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Abstract. We give a new upper bound o n  n d(d+l)" on the number of realizable 
order types of simple configurations of n points in R a, and of n 2d~" on the number 
of realizable combinatorial types of simple configurations. It follows as a corollary 
of the first result that there are no more than n d(d+l)" combinatorially distinct 
labeled simplicial polytopes in R d with n vertices, which improves the best previous 
upper bound of n c"d/2. 

1. Introduction 

We consider simple numbered configurations of  points in R d, i.e., labeled sets 
{P1 , . . . ,  P,} c R a, with n > d, and no hyperplane containing more than d of  the 
Pi. There are several natural equivalence relations on such configurations, one 
being oriented matroid equivalence [2], [5], also known as chirotope equivalence 
[3], semispace equivalence [8], or order equivalence [7]; another being what we 
have called combinatorial equivalence in the case d = 2 [6], [8], but which extends 
easily to the case d > 2 (see below). The purpose of this paper  is to give upper 
bounds on the number of  equivalence classes of  simple numbered configurations 
in each of  these two equivalence relations. 

It follows from the results of  [7] that since the order type of a configuration 
S is determined by its A-function (which assigns to each ordered d + 1-tuple the 
number of  points of  S lying on the positive side of  the oriented hyperplane 
spanned b.y a the d + 1-tuple), the number  of  order types is bounded above by 
roughly n" (this is the so-called "information-theoretic bound") .  But the A- 
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matrix also classifies the order type of a generalized configuration of n points 
(in which the points are connected by an arrangement of  pseudohyperplanes); 
hence we are dear ly  overcounting the number of  genuine configurations. The 
question is: by how much? The surprising answer is: by a great deal. More 
precisely, 

Theorem I. Let f(n, d) be the number of distinct order types of simple numbered 
configurations of n points in R d. Then 

f(n, d) <-- n d(d+l)n. 

The key step in the proof  of  Theorem 1 is the following result of J. Milnor 
[11, Theorem 3] (which has been used in a similar way in [14], among other 
places): 

If  a set X ~ R m is defined by polynomial inequalities of the form 

fl->0 . . . . .  fp->0 

with total degree d = deg( f0  + '  • • + deg(fp), then 

rank H * X  <- ½(2 + d)(1 + d ) " - l .  

Here, H * X  is the direct sum of  the (~ech) cohomology groups of  the semialge- 
braic set X;  hence rank H * X  represents the sum of  the Betti numbers of  X. In 
particular, since rank H°X is the number of  connected components of X, we have: 

The number of connected components of the set X defined as above 
is at most ½(2+ d)(1 + d) m-1. 

It is in this form that we shall use Milnor's theorem. 
In Section 3 we apply Theorem 1 to the vertex sets of  simplicial polytopes 

and derive a new bound on the number of  combinatorial equivalence classes of  
labeled simplicial polytopes. 

The problem of  counting polytopes, even simplicial polytopes, has a long and 
venerable history [9, Section 13.6]. While significant progress has been made 
when the number of  vertices is not too much larger than the dimension [9], little 
is known above dimension 3 in the general case. As for bounds, the best upper 
bound known until now for simplicial pulytopes was apparently the one easily 
derivable from the (asymptotic) Upper Bound Theorem [10]: Each simplicial 
polytope has < r l  [d/2] facets, and a (legitimate) choice of  facets, i.e., of  sets of  d 
vertices, determines the whole combinatorial structure of  the polytope. Hence 
the number of  combinatorial types is bounded above by 

n [d/2l d ~ n[d/2l(en[(d+l)/2]) n[a/2l~--- n c(d)n[d/2]. 
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However, as a corollary of  Theorem 1 we get 

Theorem 2. Let  g( n, d )  be the number o f  combinatorially distinct labeled simplicial 
polytopes with n vertices in R d. Then 

g(n ,  d )  <-- n d(d+l)n. 

In Section 4 we extend the concept of  "combinatorial equivalence" of  n-point 
configurations in R a from the case d = 2, treated in [6] and [8], to the case d > 2. 
Just as in the plane, combinatorial equivalence in R d is a finer relation than 
order equivalence, and we prove 

Theorem 3. Let h ( n, d )  be the number o f  distinct combinatorial equivalence classes 
o f  numbered configurations o f  n points in general position in R d. Then 

h(n,d)<_n2d2" 

We relate this bound to the one which follows from Stanley's [ 13] and Edelman 
and Greene's [4] enumeration of  maximal chains in the weak Bruhat order of  
S~ for the case d = 2. 

Finally, in Section 5, we discuss the question of  lower bounds, as well as some 
consequences of  our results for geometric sorting and for the isotopy problem 
for configurations. 

We wish to thank Herbert Edelsbrunner and Emo Welzl for bringing Milnor's 
paper [ 11 ] to our attention, and Noga Alon for several stimulating conversations. 

2. An Upper Bound on Order Types 

Lemma 1. Suppose P E . R [ X 1 , . . . , X k ] ,  and v={(x)l(x)~R k, P(x)=0} .  Let  
U~,. . . , Us  be distinct connected components o f  R k \  V. Then there is an e > 0 such 
that the set W = { (x) l lP(x)]  > e} has at least m connected components. 

Proof  Choose (x i) e U1 for 1 -< i -  m, and let 

e min w={(x)llP(x)]>-e}. = ~ , ~ m l p ( x ' ) l ,  

Then (x~)~ W for i=  1 . . . .  , m, and deaf ly  (x~), (x J) belong to different com- 
ponents of  W for i •j, since any arc connecting them must cross V. The conclusion 
follows. [] 

Lemmn 2. Let  P ~ R[X.I . . . .  , Xk], deg(P) = r, and U = {(x)[(x) ~ R m, P ( x )  # 0}. 
Then U has at most 

(2+ r)(1 + r) k-I 

connected components. 
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Proof. Let e, W be as in Lemma 1. By that lemma, the number of connected 
components of  U is bounded above by the number of  connected components of  
W. Let 

W1 (resp. W2) = {(x) lP(x)- e} (resp. ((x) lP(x)  <- -e}) .  

Then W = W~ w W2 and the result follows by applying Theorem 3 of [11] to each 
of W,, W2. [] 

Proof of Theorem 1. To each numbered configuration S = { ( x  ~) . . . . .  (xn)} of 
points in R a we associate a point (x)~ R an. The order type of  S can then be 
viewed as a mapping 

~: R d" , { - I ,  O, 1} (d~'), 

with to defined by 

co((x l) . . . .  , (x")) = sgn det . . 
x~ (d) 

.<i(d)<-n 

(see [7] for details). To say that S is simple means that 

o~(S) e { - 1 ,  1} (d~'l), 

i.e., that none of the determinants above vanishes at the point corresponding to 
S. 

Each of  these determinants is a polynomial of  degree d in the dn variables 
i X ~ , . . . ,  X~, so if we multiply them we get a single polynomial 

P ( X ~ , . . . ,  X~) d n of degree (d+ 1)' 

whose zero locus V corresponds precisely to the set of nonsimple configurations. 
Let U be the complement of  I/. Then a connected component of U is a full 
isotopy class of  simple configurations, i.e., a maximal set such that any two can 
be deformed, one into the other, by a continuous family of  configurations all 
having the same order type. In particular, the number of distinct simple order types 
is bounded above by the number of connected components of U. It follows from 
Lemma 2 that 

n 1 n d(d+~)~. [] 
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3. An Upper Bound on Simplicial Polytopes 

Proof of  Theorem 2. Consider a simplicial polytope with n labeled vertices in 
R a. Note first that any such polytope can be "jiggled" slightly so that its vertices 
form a simple configuration. Now two combinatorially equivalent polytopes may 
have inequivalent vertex sets (one can jiggle the vertices of a regular octahedron 
in two different ways to get inequivalent simple configurations, for example), but 
it is clear that two inequivalent polytopes cannot give rise to two vertex sets o f  the 
same order type, since--as is shown in [7, Theorem 1.8J--the order type of  a 
configuration determines its intersections with the supporting hyperplanes of  its 
convex hull, and in the case of polytopes--these determine the combinatorial 
type completely. 

It follows that the bound of  Theorem 1 applies equally well to combinatorial 
equivalence classes of  polytopes, and so we have 

g(n, d) <- n a~a+l)~. [] 

4. An Upper Bound on Combinatorial Types of Configurations 

In [6] and [8] we have introduced the concept of "combinatorial equivalence" 
of numbered planar configurations of points. In brief, to each such configuration 
S we associate the circular sequence of permutations of 1 . . . . .  n obtained by 
projecting the points of S orthogonally onto a line which rotates counterclockwise 
around a fixed point. The resulting "allowable sequences" of permutations 
provide a somewhat finer classification of planar configurations than does "order 
type," and allow one to examine many geometric properties of a configuration 
in purely combinatorial terms. 

In [8, Corollary 1.14] we prove that the combinatorial type of a configuration 
is determined (up to a reversal of its allowable sequence, which corresponds to 
a reflection in a line) by its associated set of permutations. This suggests the 
following definition of combinatorial equivalence in higher dimensions: 

Definition 1. Let S = { ( x l ) , . . . ,  (x~)} be a numbered configuration of n points 
in R a. Let L be a directed line in R a passing through O such that the points of 
S have distinct images under the orthogonal projection 

PL: R ~-~L, 

and let rrL be the associated element of  the symmetric group Sn (induced by the 
direction on L). The set II(S) c S, consisting of  all the permutations 1ft. obtained 
in this way we will call the permutation set of  S. S and T will be called 
combinatorially equivalent if  H(S) = H(T).  

Remark 1. Just as in the plane the members of  the permutation set of  a 
configuration S fall-- in a natural way--into a circular sequence, so too, in R d, 
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they form a complex on the unit sphere S a-~, whose points correspond to the 
directed lines L in Definition 1. The structure of  this spherical complex will be 
explored elsewhere. It is easy to see, however, that for each connecting line 

determined by a pair of  points of  S there is a great (d -2 ) - sphe re  20 
lying on sa-~,.on each side of  which every corresponding directed line L induces 
a permutation in which the indices i, j appear in the same order. These 2~j's cut 
S d-~ up into O(n 2d) cells, the maximum being obtained if and only if the points 
of  S are in general position, in the following sense: For generic S, each cell is 
bounded by at least d of  the :g#'s. As S moves to a special position in which one 
of  these cells vanishes, then d of  the 2#'s must meet, andmconversely-- i f  d of  
them meet, the corresponding cell in S d-~ will be empty. Thus the condition that 
the points of  S lie in general position amounts to saying that no d among the 
2o's should meet, unless they do so generically. More precisely, if K,  is the complete 
graph on the set {1 , . . . ,  n}, we must have that for any choice ofdpairs {i,j} which 
induces an acyclic subgraph of K,, the great spheres 2o have no point in common. 
(Depending on how the indices in the d pairs {i,j} are related, this condition 
has various geometric interpretations. For example, for d = 2 it amounts to saying 
that no three points of  S are collinear and that no two lines are parallel. For 
d = 3 it says that no four points are coplanar, no line is parallel to a plane, and 
no three lines have a common perpendicular.) 

Proof of Theorem 3. Just as in the proof  of  Theorem 1, since combinatorial 
isotopy equivalence implies combinatorial equivalence, it is sufficient to give an 
upper bound on the number of  combinatorial isotopy classes. 

It follows from Definition 1 and Remark 1 that two configurations, S and T, 
are combinatorially isotopic, i.e., each can be deformed to the other without 
leaving its combinatorial equivalence class, if and only if S can be deformed to 
T (say) without any d 2#'s which formed a cell in S collapsing, i.e., without any 
d connecting lines of S which had no common perpendicular acquiring one. The 
condition that d connecting lines in R a, 

( x ' , ) , x ( J O ,  . . . ,  ( x ' d ) , ( x J ~ ) ,  

have a common perpendicular amounts to saying that the vectors along them are 
linearly dependent, i.e., that the determinant 

• X d  - -  Xd 
: X~l__ X~ I . .  Jl i! 

d e t |  " , Jd id 

\x~-~i~ . . .  ~ -x~ 

vanishes, and this condition is given by a polynomial of degree d. Hence the 
number of  isotopy classes is precisely the number of cells into which R dn is cut 
by the zero loci of  these 
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polynomials in the indeterminates X ~ , . . . ,  X~.  As in Theorem 1, if we let 

be their product,  then 

Q ( X ] , . . . , X ] )  

d l l  TM 

deg(Q) -< 2---7- ' 

and---by Lemma 2- -we  have 

i' dn2d\ [ driEd\ d"-I 
h(n,d)<<_~2+---~-)tl+--~) <n ~. [] 

Edelman and Greene [4] and Stanley [13] have shown that the number of  
simple allowable sequences on n indices which contain the permutation 12 • • • n 
is precisely 

(:), 
ln-13 n - 2 " ' "  ( 2 n - 3 )  1" 

Since each such allowable sequence has n(n - 1) terms, the permutation 12. • • n 
appears in 1 / ( n - 2 ) !  of  the total number  of  allowable sequences, and it follows 
that there are precisely 

(o 

ln-13 n-2. • • ( 2 n - 3 )  1 

of these. A comparison of  this constant (whose logarithm is asymptotic to 
cn 2 log n) with the result of  Theorem 3 in the case d = 2 shows immediately that 
most (in a very strong sense) allowable sequences are not geometrically realizable. 

5. Remarks 

(i) The most naive way of  counting configurations yields a lower bound on the 
number of  realizable simple order types which is surprisingly close to our upper  
bound, in fact agreeing with it in the highest order term in the exponent. A simple 
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configuration of n points in R d determines (~) hyperplanes, and these in turn 
determine 

+ . . . +  (/!t) 1) 
cells [15, p. 65]. Any n-point configuration can be extended to an (n + 1)-point 
configuration by placing a new point in any one of  these cells. (Of course we are 
undercounting, since different realizations of  the same order type may have 
noncorresponding cells.) This gives a lower bound of  roughly 

(n !)d2 
(d!)( d+l)n 

on the number of realizable order types, and by Stirling's formula this comes 
down to 

n d2n+O( n/Iog n ). 

This shows that our upper bound in Theorem 1 is quite close to the truth, at least 
asymptotically. 

It also shows that the isotopy classes that make up an order type are not too 
numerous, in the scheme of  things. (The conjectured result, o f  course, is that 
each order type contains only one isotopy class.) 

(ii) An argument of  N. Alon [1] shows that there are at least n can labeled 
simplicial polytopes with n vertices in R d. (Even a restricted class of polytopes 
has been shown to have at least n cn members: in [12] Shemer proves that the 
number of  neighborly polytopes with n vertices in R a is asymptotically bounded 
below by nn/2.) Thus the gap between the lower and upper bounds for simplicial 
polytopes is no longer impossibly wide. 

(iii) Theorem 1 points up the need for a new way of  encoding the order type 
of  a configuraton of  points. In [7] we have suggested several possible applications 
of  such an encoding, which we call geometric sorting--to pattern recognition, to 
stereochemistry, and to cluster analysis. It is important, in these applications, to 
find an e~cient way of encoding the order type of a configuration, i.e., the 
orientations of  all the ( d +  1)-tuples in it. It is now clear that the A-function, 
although it is the most efficient way known at present, becomes less and less 
efficient as the dimension goes up; already in dimension 2 there is a significant 
gap between the number of  bits needed for a ),-matrix (n 2 log n) and the logarithm 
of  the number of  objects we are using it to encode (6n log n). Since A-matrices 
also encode generalized configurations, a n d h a s  we have shown in [7]--there 
are at least exp(cn 2) of these in the plane, this discrepancy is not unexpected. 
But if we are interested in ordinary point configurations, as in most applications, 
there should be a more compact way of  encoding them, one which takes at most 
d ( d +  1)n log n bits, and whichuhopefully---can be accomplished in close to 
linear time. 
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N o t e  a d d e d  in proof .  Since  the  o r ig ina l  s u b m i s s i o n  o f  this pape r ,  the re  have  

b e e n  t w o  i m p r o v e m e n t s  in the  u p p e r  b o u n d  fo r  the  n u m b e r  o f  r ea l i zab le  o r d e r  

types,  h e n c e  a lso  fo r  t h e  n u m b e r  o f  l abe l ed  po ly topes .  N.  A l o n  (The  n u m b e r  o f  

p o l y t o p e s ,  con f igu ra t i ons ,  a n d  real  m a t r o i d s ,  M a t h e m a t i k a ,  to a p p e a r )  has  b e e n  

ab le  to  r e d u c e  the  u p p e r  b o u n d  g iven  in  T h e o r e m s  1 a n d  2 a b o v e  to 

.2 / /1oglog(nld)\\ 

" ~l"+°l' ~/-~ }: for 7 --)°°, 

and to remove the restriction that the configuration be simple (hence also that 
the polytope be simplicial). More recently, using a result of H. E. Warren (Lower 
bounds for approximation by nonlinear manifolds, Trans. Amer. Math. Soc. 133 
(1968), 167-178) in place of the Milnor theorem, we have been able to show that 
the bound can be further reduced to 

i 

aga in  fo r  a rb i t r a ry  con f igu ra t i ons  and  po ly topes .  


