent shape and internal features of the arm several templates

are computed for each arm at different orientations and scales. This

is illustrated for the right arm at horizontal orientation and maximum

scale (i.e. no foreshortening) (a, c–e), and for the left arm at an ori-

entation of 30 degrees and scale of 0.75 (i.e. foreshortening of 25%)

(b, f–h). All training examples are used during training, independent

of the target orientation and scale. Given a target orientation and scale,

the lower arm is cropped and its co-ordinate system transformed (c, f)

to match the target parameters. The HOG descriptor for every example

is computed (d, g) and the mean over all examples used as the final

template (e, h)
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only pixels inside the two yellow hand rectangles and with a

higher likelihood under the skin colour model than the torso

or background colour models (see Fig. 3(b)) would be la-

belled as hand.

2.3 Head and Torso Segmentation

In a similar manner to previous work which has adopted

a multiple stage approach to pose estimation (Ferrari et al.

2008; Navaratnam et al. 2005) in order to reduce ambiguity

and computational expense, our method detects the shape

of the head and torso and the position of the shoulders in

a first stage before estimating the arm configuration. This

two step approach is motivated by the restriction to frontal

signing and the characteristic shape and colour of the torso

which depends only weakly on the position of the arms (this

is especially true if the sleeves and the torso share the same

colour). This allows us to efficiently segment the head and

torso with very high accuracy in a first stage, such that the

explanation of the complete image by head, torso and arms

in the second stage has high fidelity to the true segmentation.

Note that this approach does not negatively influence (but

rather helps) the subsequent arm pose estimation because of

the precision of the estimated head and torso shape.

The benefits of this approach are: (i) a reduced search

space by subsequently assuming known (and fixed) position

of the head, torso and shoulders; (ii) a fast method described

in Sect. 4 to identify frames where the pose can likely be es-

timated with high confidence based on counting the number

of hand-like objects on the torso.

We approach the problem of segmenting the head and

torso using multiple candidate shapes as templates (binary

masks) and fitting these templates to the image using a sim-

ple two part pictorial structure model (see Fig. 6). Each part

is specified by four degrees of freedom: 2D position, ori-

entation and (isotropic) scale. The posterior distribution for

this two part model is similar to (2) but here the appearance

term uses only part-specific colour distributions, while the

Fig. 6 Overview of head and torso segmentation. Candidate masks of

the head and torso are fitted to the image using a pictorial structure

model with two parts. The maximum a posteriori (MAP) segmentation

is restricted to the head and torso shapes provided by the masks. In

contrast, our method is based on a weighted nonlinear combination of

the masks and hence achieves a more accurate segmentation. The po-

sition of the shoulders (crosses) is obtained by projecting the position

of the shoulders from the torso masks into the image

prior probability of a configuration enforces that the head

is connected to the neck. For a given template, orientation

and scale, the appearance term at every position is computed

by convolution of the pixel-wise likelihoods under the torso

colour model with the template. The final appearance term

for the torso is then defined for each pixel individually as

the maximum over all orientations and scales. Appearance

terms for the head are computed in a corresponding manner,

using the head shape templates and skin colour model.

Evidence from all the candidate shapes is combined to

estimate the segmentation of the head (and similarly for

the torso): (i) The posterior probability pH (x, y|I) of the

head being at any given spatial position (x, y) in the im-

age is computed. This requires marginalising over all possi-

ble torso configurations, which can be performed efficiently

due to the restriction to tree-like topologies (see Sect. 3.2).

In most cases pH is unimodal, with a single peak centred

on the MAP estimate. (ii) Sharpening is applied to amplify

the mode(s): p′
H (x, y|I) = pH (x, y|I)ν with ν > 1. This

is necessary since the posterior probability for the picto-

rial structure model is defined only up to a multiplicative

constant. (iii) The sharpened distribution is then convolved

with all head templates to obtain a score for each pixel:

sH (x, y|I) =
∑nH

i=1 wip
′
H (x, y|I) ∗ Mi . This score indicates

if a pixel belongs to the background or to the head. The total

number of head templates, including rotated and scaled vari-

ants, is referred to as nH , and Mi denotes the binary mask

of template i. The weight wi is defined as the maximum re-

sponse of template i over all (x, y) positions. The resulting

value is taken to the power of η (η > 1) to effectively sup-

press head templates which do not describe the image well.

The definition of the response is identical to the appearance

term at the start of this section, and is computed by convo-

lution of the pixel-wise likelihoods under the head colour

model with the template mask Mi . (iv) A threshold ζ is ap-

plied to sH (x, y|I) to classify each pixel as either head or

background.

The segmentation of the torso is estimated in a corre-

sponding fashion, marginalising over the head configura-

tion. The position of the shoulders is similarly estimated as

the weighted linear combination of the shoulder positions in

each template. The parameters were estimated empirically

and fixed to ν = 7, η = 10 and ζ = 0.2 maxx,y sH (x, y|I).

Note that the exact values of these parameters are not cru-

cial to performance.

The approach described above differs from the origi-

nal method reported in Buehler et al. (2008) in that we do

not rely on a correct MAP estimate of the head and torso

parts but instead use the (sharpened) marginal probability

for each part (see step (i)). Note also that combining infor-

mation from multiple templates by marginalisation allows

the method to adapt the shape of the segmented body parts

beyond the fixed set of training templates (see Fig. 6).
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2.4 Learning the Model

Manually labelled data is required to learn the part-specific

colour distributions, to build the head and torso model,

and to create HOG templates. The colour distributions are

learned from 5 frames, in which the visible area of each

part has been segmented manually. For head and torso seg-

mentation the shapes of 20 examples are provided manually.

Note that the shapes of the head and the torso do not de-

pend on possible occlusions from the hands and arms. HOG

templates are learned from 39 images where the true arm

configuration is manually specified. We achieved the best

results using a HOG descriptor with cell size of 8 × 8 pix-

els, block size of 2 × 2 cells, and 6 orientation bins spaced

over 0–180◦, i.e. using unsigned gradients (Dalal and Triggs

2005).

3 Computationally Efficient Model Fitting

As will be demonstrated in Sect. 5, the minimum of the

complete cost function in (1) correlates very well with the

true arm configuration. However, the vast number of pos-

sible limb configurations makes exhaustive search for a

global minimum of the complete cost function infeasible.

In Sect. 3.1 we propose an effective approximation where

the arms are fitted sequentially. Section 3.2 shows how this

approximation can be combined with a fast approach based

on sampling.

We will see in Sect. 4 that this sampling-based approach

is used only to identify frames where the pose can be es-

timated with high confidence. In the following, we refer to

these frames as distinctive frames. To reduce runtime com-

plexity, the pose in each of the remaining frames is then es-

timated using a tracking-based approach initialised by the

pose estimated for the distinctive frames.

3.1 Iterative Arm Fitting

The configuration of the arms is estimated in two passes.

First, the best location of the left arm alone is found (with

no right arm), then the best location of the right arm while

keeping the left arm fixed at its best location. The process

is then repeated with the ordering reversed, that is the right

arm is fitted first. The minimum complete cost configuration

is then chosen as the final result.

Performing two passes in this way, with the arms fitted in

each order, is essential to avoid ambiguities in the hand as-

signment. For example the fitted left arm can in some cases

claim the right hand, and leave only unlikely positions for

the right arm. When reversing the ordering, the right arm

will claim its true location while also leaving the likely po-

sitions for the left arm. Our results indicate that this heuristic

is a good approximation of the exhaustive search.

3.2 Sampling Framework

Fitting the arms iteratively reduces the search complexity

from O(N2) to O(N) in the number of single arm config-

urations, but is still computationally expensive. We there-

fore combine iterative arm fitting with a stochastic search for

each arm, using an efficient sampling method (Felzenszwalb

and Huttenlocher 2005) to propose likely candidate config-

urations. This reduces the complexity well below O(N) by

sampling 1,000 possible configurations for each arm. We

also investigated inferring the configuration of both arms

jointly. However, we found that an impractically high num-

ber of samples is necessary to obtain pose estimates that are

of comparable accuracy.

Tree-structured pictorial structures are well suited for

sampling-based inference since samples can be drawn ef-

ficiently from the corresponding distribution (Felzenszwalb

and Huttenlocher 2005). However, as noted in the introduc-

tion this model has several shortcomings e.g. the suscepti-

bility to over-count evidence. We show that by combining

this sampling framework to hypothesise configurations with

our complete cost function to assess the quality of the sam-

pled configurations, we obtain the robustness of our com-

plete generative model with the computational efficiency of

tree-structured pictorial structure models.

The posterior distribution from which samples are drawn

is given (Felzenszwalb and Huttenlocher 2005) by

p(L|I) ∝ p(L)

n
∏

i=1

p(Ci |li) (2)

where L = (l1, . . . , ln) defines the configuration of each part

and Ci refers to the pixels covered by part i. p(L) is defined

as in Sect. 2 and places plausible limits on the joint angles

of the hands relative to the lower arms.

The appearance term p(Ci |li) is composed of the product

of pixel likelihoods within the rectangular body part region,

using colour distributions modelled by mixtures of Gaus-

sians, and edge and illumination cues added through HOG

descriptors. Note that our appearance terms differ from pre-

vious work (Felzenszwalb and Huttenlocher 2005) in that

we do not make use of a “centre-surround” filter, which as-

sumes a body part is surrounded by a region of differing

colour. As demonstrated in Fig. 7, this approach is not suit-

able for our domain, where the arms are often in front of the

torso, since the arm and torso are typically similar in colour.

A consequence is that the bottom-up appearance cues are

more ambiguous, a difficulty overcome by modification of

the sampling procedure (Sect. 3.3) and verification using the

complete cost function (Sect. 2.1).

Sampling from (2) is facilitated by the restriction to tree-

like topologies and can as a result be performed iteratively



188 Int J Comput Vis (2011) 95:180–197

Fig. 7 (Color online) Influence of centre-surround filters on colour

likelihood. For each pixel in image (a), the probability under the torso

colour model is evaluated (b). The response of the right lower arm

part assuming known orientation and foreshortening is computed us-

ing (c) a solid rectangle filter, or (d) a centre-surround filter. The filters

are displayed in the upper left corner of (c) and (d), with the colours

black, grey, and white corresponding to the values ‘−1’, ‘0’, and ‘1’ re-

spectively. Red areas in the heat plots indicate a high likelihood of the

lower arm being at a certain position, while blue indicates a low likeli-

hood. Note that the filter response around the true location of the right

lower arm (indicated by a blue cross) is high only for the solid rect-

angle feature. This is due to the sleeves and the torso being of similar

colour

(Felzenszwalb and Huttenlocher 2005). That is, the location

of an arbitrary root node lr can be sampled first by comput-

ing the marginal distribution p(lr |I). Given lr , the location

of all child parts can then be sampled recursively until all

parts are instantiated. The marginal distribution for the root

location is given as

p(lr |I) ∝
∑

l1

. . .
∑

lr−1

∑

lr+1

. . .
∑

ln

(

p(L)

n
∏

i=1

p(Ci |li)

)

(3)

Computing this marginal directly as written above would

take exponential time. By exploiting independence in the

appearance terms p(Ci |li) and independence between parts

embodied in the tree-structured prior p(L) a configura-

tion can be sampled in time linear in the number and

configurations of parts (Felzenszwalb and Huttenlocher

2005).

Samples can be drawn from (2) using the marginal dis-

tributions given in (3). However, we argue below that the

use of max-marginals is better suited for this task, where the

Fig. 8 (Color online) Sampling from max-marginal vs. marginal dis-

tribution. This example illustrates that drawing samples of the upper

arm from the max-marginal distribution can be superior to using the

marginal. Figures (a) and (b) show two cases where the upper arm

rectangle is either placed on the true location (red dotted line) or on a

background area with arm-like colour (turquoise). The likelihood of the

upper arm in isolation is equal in both positions. However, the marginal

over the lower arm poses in (a) is low since only very few configura-

tions exist which place the lower arm rectangle on the expected colour.

This is in contrast to (b) where the marginal over the lower arm poses is

high due to a large area with arm-like colour in the background. Hence,

when sampling arm configurations using the marginal the upper arm

will most frequently be sampled from the wrong image area (b). By

contrast, the max-marginal for (c) and (d) is equal, since in both cases

there is at least one lower arm position with high likelihood. Hence, by

using the max-marginal for the upper-arm, samples will be generated

more often in the true arm location than using the marginal

summation operation of standard marginalisation is replaced

by maximisation:

p′(lr |I) ∝ max
l1

. . .max
lr−1

max
lr+1

. . .max
ln

(

p(L)

n
∏

i=1

p(Ci |li)

)

(4)

As demonstrated in Fig. 8, the intuition here is that a max-

marginal sample of a “parent” part (e.g. the upper arm) is

likely to be good if there is any configuration of the child

(e.g. the lower arm) which has high probability in terms of

prior and appearance. This is in contrast to a parent sam-

ple drawn from the marginal distribution which requires all

compatible configurations of the child to be probable on av-

erage. As the figure shows, when using appearance terms

which do not give a very sharp localised response, as in the

case of filters with no centre-surround response, use of the
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Fig. 9 Improving sampling efficiency by modified colour likelihood

maps. The image in (a) shows a case where the left hand occludes

most of the left upper and lower arm. The colour likelihood map for

the sleeves is given in (b)—note that the probability of the left arm

lying at its true position is very low. We allow for self-occlusions by

modifying the likelihoods as shown in (c) where all gaps caused by

skin-like colours are filled, making it more likely for the lower arm to

lie at its true position. The example in (d) shows how a higher propor-

tion of samples can be generated near the true arm position by lowering

the likelihood that the torso and head pixels belong to the arms

marginal distribution places inappropriate weight on areas

where the filters give flat response over a large area, and this

bias is removed by use of the max-marginal distribution.

3.3 Domain-Specific Improvements in Sampling Efficiency

When using a sampling method to propose plausible arm

locations, it is important that the true arm configuration is

contained in the set of samples. In this respect the tree-

structured pictorial structure sampler is insufficient; for ex-

ample, given an image where a part is partially or completely

occluded, the associated probability of sampling the true lo-

cation for the part can be very low (see Fig. 9(b)). To in-

crease the probability of sampling the true configuration, we

propose the following modifications to the pictorial struc-

ture sampling framework, which exploit the restriction of

our domain to frontal signing.

A. Adding knowledge of the occlusion ordering. A part

which is occluded has a very low probability to be pro-

posed at its true position. However, in the signing sce-

nario we know most of the occlusion ordering in ad-

vance: the arms are always in front of the torso and the

hands are always in front of the arms.

We make use of this ordering by modifying the colour

likelihood term: The likelihood for a given pixel is re-

defined as the maximum likelihood for that pixel over

the colour models corresponding to the part and all parts

which could be occluding it (see Fig. 9(c)). Formally, we

modify the colour likelihood p(ci |λi) for the colour of

a pixel i with label λi . Assuming a fixed occlusion or-

dering, then the part which corresponds to the label λi

can only be occluded by the parts with labels �(λi),

and hence the likelihood for pixel ci is redefined as:

p′(ci |λi) = maxk∈{λi∪�(λi )} p(ci |k).

This modification increases the chance of an occluded

part being correctly sampled, although at the expense of

an on average higher proportion of bad samples. How-

ever, for our purpose, this is not problematic since sam-

pling can be performed very efficiently.

B. Sampling less often within the head and torso. If the

sleeves and the torso share the same colour, many sam-

ples for the arms will be generated on the torso rather

than on the true arm position. However, by knowing the

outline of the torso (Sect. 2.2) we can “bias” the sam-

pler to generate more samples outside the torso. This

is achieved by decreasing the colour likelihood within

the torso region by sharpening (see Fig. 9(d)). Formally,

this involves modifying p(ci |λi) for all pixels that lie

on the torso, i ∈ 	 , and for all possible labels of a

pixel i that share the torso colour model, λi ∈ ϒ , i.e.

that have a colour similar to the torso. The likelihood is

then redefined as: p′(ci |λi) = p(ci |λi)
κ ∀i : i ∈ 	 and

∀λi : λi ∈ ϒ . The parameter κ > 1 controls the strength

of the bias; all reported experiments are performed with

κ = 3.

Even if both arms lie on the torso, then given that

the background does not contain a high proportion of

sleeve-like colours, most samples will still be generated

on the arms. A similar approach is also used for parts

which have the same colour as the head (in our case this

is the hands) to avoid a high proportion of sampled hand

positions within the head region.

C. Sharpening instead of smoothing the probability distri-

bution. Felzenszwalb and Huttenlocher (2005) recom-

mend that samples be drawn from a smoothed proba-

bility distribution. In this work, in combination with the

extensions listed above, we found it to be more beneficial

to sharpen the distribution (see Sect. 5) instead (that is to

the take the distribution to the power of τ with τ > 1,

in contrast to smoothing where τ < 1). This is mainly

because the true arm configuration has a higher proba-

bility under the max-marginal than under the marginal
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distribution (explained in Fig. 8) which is typically used

to generate samples.

4 Tracking using Distinctive Frames

While we have concentrated thus far on pose estimation in

isolated frames, for video sequences it is profitable to exploit

the temporal coherence between frames. Especially for am-

biguous poses, which may introduce multiple modes in the

complete cost function, the use of temporal coherence can

significantly improve the accuracy of pose estimation. We

propose a method based on detection of “distinctive” frames,

where the pose is unambiguous, and tracking between pairs

of such frames.

We show that distinctive frames can be detected not more

than a few seconds apart, and hence only a small number

of frames are affected if the track is lost. This approach

owes some inspiration to the work of Ramanan et al. (2005),

which detects a distinctive lateral walking pose to initialise

a person-specific colour model. Our method differs in that

the frequency of the detected frames allows the method to

be used in a tracking framework, rather than solely for ini-

tialisation.

Our method for identifying distinctive frames works by

analysing features of the pictorial structure proposal distri-

bution (2). We observe that most cases where the true pose is

not identified are due to confusion between the left and right

hands, or (less frequently) due to the background contain-

ing limb-like structures. This motivates finding unambigu-

ous “distinctive” frames where (i) the hands are on the body

and (ii) there is no confusion between the left/right assign-

ment. As demonstrated in Fig. 10, such unambiguous frames

can be identified by analysing the posterior distributions of

the left and right hands.

To this end we employ a simple approach to label a given

frame as distinctive as follows: (i) if two skin-coloured areas

are present on the body, (ii) compute the posterior distribu-

tions of the left and right hands (Fig. 10, middle and right

column), and (iii) evaluate a distinctiveness measure (de-

scribed in the next paragraph). Finally, (iv) mark the frame

as distinctive if this value is above a threshold.

We compare three different distinctiveness measures: en-

tropy, mutual information, and dot-product. Section 5.6 re-

ports a quantitative evaluation. Given the posterior distribu-

tions over the left and right hand position p(xL) and p(xR),

the distinctiveness measures are defined as (i) entropy:

−(E(xL) + E(xR)); (ii) mutual information: −I (xL; xT );

(iii) dot-product: −
∑

x p(xL)p(xR). The entropy measure

evaluates the individual “peakiness” of the distributions for

each hand. In contrast, the mutual information and dot-

product measures evaluate the dissimilarity between the left

and right hand posteriors.

Fig. 10 Identification of distinctive frames. For two frames (left col-

umn), the posterior of the left hand (middle column) and the right hand

(right column) is computed from the pictorial structure proposal dis-

tribution (2). In (a), the similar spatial locations of the modes in the

posterior indicate that the assignment to left and right hands is am-

biguous, while in (b) the distinct modes indicate an unambiguous case.

We identify unambiguous cases by a distinctiveness measure on these

posteriors for each hand

Fig. 11 Tracking using distinctive frames. First, distinctive frames

D are identified where the pose can be estimated with high confi-

dence. Poses are propagated from distinctive frames by tracking for-

ward/backward in time (arrows). For distinctive frames Di and Di+1

which are N frames apart, only N/2 frames need to be tracked from

either end

Note that the methods proposed here differ to that used

in Buehler et al. (2008), in that distinctive frames are iden-

tified using only the pictorial structure proposal distribution

rather than the complete cost function. As a result, distinc-

tive frames can be identified faster, but with similar accuracy

(see Sect. 5.6).

4.1 Tracking Between Distinctive Frames

Detection of distinctive frames typically yields around one

frame per second of video for which the pose can accurately

be estimated with high probability. We now focus on find-

ing the arm configuration for all remaining frames. This is

implemented by tracking forwards and backwards in time

between two neighbouring distinctive frames (see Fig. 11).

Temporal tracking is realised by adding a tracking term

p(L|L′) =
∏n

k=1 p(lk|l
′
k) to the complete cost function

in (1) where L′ = (d ′, l′1, l′2, . . . , l′n) refers to the part config-

urations in the preceding frame. The conditional probability
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p(lk|l
′
k) is large if lk and l′k are similar and close to zero for

physically unrealistic cases, e.g. if the arm position changes

dramatically within only one frame. We automatically learn

a histogram representation of p(lk|l
′
k) ∝ p(lk − l′k) for each

part, using a signing sequence where the background is static

and the sleeves and the torso are of a different colour—for

such a setting our approach gives very reliable results with-

out the temporal term. Note that the motion model uses only

first order (velocity) information; in contrast to specific ac-

tions such as walking or golf swings studied in previous

work on pose estimation, the arm motion in sign language is

much less predictable hence more complex models are not

applicable.

Tracking the arms from frame to frame is greedy in the

sense that we maintain only a point estimate of the pose

rather than the full distribution over pose. This can poten-

tially result in losing track by propagating incorrect poses.

However, in practise this is not a problem since two distinc-

tive frames are seldom more than a few seconds apart. The

sustained human tracking method of Sheikh et al. (2008)

also demonstrates the success, and gives a fuller Kalman fil-

ter treatment, of combining first order motion models with a

distribution over pose detection.

5 Results

In this section we evaluate our method against ground truth,

and compare it to a method which employs detection and

tracking of the hands alone.

5.1 Datasets

All evaluations were performed using a continuous sequence

of 6,000 frames taken from BBC footage1 with challenging

image conditions and a changing background (see Fig. 1).

The corner of the image containing the signer was cropped

and down-sampled to 100 × 100 pixels. We concentrate on

the more difficult case where the signer has sleeves with

a similar colour to the torso—when the signer wears short

sleeves identification of the hand shape is difficult, but esti-

mating the pose of the arms is considerably simplified.

Ground truth was manually labelled for 296 randomly

chosen frames from this sequence. As shown in Fig. 14,

each image was manually segmented to give masks for torso,

head, upper and lower arms, and hands.

5.2 Overlap Measure

Quantitative evaluation was performed using an overlap

measure defined as o(T ,M) = T ∩M
T ∪M

, where T is the ground

1Images and ground truth available at: http://www.robots.ox.ac.uk/~

vgg/data/sign_language/index.html.

Fig. 12 Overlap evaluation measure. The estimated pose is shown

in (a); (b)–(d) illustrate the overlap measure for the left upper arm. The

overlap between ground truth (b) and estimated segmentation (c) is de-

fined as the ratio of the intersection over the union (d). In this example,

the overlap is 0.63

Fig. 13 Qualitative accuracy as a function of overlap measure.

(a)–(d) show estimated poses for a range of overlap measures o. An

overlap of o = 1 implies perfect segmentation of the image into the left

arm, right arm and the hands. Note that the pose is qualitatively correct

for overlap measures exceeding around 0.2

truth segmentation and M the mask generated from an esti-

mated pose (see Fig. 12). We evaluate the overlap separately

for the left arm, the right arm and the hands. The overall

overlap is then defined as the mean over the overlap for each

body part. Note that this measure takes occlusions into ac-

count i.e. the overlap is high only if the model and the true

(not just the visible) area overlap.

We consider an overlap to be correct if it is ≥ 0.5, which

corresponds to a very good agreement with ground truth;

overlaps between 0.2 and 0.5 are considered to be partially

correct; and overlaps below 0.2 are considered incorrect.

Furthermore, we define the true arm configuration as the one

with highest overlap score, and consider an arm configura-

tion as close to the true configuration if their difference in

overlap is less than 0.1 (see Fig. 13 for examples).

5.3 Evaluation of the Complete Cost Function

As noted in Sect. 2 our approach uses a “complete” cost

function which explains all pixels of the image (both signer

and background). We first evaluate the effectiveness of the

cost function i.e. the correspondence between an accurate

estimated pose and low cost. Ideally, we would like to eval-

uate this by exhaustive evaluation over the parameter space

of both arms. Since this is computationally infeasible we il-

lustrate the correlation between cost and overall overlap by

fixing the right arm at the optimal position and evaluating

over the left arm. Figure 14 demonstrates the relationship

between cost and overlap with ground truth. Note the good

http://www.robots.ox.ac.uk/~vgg/data/sign_language/index.html
http://www.robots.ox.ac.uk/~vgg/data/sign_language/index.html
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Table 1 Quantitative evaluation. Pose estimation accuracy is reported

for 296 ground truth frames, in terms of mean overlap for both arms

and hands. The table shows the percentage of images with an over-

lap with ground truth above a given threshold. Experiments were per-

formed using colour cues (C), HOG cues (H), the distinctive frames

tracking framework (T), and combinations thereof

Accuracy Left arm Right arm Hands

C CH CT CHT C CH CT CHT CHT

Overlap ≥0.2 99.4% 98.3% 98.3% 98.3% 100.0% 100.0% 100.0% 100.0% 100.0%

Overlap ≥0.5 83.4% 90.1% 81.1% 86.8% 97.6% 98.8% 98.7% 99.0% 94.3%

Overlap ≥0.6 56.7% 70.3% 61.7% 73.9% 78.1% 88.5% 79.9% 81.3% 83.4%

Fig. 14 Evaluation of the complete cost function. The top row shows,

from left to right: input image, manual ground truth, pose having min-

imum cost, and pose having maximum overlap with ground truth. The

plot below shows the value of the complete cost function vs. overlap

with ground truth, calculated by fixing the right arm to the configura-

tion with maximum overlap and evaluating all possible configurations

for the left arm, including the depth order of the arms. Note that for

low costs there is good correlation between cost and overlap

correlation between high overlap measure and low cost, il-

lustrating that the arm configurations with low cost coincide

with the true position of the arms in the image.

Table 1 shows quantitative results for the 296 frames with

ground truth annotation. Columns C and CH compare re-

sults using colour cues alone (C) and colour cues plus HOG

descriptors for the lower arms (CH). The results show that

the right arm can be found correctly in all frames. Detec-

tion of the left arm is also very reliable: 99.4% of 296

frames have an overlap ≥0.2. This is despite the chang-

ing background to the left of the signer. Adding HOG fea-

tures to the complete cost function (column CH) substan-

tially improves the number of frames for which the esti-

mated pose is highly accurate (overlap ≥0.5). However, for

the left arm the use of HOG features causes inaccurate local-

isation for some frames, where the appearance of the lower

arm differs significantly from the available training exam-

ples.

Fig. 15 Evaluation of sampling schemes. The y-axis shows the num-

ber of frames for which the true arm location is not found. “Origi-

nal” refers to samples from the max-marginal without any modifica-

tions. The proposed modifications in Sect. 3.3 significantly reduce the

number of errors. These are: (1) sharpening the proposal distribution,

(2) adding HOG cues, (3) adding knowledge of the occlusion ordering,

and (4) sampling less often within the head and the torso

5.4 Evaluation of Sampling Framework

The pictorial structure sampling framework was evaluated

by counting the number of images for which no sample was

generated close to the true arm configuration. In total 296

images were used and 1,000 samples drawn per frame. As

shown in Fig. 15, using the max-marginal clearly outper-

forms the marginal distribution. Furthermore, the proposed

extensions (Sect. 3.3) lead to a decrease in the number of

times the true arm configuration was not sampled from 22

to only 2 out of 296 images.

The superior performance of the max-marginal is also

replicated if the rectangle filters are replaced with centre-

surround filters (as shown in Fig. 7). In the centre-surround

case no samples were generated close to the true configu-

ration in 30 images using the max-marginal, and in 99 us-

ing the marginal. Note that both these results are inferior to

those using the rectangle filters; this can be attributed to the

incorrect assumption made in the centre-surround filter that
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Fig. 16 (Color online) Identification of distinctive frames. The effec-

tiveness of four methods for distinctive frame detection is evaluated in

terms of precision/recall, using 296 frames with ground truth pose. We

speak of a positive if a frame is classified as distinctive, and true pos-

itive if, in addition, the estimated pose is correct (i.e. overlap ≥ 0.2).

Consequently, precision is measured as the proportion of frames clas-

sified as distinctive and with correctly identified arm pose, and recall is

the proportion of frames classified as distinctive. Curves correspond to

the four measures proposed to analyse the posterior distributions of the

left and right hand (see Sect. 4): dot product (green dashed curve), mu-

tual information (blue dotted curve), and entropy (dash dotted curve).

For comparison, the accuracy of our original method to identify dis-

tinctive frames (Buehler et al. 2008) based on heuristics is shown by

the red solid curve. Note that the y-axis starts at a precision of 90%

a limb is surrounded by background of differing colour—for

the case of sign language, where limbs are often in front of

the body, this assumption is often violated.

5.5 Evaluation of Distinctive Frame Detection

We evaluate the three proposed methods for detecting dis-

tinctive frames (Sect. 4) and compare to our original method

proposed in Buehler et al. (2008). Our original method is

based on a heuristic to count the number of modes in the

complete model; with this method, out of the 296 frames

used for evaluation, 61 were selected as distinctive. The esti-

mated arm poses in these 61 frames are all correct. Figure 16

shows a comparison of the proposed distinctiveness mea-

sures with our original method. We adopt a precision/recall

protocol, measuring precision as the proportion of frames

which are classified as distinctive and for which the pose

is correctly estimated (overlap ≥ 0.2). At low recalls (up to

0.2), our original method performs equally well to the dis-

tinctiveness measures from Sect. 4 based on the dot product

or entropy. However the recall of our original method is low,

classifying only around 20% of the frames as distinctive.

Using the proposed dot product measure, up to 90% of the

frames can be classified as distinctive, with a corresponding

precision of 99%.

In the 6,000 frame signing sequence (see Sect. 5.1), 191

frames were classified as distinctive. Note that, to save ex-

ecution time, once a distinctive frame is found, the follow-

ing 10 frames are not considered as candidates for further

distinctive frames. These distinctive frames are distributed

quite uniformly over the whole sequence such that tracking

seldom has to be performed for more than 1–2 seconds and

Table 2 Joint localisation error. Statistics of the Euclidean distance

between true and estimated 2D positions are shown for the wrist, elbow

and shoulder joints. Results for the wrists and elbows are qualitatively

highly accurate (mean distance less than 3 pixels); for comparison the

distance between the signer’s eyes is around 7.5 pixels

Wrist Elbow Shoulder

Left Right Left Right Left Right

Mean 2.5 2.8 3.3 3.1 7.6 4.7

Median 2.1 2.7 3.0 2.8 7.4 4.8

Min 0.2 0.2 0.3 0.0 3.0 0.8

Max 12.3 7.2 12.2 9.3 12.5 9.5

Std. 1.7 1.3 1.9 1.7 1.9 1.6

hence losing track is not an issue. The identified arm posi-

tion is incorrect in only one of these 191 frames, due to the

background having a sleeve-like colour.

5.6 Evaluation of Tracking Using Distinctive Frames

While results obtained on a per-frame basis (Sect. 5.3)

are already highly accurate, we show that further improve-

ments can be obtained by incorporating temporal informa-

tion. Columns CT and CHT in Table 1 report results using

our distinctive frames approach to identify frames for which

the arm pose can be estimated with high confidence, and

subsequently tracking between them (Sect. 4). Especially for

the left arm, adding temporal information improves the ac-

curacy for highly accurate poses from 70.3% to 73.9%.

Adding HOG features also improved the proportion of

high overlaps significantly. Overall the tracking results are

essentially qualitatively accurate (o ≥ 0.2) for both arms and

hands in all frames.

In addition to the proposed overlap measure, we present

quantitative results in terms of error in estimated joint posi-

tions, as has been used in some previous work on 3D pose

estimation. Table 2 reports statistics of the Euclidean dis-

tance between true and estimated 2D joint positions for the

wrist, elbow and shoulder joints. The mean and median er-

rors for the wrists and elbows are around 3 pixels. This is

qualitatively highly accurate—for comparison, the distance

between the eyes of the signer is around 7.5 pixels. Locali-

sation of the shoulder joint is less accurate (up to 8 pixels),

although this can be hard to localise visually, and is less im-

portant for interpretation of the signer’s actions.

5.7 Comparison to Baseline Tracking Based on Hand

Detection

We have noted that our proposal to localise the signer’s

hands using full upper-body pose estimation introduces

complexity, but is necessary to overcome challenges such
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as correct left/right hand assignment, or coping with back-

ground clutter including other hands. We compare our re-

sults to a method using a more conventional approach of

hand detection and tracking to validate the effectiveness of

estimating the full upper-body pose.

The hand detection-based method operates as follows:

first, candidate hands are detected in each frame using a

hand detector. The detector uses the well-known method of

Viola and Jones (2002) (boosted decision stumps on Haar-

like features), but employs two feature channels: (i) image

intensity; (ii) a skin colour channel, representing the poste-

rior probability that a pixel is skin-coloured. Non-maximum

suppression is applied and all combinations of detections

are enumerated as (a) left/right hand; (b) right/left hand or

(c) two hands sharing a detection. This gives candidate in-

terpretations of the detections for each frame, including the

possibility that one hand occludes the other. Each interpreta-

tion is assigned a likelihood according to the classifier con-

fidence for the corresponding detections (which can be con-

sidered an approximate log-likelihood ratio). Two additional

likelihoods are defined: (i) a spatial prior on the position of

left/right hands. The distribution over position for each hand

is modelled as a single Gaussian with full covariance. This

captures the weak prior that the left hand tends to appear

to the left of the signer’s torso, and vice-versa; (ii) a mo-

tion model over hand positions for consecutive frames. In

this case a zero-mean isotropic Gaussian is assumed for the

difference in position of each hand—as noted such simple

motion models (here “zero velocity”) prove more effective

than more complex models for sign language, since the hand

motion is constantly changing.

Spatial, motion and appearance (detection) likelihoods

are combined to give an overall likelihood for each inter-

pretation, given the interpretation of the previous frame.

Consistent interpretations for each frame of the video are

then selected by applying the Viterbi algorithm to maximise

the joint likelihood of all frames simultaneously—this is

tractable because of the Markov assumption in the motion

model. Compared to particle filtering approaches to track-

ing, the proposed method gives a globally optimal interpre-

tation, subject to the finite number of initial hand candidates

(five were used) selected for each frame. Similar approaches

have been applied for effective interactive point tracking in

video, e.g. Buchanan and Fitzgibbon (2006).

The detection-based method predicted incorrect hand po-

sitions in 34 out of 296 frames (11%); in contrast, our upper-

body method finds the true hand position in all frames. As

shown in Fig. 17, errors are due to confusions between

the left and right hand, the background containing hand-

like shapes, and hands being “lost” when in front of the

face. Of these, incorrect left/right hand assignment is most

prevalent—the weak priors on global hand position and

hand motion are insufficient to obtain correct assignments.

Fig. 17 Comparison of upper-body vs. hand-only tracking. The

columns show failure modes of hand-only detection and tracking—the

top image shows the hand positions estimated by the hand-only method

(Sect. 5.7), and the bottom image shows the pose estimated by our

method. Hand detection is challenging in these images due to (left

to right): motion blur, hand in front of face, proximity of the hands,

hand-like objects in the background, shadows

By solving the more difficult problem of finding the arms,

not only does the hand detection accuracy increase, but also

we extract information important for sign recognition such

as the hand orientation and the position of the elbows.

5.8 Evaluation on Hour-Long Sequences

We have evaluated the robustness of our proposed approach

on three hour-long video sequences with different signers.

Videos of the results are available on the web.2 Figure 18

presents a summary of the results, showing the estimated

hand and arm configurations for frames taken at equal in-

tervals throughout the sequences. In only 1 out of the 72

frames shown is the true arm configuration not found. Note

that we are able to achieve good results even though the edge

between sleeve and torso can be very weak (see Fig. 18, bot-

tom signer).

5.9 Computational Expense

The run-time of the proposed method has two components:

First, distinctive frames are identified which involves sam-

pling of 1,000 possible arm configurations and evaluating

each sample using our model. Second, tracking is performed

between distinctive frames which tests on average 50,000

possible arm configurations per frame (this number was cho-

sen conservatively and can be reduced by an order of mag-

nitude with little influence on the overall accuracy).

The algorithm takes on average 100 seconds per frame

on a 1.83 GHz machine implemented mostly in Matlab: it

takes 20 seconds to segment the head and the torso, 90 sec-

onds to identify a frame as distinctive and 60 seconds for

tracking in between distinctive frames. Identification of dis-

tinctive frames is accelerated to an average of 20 seconds

per frame by considering only frames where in a screening-

step two skin-coloured areas are detected on the torso and

2http://www.robots.ox.ac.uk/~vgg/research/sign_language/index.html.

http://www.robots.ox.ac.uk/~vgg/research/sign_language/index.html
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Fig. 18 Sample of results on hour-long sequences. The estimated pose is shown for uniformly spaced frames in three hour-long sequences with

different signers. For all but one of the 72 frames shown (row 6, column 1) the estimated pose is qualitatively highly accurate
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by skipping 10 consecutive frames once a distinctive frame

is identified.

6 Conclusions and Future Work

We have proposed a generative model which can reliably

find the arms and hands in sign language TV broadcasts with

continuously changing backgrounds and challenging image

conditions. The model is a combination of a quite ‘tight’

(accurate) model of the foreground human together with a

‘loose’ model of the background. Our algorithm requires

minimal supervision, and works well on very long continu-

ous signing sequences. This exceeds the state-of-the-art for

continuous limb tracking. Possible extensions to the current

model include the addition of a more descriptive hand ap-

pearance term, and automatic initialisation (no manual train-

ing).
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