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Abstract. Let A(d, n) be the maximum diameter of the graph of a d-dimensional 
polyhedron P with n-facets. It was conjectured by Hirsch in 1957 that A(d, n) depends 
linearly on n and d. However, all known upper bounds for A(d, n) were exponential 
in d. We prove a quasi-polynomial bound A(d, n) <_. n 2j°gd+3. 

Let P be a d-dimensional polyhedron with n facets, let ~p be a linear objective 
function which is bounded on P and let v be a vertex of P. We prove that in the 
graph of P there exists a monotone path leading from v to a vertex with maximal 

~0-value whose length is at most n z'fi. 

I. Introduction 

Let P be a convex polyhedron.  The graph of P denoted by G(P) is an abstract  
graph whose vertices are the extreme points of  P and two vertices u and v are 
adjacent if the interval Iv, u] is an extreme edge ( =  one-dimensional face) of  P. 
The diameter of  the graph of  P is denoted by 6(P). 

Let A(d, n) be the max imum diameter  of  the graphs of  d-dimensional polyhedra  
P with n facets. (A facet is a (d - l)-dimensional face.) Thus,  P is the set of  solutions 
of n linear inequalities in d variables. It  is an old s tanding problem to determine 
the behavior of  the function A(d, n). The  value of  A(d, n) is a lower bound  for the 
number of iterations needed for the simplex algori thm for linear p rogramming  
with any pivot rule. 

- - - - - - - _ . _ _ . _ .  
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In 1957 Hirsch conjectured [2] that A(d, n ) <  n -  d. Klee and Walkup [9] 
showed that the Hirsch conjecture is false for unbounded polyhedra. They found 
examples showing that, for n _> 2d, A(d, n) > n - d + l_d/5J. The Hirsch conjecture 
for convex polytopes (=  bounded polyhedra) is still open. It is also open whether 
A(d, n) is bounded above by a linear function of n and d. 

In view of its intrinsic interest and simplicity and its close connections with 
linear programming, the Hirsch conjecture drew substantial attention over the 
years. For  a recent survey on the Hirsch conjecture and its relatives, see [7]. 

In 1967 Barnette proved [1], [4] that A(d, n) < n3 d- 3. Barnette's bound is linear 
in the number of facets but exponential in the dimension. An improved upper 
bound of a similar asymptotic behavior was found in 1970 by Larman who proved 
[10] that A(d, n) <_ n2 a-3. 

We give a quasi-polynomial upper bound for A(d, n). The existence of a 
polynomial or even a linear upper bound for A(d, n) is still open. In this paper 
log x stands for log2 x. 

Theorem 1. 

A(d, n) .< n 21°ga+3. (1) 

Let P be d-dimensional polyhedron with n facets and let tp be a linear objective 
function on R d which is bounded on P. A ~o-maximaI vertex of P is a vertex of P 
on which q~ attains its maximum. A path on the graph of P is called monotone if 
q~ is nondecreasing along it. For  a vertex w of P let h(w) be the minimum length 
of a monotone path in G(P) from w to a ~o-maximal vertex of P. (A length of a 
path in G(P) is the number of its edges.) The height of P with respect to ~0, denoted 
by h~,(P), is the maximum of h(~o) over all vertices w of P. (Note: our notion of 
height is different from the one in [4].) Let H(d, n) denote the maximum value of 
hq,(P) for all d-dimensional polyhedra P with n facets, and all linear objective 
functions q~ as described above. It is easy to see that A(d, n) < H(d, n). 

Theorem 2. 

H(d, n) <_ n 2"ft. (2) 

A trivial upper bound on h~(P) is the number vertices of P. This gives that 

( n )  for some positive constant c. The upper bound (2) gives logH(d,n)  < clog d ' 

log H(d, n)<_ x/n log n. This is an improvement on the trivial bound when 
n = o(d2). 

Let ~[d ,  r] denote the class of simple d-polytopes with the property that every 
k-face has at most rk facets. 

Theorem 3. Let r > 2 be a fixed integer. The diameter of every polytope P in the 
class ~[d,  r] and the height of P with respect to every linear objective function are 
polynomial in d. The height and the diameter of every polytope in ~[d,  2] is at most d. 
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Theorem 3 applies to several classes of polyhedra which are of interest in linear 
programming theory. For example, it gives a polynomial upper bound on the 
height (and the diameter) of the feasible polyhedra of any generalized flow problem. 

The proof of Theorem 1 is given in Section 2. The proofs of Theorems 2 and 3 
are given in Section 3. In Section 4 we discuss a general combinatorial context for 
which our results apply. Section 5 contains speculations on the behavior of the 
function A(d, n) and on the relation with linear programming. 

The results in Section 3 were obtained by the author in November  1990, and 
were the first subexponential bound for A(d, n). The better bounds of Section 2 
were proved in March 1991. Several developments occurred since then. A sub- 
stantial simplification of the proof  of Theorem I was obtained by Kleitman (May 
1991). His proof is given in a joint research announcement with the author [6]. 
The author observed (September 1991) how to modify the proofs of the quasi- 
polynomial bounds for A(d, n) to get similar bounds for H(d, n). Finally, the author 
found (September 1991) a randomized simplex algorithm which takes an expected 

subexponential (n 3~/~) number of arithmetic operations on every linear pro- 
gramming problem with d variables and n constraints. 

2. Quasi-Polynomial Bounds for the Diameter 

Let P be a d-dimensional polyhedron. For a face F of P let N(F) be the set of 
facets of P with intersect F. Clearly, the number of facets of F itself is smaller than 
N(F). 

For two vertices u and w of P, define a path of faces between u and v as a 
sequence of the form u = v 1, F 1, v 2, F 2 . . . .  vtFt, vt+1 = u where F i is a face of P 
which contain the vertices vl and vi+ 1, i = 1, 2 . . . .  , t. Such a path is called a path 
of facets if Fi is a facet of P for every i. A path of faces is nested if, for every i, 
d imF i > _ d i m F  i+l and if dim F i > d i m F i + l , t h e n  F i ~ F j f O r e v e r y j > i .  

For two vertices v and w of P let Ip(u, v) denote a path of facets between u and 
v of minimal length. If Ip(u, v) is of the form u = vl, F1, rE, F2 . . . . .  vtFt, vt+ 1 = u, 
then it is easy to see that N(Fi)c~ N(F j )=  Q5 if j > _ i +  3. Since otherwise if 
F ~ N(Fi) c~ N(Fj) we could make a shortcut by replacing the facets F,, i < l < j, 
by F. (This is the crucial observation in Barnette's proof [1], [4].) 

Proof o f  Theorem 1. Let g(d ,n )=  (6d)Zl°g"_< n 21°~d+3. Note that g(d,n) is a 
monotone function of d and n, and that, for a fixed d, g(d, n) is a convex function 
of n. We will prove by induction on d that A(d, n) <_ g(d, n). This is clear for d = t. 
Assume that A(d', n) <_ g(d', n) for every d' < d and every n. 

Let P be a d-dimensional polyhedron with n facets. Call a face F of P small if 
IN(F)1 <_ n/2, otherwise call F big. Note that for every two big faces there is a facet 
which intersects them both. 

Let v and u be two vertices of P. We will find two nested paths of faces $1 and 
$2 of the form 

St: v = vl, F1, v2, F2 . . . . .  F s and 
$2: u = ul, GI, u2, G z . . . . .  G,, 
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with the following properties: 

(a) All faces Fi, i _< s, and G~, i < t, are small. 
(b) There is a facet F which intersects bo th  F s and G,. 
(c) If  F i and Fi + 3 have the same dimension, then N(Fi)  c~ N(Fi  + 3) = ~ ,  and 

the same property holds for the Gi's 

Given S 1 and $2, put d i =  dim F~, d~ = dim G i, n i = IN(FI)I, and n'~ = IN(GI) [. 
By the induction hypothesis, the distance between v and w in G(P) is at most  

o(d,, n,) + A(d - 1, n -- 1) + ~ o(dl, n~). 
i = l  i = 1  

Since o(d, n) is a convex function of  n this expression is at most  A(d - 1, n - 1) + 
d - 1  6 ~ i  = 1 g(d - i, n/2). 

It follows that A(d,n)_< A ( d -  1, n - 1) + 6 d g ( d -  1, n/2) and therefore 
A(d, n) <_ 6d29(d, n/2) = 9(d, n). 

We will now describe the construct ion of  S t and S 2. This will be done in at 
most  ( d -  1) 2 steps which correspond to pairs of positive integers (a, b), a, 
b < d - 1. In the (a, b)th step we construct  two nested paths of faces RI and R2: 

RI :  v = v 1, F 1, v2, F2 . . . . .  F~ and 
R2: u = u1, Gl ,  u2, G2 . . . .  , Gt 

with the properties: 

(a') All faces F i, i < s, and G i, i < t, are small. F s and G~ are big. dim Ft = d - a 
and dim G, = d - b. 

(c') If  F i and F t + 3 have the same dimension, then N(Fi)  c~ N(Fi  ÷ 3) = ~ ,  and the 
same holds for the Gi's. 

To start the construct ion for a = b = 1 consider I = Ip(v, u). If  there is only one 
big facet F in I, break I into two parts S1 and S 2 by deleting F. If  there is no big 
facet in I, break I into S 1 and S 2 in an arbitrary way. Otherwise, let RI be the 
initial par t  of  I which ends with the first big facet of  I, and let R 2 be (in reverse 
order) the terminal part  of  I starting with the last big facet of  I. 

Assume that the sequences R 1 and R 2 are given. There is a facet F which 
intersect both F,  and G r (Since both  are big faces.) Let x be a vertex in F,  c~ F 
and let y be a vertex in G t n  F. Let U = IF~(v ~, x) be a minimal path of facets of 
Fs between the vertices v s and x and let W = 16,(y, ur) be a minimal path of  facets 
of  Gt between the vertices y and Ur 

If all faces in the paths U and W are small construct  $1 and $2 by replacing 
in R 1 the face F~ by U and by replacing in R 2 the face G, by W. Otherwise, assume 
that  there is a big face in U and let Hj  be the first big face in U. In this case, keep 
R 2 unchanged and replace in R 1 the face F, by the initial part  of  U: v~ = a~, H1, 
a2, H2 . . . . .  a j, Hi. (Note that  dim H~ = d - a - 1.) It is immediate to check that 
these sequences satisfy the requirements for (a + 1, b). 

Since every 1-face is small this process will terminate with sequences $1 and 
$2 as required. 
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Remarks. 1. Let f (d ,  n) be a monotone function of d and n which is a convex 
function of n for every fixed d. Suppose that f (d ,  n) satisfies the relations f(1, n) > 1 

d ~ l  and f (d ,  n) < f ( d  - I, n - 1) + ~i= 1 f ( d  - i, n/2). The proof of Theorem 1 actu- 
ally shows that A(d, n) < f (d ,  n). 

For positive real numbers a and b define 

fa.b(d, n) = (ad/log n) bt°g", (3) 

fa,b(d, n) = max(t >_ 1: t'f~.b(d, n/t)}. (4) 

Note that fa.b(d, n) is a monotone function of d and n and is a convex function 
of n for every fixed d. 

The behavior of the function f,.b(d, n) is demonstrated by the following relations. 
There are constants c > 0 and C > t which depend on a and b such that 
f~,b(d, n) < min{n bz°ga+c, Ca'n}. On the other hand, when log log n = o(log d) then 
f,,b(d, n ) >  n bt°gd~+°~ and when log n >_ c" 'd  (for some constant c" depending 
on a and b) then f~.b(d, n) > C a. n. 

For b = 2 and for a sufficiently large (a = 20 will do), the function f (d ,  n) = 
fa, b(d, n) satisfies the relation 

f (d ,  n) <_ f ( d  - 1, n) + ~f(d, fin), (5) 

where a = ~/6 and/~ = x/~/2. This relation (repeated twice) gives 

d - 1  

f ( d , n ) < _ f ( d -  1, n ) + 6  ~ f ( d - i , n / 2 ) .  
i=.O 

It is clear that f(1, n) _> 1. Thus, the proof of Theorem 1 gives 

A(d, n) _< f2, 20(d, n). (6) 

2. A substantial simplification of the proof giving a slightly better estimate, 
A(d, n ) <  n t°ga+l, was recently obtained by Kleitman. See [6]. Kleitman's proof 
gives the recurrence relation A(d, n) _< A(d - 1, n - 1) + 2A(d, I_n/2J) + 2. 

3. Subexponential Bounds for the Height 

We are given a d-dimensional polyhedron P and a linear objective function q~. 
For simplicity we assume that P is simple and that ~0 is not constant on any edge 
of P. (Recall that a d-polyhedron P is simple if every vertex of P belongs to exactly 
d facets.) There is no loss of generality in those assumptions. Let r >__ 1 be an 
integer. Given a vertex v of P consider the following algorithm GI(r) to reach the 
q~-maximal vertex. (GI stands for greatest improvement.) 

GI(r): Start from a vertex v. If v is not the q~-maximal vertex of P replace v by 
the vertex with maximal value of q~ among all vertices which belong to some r-face 
containing v, and repeat. 

Note that GI(1) is just the simplex algorithm with Dantzig's original greatest 
improvement pivot rule. 
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Theorem 4. I f  P is given by n < [kd /27  linear inequalities in d variables, then for  
r = d - [-d/(k - 1)7 the algorithm GI(r) terminates after at most  2k - 5 steps. 

Lemma 5. Let  F1, F 2 . . . . .  F m be d-subsets o f  the set { I, 2 . . . . .  n}, n < ['kd/27. I f  
m > k - 1, then there are i , j ,  1 < i < j  <_ m, such that tF i n Fj[ >_ [d/(k - 1)7. 

P r o o f  Otherwise 

Given a simple d-polyhedron P let G,(P) denote  the graph whose vertices are 
the vertices of  P and two vertices are adjacent if they are included in some r-face 
of  P. (Thus GI(P) = G(P).) 

Lemma 6. Let  P be a simple d-polyhedron with n < [kd /27  facets .  Put  r = 
d - [d/(k - 1)7. Then Gr(P) does not contain an independent set o f k  - 1 vertices. 

P r o o f  To each vertex v of  P associate the set S(v) of facets containing v. 
Two vertices w and u belongs to some r-face iff IS(w)c~ S(u)l >_ d -  r. Let 
r = d -  [ ' d / ( k -  1)7. Since there are altogether at most  Fdk/27 facets, Lemma 5 
follows from Lemma 6. 

P r o o f  o f  Theorem 4. Let ~0 be an objective function and let v be the ~p-maximal 
vertex of  P. Let w be a vertex of  P, consider the sequence w = w o, wl . . . .  , w,, = v 
where wi+ a is the vertex with maximum value oftp among  all vertices which belong 
to some r-face containing wi. If m > 2k - 5, then w o, w 2, w 4 . . . . .  Wzk-4 form an 
independent set of  k - 1 vertices in Gr(P). By Lemma 6 this is impossible and 
therefore m < 2k - 5. [ ]  

P r o o f  o f  Theorem 2. F r o m  Theorem 4 it follows that if n <<_ [-kd/27, then 

H(d, n) < (2k - 5)H(d - Fd/(k - 1)7, n - [d/(k - 1)7). (7) 

No te  that  if (n/d) < (k/2) for some integer k > 2, then 

(n - [d/(k  - 1)7)/(d - Fd/(k - 1)7) < (k + 1)/2. 

Also note that d - rd/(k - 1)7 = Ld(k - 2)/(k - 1)]. 
By iterating (7) we obtain for every integer t that 

where 

H(d, n) < (2k - 5)-(2k - 3)-(2k - 1)-.-(2t - 5)(2t - 3)H(x, y), 

1 k t -< t / '  
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and y < (t + 2)x/2 _< n. Substituting t = x/n 

(9 H(d, n) <_ d ' we obtain that 

and using the trivial relation 

H(d, n) < (2x/-n)! 2 < []  (8) 

Proo f  o f  Theorem 3. Let h,(d) be the maximum height of a polytope in ~[d ,  r]. 
It follows from Theorem 2 that h,(d) < (4r - 5)h,(d - [-d/(2r - 1)1). It follows that 
h,(d) < (4r - 5) j°~2r-'v~:'-~ = d c~'~ where C(r) = log~2r-l~/~z,-2~(4r - 5). Note that 
C(r) = O(r log r). Let P be a polytope in ~[d ,  2]. Let v be a vertex of P. There is 
a monotone path of length h2(d - 1) from v to a vertex w with maximum ~ value 
among all vertices which belong to a facet containing v. If w is not the tp-maximal 
vertex of P, then after moving along an improving edge from v we must reach the 
only vertex of P which belongs to no facet of P containing v, and this vertex must 
be optimal. [ ]  

Remarks. 1. Let w(k, d, n) denote the maximal cardinality of an independent set 
in Gk(P ) over all d-dimensional polyhedra with n facets. The value of w(k, d, n) is 
closely related to the maximal possible number of binary vectors of length n, 
constant weight d, and Hamming distance at least 2k + 2 apart. See Chapter 17 
of [5]. In particular, Lemma 5 is a weak form of Johnson's bound for constant 
weight codes. 

2. Lemma 6 implies that if P is a d-polytope with at most r k d / 2 ]  facets, and 
r = d - Fd/(k - 1)], then the diameter of G,(P) is at most 2k - 4. By a similar 
argument we can prove that the diameter of Gr(P) is actually at most k - 1. The 
value 2k - 5 in Theorem 4 can be reduced to k - 3 by adding an improving move 
at the end of each step of algorithm GI(r). 

3. In this remark we rely on the definitions in Section 1.5 of [3]. Let ( ~ -  denotes 
the class of polyhedra given as the set of generalized pseudoflows with a given 
excess function in some network (equipped with capacity and gain functions). It  
is easy to see that every face of a polyhedron in f # ~  is itself a polyhedron in ( ~ .  
Another easy observation is that every polyhedron P in c ~ -  can be defined over 
a network with the property that all vertex degrees are at least 3. If  P is defined 
over such a network with v vertices and e edges, then d = dim P = e - v and the 
number of facets of P is at most 2e > 6(e - v) = 6d. It follows that P e ~[d ,  6] 
and that the height of P is at most d log"m°~19 = d 3°'893'''. 

4. General Combinatorial Setting 

4.1. For the D iame te r  

Let K be a collection of d-sets. We call the elements of U{S: S E K} the vertices 
of K. Two sets in K are adjacent  if their intersection is of cardinality d - 1. K is 
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strongly connected if between every two sets S and T in K there is a path of sets 
in K of the form S = R o, R l . . . . .  R, = T such that, for every i, R i is adjacent to 
R~+ ~. The distance between S and T is the minimum of t over all such paths, and 
the diameter of K is the maximal distance between two members of K. K is 
ultraconnected if for every S and Tin  K there is a path as above with the additional 
property that (S c~ T) c Ri for every i. 

Let D(d, n) denote the maximal diameter of ultraconnected families of d-sets 
with n vertices. 

Clearly, D(d, n) >_ A(d, n). See, e.g., [7]. (It is known that any upper bound on 
the diameter of simple d-polyhedra with n facets applies to general d-polyhedra 
with n facets. Next, to each vertex v of a simple d-polyhedron associate, as in the 
previous section, the set S(v) of facets containing v. Two vertices v and w in P are 
adjacent in G(P) iff S(v) is adjacent to S(u). The family {S(v): v is a vertex of P} is 
ultraconnected since for every two vertices u, v of P which belong to some face F 
of P there is a path in G(P) connecting u and v which lies in F.) 

Larman's  proof applies in this generality (and beyond it, see [10]) and gives 
D(d, n) < 2 d-in. 

The proof  of Section 2 applies to D(d, n). In fact, this is the context for which 
the proof was found. To see this let K be an ultraconnected family of d-subsets 
of In] = { 1, 2 . . . . .  n}. L e t / (  be the simplicial complex spanned by K, i.e., the set 
of all subsets of sets in K. For  S ~ / (  define N(S) = {i~ In]: {i} • Se/~}.  S is small 
if I N(S)I _< n/2 or if I Sf = d - 1. S is big otherwise. Now apply the proof  of Section 
2 word by word. 

Kleitman's recent proof [6] can also be modified to apply to D(d, n). To see 
this consider an ultraconnected family of d-subsets of [m], m > n, and a subset V 
of [m] of size n. Define the distance between two subsets of V relative to V to be 
minus one the minimal number of d-subsets of V in a path in K between S and 
T. (In other words, d-sets which contain vertices not in V are not counted.) The 
diameter of K relative to V is the maximum over all S and T of their distance 
relative to I1. Let/3(d, n) denote the maximal diameter of an uitraconnected family 
of sets relative to a set of n vertices. Kleitman's argument applies in this context 
and gives the recurrence/3(d, n) </~(d - 1, n - 1) + 2/5(d, n/2) + 2. 

Remarks. 1. All our arguments apply to the more general (graph-theoretic) 
context considered by Larman [I0] .  

2. A family K of d-sets is ultraconnected iff the simplicial c o m p l e x / (  is pure, 
and has the property that all links of faces of codimension one or more are 
connected. Note that this property is a topological property of K. 

4.2. For the Height 

The proofs of the results on heights of polytopes apply directly to the following 
more general situation. Let K = {S1, $2 . . . . .  S~} be a family of d-sets. For every 
U let i(U) be the maximal index so that U c S~tu~. Suppose that, for every U, if 

j < i(U) and U c Si, then there is t > j so that U c S t and Sl is adjacent to S s. 
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In other words, every terminal subfamily of K of the form {Sj, St+ 1 . . . . .  St} is 
ultraconnected. An "improving path" corresponds to a path of adjacent sets with 
increasing indices. 

The required property for K is much stronger than ultraconnectivity. It is 
equivalent to the assertion that the simplicial complex spanned by K is sheUable. 
Thus, the results on heights of polytopes apply to arbitrary shelling orders of the 
facets of a shellable complex. 

5. Final Remarks 

5. I. What Is the Truth ? 

The gap between the lower and upper bounds on A(d, n) is still substantial. The 
author's guess (which is as good as the reader's) is that the known upper bounds 
are asymptotically closer to the true value of A(d, n). 

Conjecture 1. For some positive reals a and b, 

O(d, n) > A(d, n) > fa, b( d, n). (9) 

(The function fa.b(d, n) is defined in Section 2.) 

5.2. Linear Programming 

There is a close relation between the complexity of edge-following algorithms for 
linear programming and the diameter problem for graphs of polytopes. Yet, good 
bounds for the diameter do not translate to quick pivot rules and, on the other 
hand, there are several transformations applicable to a linear program (such as 
LP duality) and it is possible that (allowing the use of these transformations) there 
is a worse-case polynomial variant of the simplex algorithm even if A(d, n) is not 
polynomial. 

Klee and Minty [8] were the first to show that some variants of the simplex 
algorithm are exponential in the worse case. It would be of great interest to find 
a variant of the simplex algorithm for linear programming with subexponential 
worse-case behavior. 

Consider the following algorithm RI(r). 

RI(r): Start from a vertex v. If v is not the ~o-maximal vertex of P choose a random 
r-face F containing v, replace v by the tp-maximal vertex in F and repeat. 

Conjecture 2. For every linear program with d variables and n <_ [-kd/27 in- 
equalities, the expected number of iterations of R I ( d -  rd/(k - 1)7 is bounded by 
O(kd log n). 
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This  conjec ture  is ob t a ined  by  t ry ing to  es t imate  the number  of  i terat ions 
needed, in a s imilar  way to the p r o o f  of  Theo re m 4, using a generous  a m o u n t  of 
unjustif ied probabi l i s t i c  independence  assumptions .  

If true, Conjec ture  2 would  give a subexponent ia l  ( randomized)  var iant  for the 
s implex a lgor i thm.  Moreover ,  we may  app ly  this a lgor i thm recursively and 
s imul taneous ly  for faces and  their  duals.  (One of  these will have no  more  facets 
than twice the dimension.)  This  shows that  an  aff irmative so lu t ion  to Conjecture  
2 would  imply  a quas i -po lynomia l  combina to r i a l  r andomized  a lgor i thm for linear 

p rogramming .  

La te  Remark .  Recently the au tho r  [12] found a subexponent ia l  var iant  of the 
s implex a lgor i thm.  Recursive app l ica t ions  of  a lgor i thm Rl(r) for r = d -  I is 
subexponent ia l  bu t  Conjec ture  2 remains  open.  
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