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Abstract

A collection of k sets is said to form a k-sunflower, or ∆-system, if the intersection of any

two sets from the collection is the same, and we call a family of sets F sunflower-free if it

contains no 3-sunflowers. Following the recent breakthrough of Ellenberg and Gijswijt (‘On

large subsets of F
n
q with no three-term arithmetic progression’, Ann. of Math. (2) 185 (2017),

339–343); (‘Progression-free sets in Z
n
4 are exponentially small’, Ann. of Math. (2) 185 (2017),

331–337) we apply the polynomial method directly to Erdős–Szemerédi sunflower problem

(Erdős and Szemerédi, ‘Combinatorial properties of systems of sets’, J. Combin. Theory Ser. A

24 (1978), 308–313) and prove that any sunflower-free family F of subsets of {1, 2, . . . , n} has size

at most

|F | 6 3n
∑

k6n/3

(

n

k

)

6

(

3

22/3

)n(1+o(1))

.

We say that a set A ⊂ (Z/DZ)n = {1, 2, . . . , D}n for D > 2 is sunflower-free if for every distinct

triple x, y, z ∈ A there exists a coordinate i where exactly two of xi , yi , zi are equal. Using a version

of the polynomial method with characters χ : Z/DZ → C instead of polynomials, we show that

any sunflower-free set A ⊂ (Z/DZ)n has size

|A| 6 cn
D

where cD = 3

22/3 (D − 1)2/3. This can be seen as making further progress on a possible approach

to proving the Erdős and Rado sunflower conjecture (‘Intersection theorems for systems of sets’,

J. Lond. Math. Soc. (2) 35 (1960), 85–90), which by the work of Alon et al. (‘On sunflowers and

matrix multiplication’, Comput. Complexity 22 (2013), 219–243; Theorem 2.6) is equivalent to

proving that cD 6 C for some constant C independent of D.
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1. Introduction

A collection of k sets is said to form a k-sunflower, or∆-system, if the intersection

of any two sets from the collection is the same. A family of sets F is said to

be k-sunflower-free if no k members form a k-sunflower, and when k = 3 we

simply say that the collection F is sunflower-free. It is a longstanding conjecture

that sunflower-free families must be small, and there are two natural situations in

which we may ask this question. The first, and most general case, is when each set

in the family has size m. Erdős and Rado made the following conjecture which is

now known as the Sunflower Conjecture.

CONJECTURE 1 (Erdős–Rado Sunflower Conjecture [5]). Let k > 3, and suppose

that F is a k-sunflower-free family of sets, each of size m. Then

|F | 6 Cm
k

for a constant Ck > 0 depending only on k.

In their paper, Erdős and Rado [5] proved that any k-sunflower-free family of

sets of size m has size at most m!(k − 1)m , but the conjectured bound of Cm
k

remains out of reach for any k > 3. The second setting for upper bounds for

k-sunflower-free sets concerns the case where each member of F is a subset

of the same n-element set. There can be at most 2n such subsets, and the

Erdős–Szemerédi sunflower conjecture states that this trivial upper bound can

be improved by an exponential factor.

CONJECTURE 2 (Erdős–Szemerédi sunflower conjecture [6]). Let S be a k-

sunflower-free collection of subsets of {1, 2, . . . , n}. Then

|S| < cn
k

for some constant ck < 2 depending only on k.

In Erdős and Szemerédi’s paper [6], they prove that Conjecture 2 follows from

Conjecture 1 (see also [1, Theorem 2.3]), and so it is a weaker variant of the

sunflower problem. Let Fk(n) denote the size of the largest k-sunflower-free

collection F of subsets of {1, 2, . . . , n}, and define

µS
k = lim sup

n→∞
Fk(n)

1/n

to be the Erdős–Szmerédi-k-sunflower-free capacity. The trivial bound is µS
k 6 2,

and the Erdős–Szemerédi sunflower conjecture states that µS
k < 2 for all k > 3.

https://doi.org/10.1017/fms.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.12


Upper bounds for sunflower-free sets 3

In this paper we prove new bounds for the sunflower-free capacity µS
3 . It is

a theorem of Alon et al. [1, page 7] that the recent work of Ellenberg and

Gijswijt [4] on progression-free sets in F
n
3 implies that µS

3 < 2, and before

this, the best upper bound for a sunflower-free collection of {1, 2, . . . , n} was

2n exp
(

−c
√

n
)

due to Erdős and Szemerédi [6]. We give a simple proof of a

quantitative version of [1, page 7], showing that µS
3 6

√
1+ C where C is

the capset capacity. However, using the ideas from the recent breakthrough of

Ellenberg and Gijswijt and Croot et al. [3, 4] on progressions in F
n
3 , and from

Tao’s version of the argument [8], we apply the polynomial method directly to

this problem, and obtain a stronger result:

THEOREM 1. Let F be a sunflower-free collection of subsets of {1, 2, . . . , n}.
Then

|F | 6 3(n + 1)
∑

k6n/3

(

n

k

)

,

and

µS
3 6

3

22/3
= 1.889881574 · · ·

There is still a large gap between upper and lower bounds for the sunflower-free

capacity µS
3 .

In Section 3 we turn to the sunflower problem in the set {1, 2, . . . , D}, which we

always think of as Z/DZ . Alon, Shpilka and Umans [1, Definition 2.5], defined

a k-sunflower in (Z/DZ)n for k 6 D to be a collection of k vectors such that

in each coordinate they are either all different or all the same. When k = 3 and

D = 3 this condition is equivalent to being a three-term arithmetic progression

in F
n
3 .

CONJECTURE 3 (Sunflower conjecture in (Z/DZ)). Let k 6 D, and let

A ⊂ (Z/DZ)n be a k-sunflower-free set. Then

|A| 6 bn
k

for a constant bk depending only on k.

The motivation for this problem comes from [1, Theorem 2.6] where they

proved that Conjecture 3 is equivalent to the Erdős–Rado sunflower conjecture. In

particular, if there exists a constant b3 independent of D such that any 3-sunflower-

free set in (Z/DZ)n has size at most bn
3 , then Conjecture 1 holds for k = 3 with

c3 = e · b3. Since a sunflower-free set cannot contain a three-term arithmetic

progression, the recent result of Ellenberg and Gijswijt [4] implies an upper bound
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for sunflower-free sets A ⊂ (Z/DZ)n for D prime of the form |A| 6 cn
D, where

cD = De−I ((D−1)/3) for a function I defined in [4] in terms of a certain optimization

problem. It is not too hard to see that

0 < lim
D→∞

cD

D
< 1.

Using the characters χ : Z/DZ → C instead of polynomials, we prove the

following theorem:

THEOREM 2. Let D > 3, and let A ⊂ (Z/DZ)n be a sunflower-free set. Then

|A| 6 cn
D

where cD = 3

22/3 (D − 1)2/3.

This can be seen as progress towards the Erdős–Rado sunflower conjecture, and

we remark that the now resolved Erdős–Szemerédi conjecture for k = 3 is

equivalent to proving that cD < D1−ǫ for some ǫ and all D sufficiently large

[1, Theorem 2.7].

To prove Theorems 1 and 2 we bound the slice rank of a function of three

variables T (x, y, z) which is nonvanishing if and only if x = y = z or x, y, z

form a sunflower.

A function f : Ak → F, where Ak = A × A × · · · × A denotes the Cartesian

product and F is a field, is said to be a slice if it can be written in the form

f (x1, . . . , xk) = h(xi)g(x1, . . . , xi−1, xi+1, . . . , xk)

where h : A → F and g : Ak−1 → F. The slice rank of a general function f :
Ak → F is the smallest number m such that f is a linear combination of m slices.

If A is a sunflower-free set, it follows that, for x, y, z ∈ A, T (x, y, z) is nonzero

if and only if x = y = z.

We then have the following lemma:

LEMMA 1 (Rank of diagonal hypermatrices [8, Lemma 1]). Let A be a finite set

and F a field. Let T (x, y, z) be a function A×A×A→ F such that T (x, y, z) 6= 0

if and only if x = y = z. Then the slice rank of T is equal to |A|.

Using this lemma, we need only find an upper bound on the slice rank of T to

obtain an upper bound on the size of the sunflower-free set. In each case we do

this by an explicit decomposition of T into slices found by writing T as either

a polynomial or as a sum of characters. We refer the reader to [2, Section 4] for

further discussion of the slice rank.
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This method is the direct analogue of Tao’s interpretation [8] of the Ellenberg–

Gijswijt argument for capsets, and can be thought of as a 3-tensor generalization

of the Haemer bound [7] which bounds the Sperner capacity of a hypergraph

rather than the Shannon capacity of a graph.

We stress two differences between our result and several other papers which

use the slice rank method [2, 8], or which have been reinterpreted to use the

slice rank [3, 4]. First, these papers study functions valued in finite fields, whose

characteristic is chosen for the specific problem and cannot be changed without

affecting the bound. Our work uses functions valued in a field of characteristic

zero, though we could have done the same thing in any finite field of sufficiently

large characteristic. Second, these papers mainly describe functions as low-degree

polynomials and use that structure to bound their slice rank. In the proof of

Theorem 2, we describe functions as sums of characters. One can interpret

characters as polynomials restricted to the set of roots of unity, but under

this interpretation the degree of the polynomial is not relevant to the proof of

Theorem 2 — only the number of nontrivial characters is.

REMARK 1. The proofs of Theorems 1 and 2 can be extended without

modification to handle a multicoloured version of the problem analogous to

multicoloured sum-free sets as defined in [2].

2. The Erdős–Szemerédi sunflower problem

Any subset of {1, 2, . . . , n} corresponds to a vector in {0, 1}n where a 1 or

0 in coordinate i denotes whether or not i lies in the subset. A sunflower-free

collection of subsets of {1, 2, . . . , n} gives rise to a set S ⊂ {0, 1}n with the

property that for any three distinct vectors x, y, z ∈ S, there exists i such that

{xi , yi , zi} = {0, 1, 1}.
Moreover, a sunflower-free collection of subsets of {1, 2, . . . , n} that also does

not contain two subsets with one a proper subset of the other gives rise to a set

S ⊂ {0, 1}n such that for any x, y, z ∈ S not all equal, there exists i such that {xi ,

yi , zi} = {0, 1, 1}. This holds because the only new case is when two are equal

and the third is not (say x = y and z is distinct), and then because x 6= z, x is not

a subset of z, so there exists some i such that xi = yi = 1 and zi = 0.

Given a sunflower-free set S ⊂ {0, 1}n , let Sl , for l = 1, . . . , n, denote the

elements of S with exactly l ones so that S =
⋃n

l=0 Sl . Then for each l, Sl is a

sunflower-free collection of subsets with none a proper subset of another, hence

whenever x, y, z ∈ Sl satisfy x + y + z /∈ {0, 1, 3}n we must have x = y = z. For

x, y, z ∈ {0, 1}n consider the function T : {0, 1}n × {0, 1}n × {0, 1}n → R given
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by

T (x, y, z) =
n
∏

i=1

(2− (xi + yi + zi)) .

The function T (x, y, z) is nonvanishing precisely on triples x, y, z such that there

does not exist i where {xi , yi , zi} = {1, 1, 0}. Hence restricted to Sl×Sl×Sl , T (x,

y, z) is nonzero if and only if x = y = z. So by Lemma 1, the slice rank of T is

at least |Sl |. Expanding the product form for T (x, y, z), we may write T (x, y, z)

as a linear combination of products of three monomials

x
i1

1 · · · x in

n y
j1

1 · · · y jn
n z

k1

1 · · · zkn

n

where i1, . . . , in, j1, . . . , jn, k1, . . . , kn ∈ {0, 1}n , and

i1 + · · · + in + j1 + · · · + jn + k1 + · · · + kn 6 n.

For each product of three monomials, at least one of i1 + · · · + in , j1 + · · · + jn ,

k1+· · ·+kn is at most n/3. For each term in T , choose either x
i1

1 · · · x in
n , y

j1
1 · · · y jn

n ,

or z
k1

1 · · · zkn
n , making sure to choose one of total degree at most n/3. Divide the

expansion of T into, for each possible monomial, the sum of all the terms where

we chose that monomial. Because one monomial in each of these sums is fixed, we

can express each sum as a product of that monomial (a function of one variable)

times the sum of all the other terms (a function of the other variables), hence each

of these sums is a slice. The total slice rank is at most the number of slices, which

is at most the number of monomials we can choose: three times the number of

monomials in n variables of degree at most 1 in each variable and of total degree

at most k. The number of such monomials is exactly
∑

k6n/3

(

n

k

)

, so this yields the

upper bound

|Sl | 6 3
∑

k6n/3

(

n

k

)

,

|S| 6
n
∑

l=0

|Sl | 6 3(n + 1)
∑

k6n/3

(

n

k

)

which is the statement of Theorem 1.

2.1. Capset capacity. A capset A is a subset of Fn
3 containing no three-term

arithmetic progressions. Let An ⊂ F
n
3 denote the largest capset in dimension n,

and define

C = lim sup
n→∞

|An|1/n
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to be the capset capacity. Note that |An| is super-multiplicative, that is for m,

n > 1 we have |Amn| > |An|m since An Cartesian-producted with itself m times

is a capset in F
mn
3 . Ellenberg and Gijswijt [4] proved that C 6 2.7552, and the

following theorem is a quantitative version of a result of Alon et al. [1, page 7].

THEOREM 3. We have that µS
3 6
√

1+ C where C is the capset capacity and µS
3

is the Erdős–Szmeredi-sunflower-free capacity.

Proof. We bound the size of the largest sunflower-free set in {0, 1}2n by writing

each vector in terms of the four vectors in {0, 1}2

u0 =
[

0

0

]

, u1 =
[

1

0

]

, u2 =
[

0

1

]

, u3 =
[

1

1

]

.

Every set S ⊂ {0, 1}2n corresponds to a set S̃ ∈ {0, 1, 2, 3}n where we obtain S

from S̃ by replacing each symbol i for i ∈ {0, 1, 2, 3} with the vector ui . For

example,








1

0

1

1









←→
[

1

3

]

and









0

1

0

0









←→
[

2

0

]

.

For each x ∈ {0, 1}n consider

S̃x =
{

v ∈ S̃ : vi = 3 if and only if xi = 1
}

.

We may view elements of S̃x as elements of {0, 1, 2}n−x = F
n−x
3 by ignoring the

coordinates where x is 1. If three elements in S̃x form an arithmetic progression

in F
n−x
3 , then in each coordinate the elements of S̃x are either all the same or are

0, 1, 2 in any order, so the entries of the corresponding vectors in S are either all

the same or u0, u1, u2 in any order. Because u0, u1, u2 form a sunflower, these

three elements of S form a sunflower. Because S is a sunflower-free set, S̃x is a

capset. Let w(x) =
∑n

i=1 xi be the weight of the vector x , then

|S̃x | 6 Cn−w(x)

where C is the capset capacity. Hence

|S| 6
∑

x

Cn−w(x) =
n
∑

j=0

(

n

j

)

Cn− j = (1+ C)n,

and we obtain the desired bound.

Using the Ellenberg–Gijswijt upper bound on capset capacity, this gives

µS
3 6 1.938, which is not as strong a bound as Theorem 1.
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3. Sunflower-free sets in (Z/DZ)n

Consider the D characters χ : Z/DZ → C
×. By the orthogonality relations,

for any a, b ∈ Z/DZ

1

|D|
∑

χ

χ(a − b) =
{

1 if a = b,

0 otherwise.

Hence

1

|D|
∑

χ

(

χ(a)χ(b)+ χ(b)χ(c)+ χ(a)χ(c)
)

=











0 if a, b, c are distinct,

1 if exactly two of a, b, c are equal,

3 if a = b = c.

For x, y, z ∈ (Z/DZ)n , define the function T : (Z/DZ)n × (Z/DZ)n ×
(Z/DZ)n → C by

T (x, y, z) =
n
∏

j=1

(

1

|D|
∑

χ

(

χ(xi)χ(yi)+ χ(yi)χ(zi)+ χ(xi)χ(zi)
)

− 1

)

,

=
n
∏

j=1

(

1

|D|
∑

χ

(

χ(xi)χ(yi)1(zi)+ 1(xi)χ(yi)χ(zi)+ χ(xi)1(yi)χ(zi)
)

− 1(xi)1(yi)1(zi)

)

(1)

which is nonzero if and only if x, y, z form a Z/DZ-sunflower or are all equal.

Let A ⊂ (Z/DZ)n be a sunflower-free set. Then restricted to A × A × A, T is

nonzero if and only if x = y = z. Hence by Lemma 1 the slice rank of T is at

least |A|. Expanding the product in (1), we see that T can be written as a linear

combination of terms of the form

χ1(x1) · · ·χn(xn)ψ1(y1) · · ·ψn(yn)ξ1(z1) · · · ξn(zn)

where χ1, . . . , χn, ψ1, . . . , ψn, ξ1, . . . , ξn are characters on Z/DZ, at most 2n of

which are nontrivial. For any such term, at least one of the tuples χ1, . . . , χn ,

ψ1, . . . , ψn , ξ1, . . . , ξn must contain at most 2n/3 nontrivial characters. Grouping
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the terms by the one containing the fewest nontrivial characters like this, we are

able to upper bound the slice rank of T by

3
∑

k62n/3

(

n

k

)

(D − 1)k,

where the (D − 1)k comes from the fact that for each set of k indices, we have

(D−1)k possible choices of nontrivial characters. Because D > 3, (D − 1)/2 > 1,

so:

∑

k62n/3

(

n

k

)

(D − 1)k 6
∑

k62n/3

(

n

k

)

(D − 1)k
(

D − 1

2

)2n/3−k

=
(

D − 1

2

)−n/3
∑

k62n/3

(

n

k

)

(D − 1)k
(

D − 1

2

)n−k

6

(

D − 1

2

)−n/3
∑

k6n

(

n

k

)

(D − 1)k
(

D − 1

2

)n−k

=
(

D − 1

2

)−n/3 (

D − 1+
D − 1

2

)n

=
(

3

22/3
(D − 1)2/3

)n

.

Let cD = 3

22/3 (D − 1)2/3. This inequality proves that for |A| a sunflower-free set,

|A| 6 3cn
D.

To prove Theorem 2 (that |A| 6 cn
D), we can remove the factor of 3 by a

standard amplification argument, as for A a sunflower-free set in (Z/DZ)n , Ak

is a sunflower-free set in (Z/DZ)nk , so |A| 6 (3cnk
D )

1/k = 31/kcn
D. Taking k→∞,

we obtain Theorem 2.
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[5] P. Erdős and R. Rado, ‘Intersection theorems for systems of sets’, J. Lond. Math. Soc.(2) 35

(1960), 85–90.
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