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UPPER BOUNDS FOR THE INDEX OF MINIMAL SURFACES
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Introduction. A minimal submanifold in a Riemannian manifold is a critical point

of the volume functional. Therefore, problems on the index arise naturally. Here the

index in the sense of Morse is defined to be the number of negative eigenvalues of the

Jacobi operator corresponding to the second variation.

In this paper we obtain upper bounds for the index of a compact domain with

boundary on a minimal surface in an Hadamard manifold or a space form, where an

Hadamard manifold is a simply connected complete Riemannian manifold of nonpositive

curvature. In [2] Berard and Besson obtained an upper bound for the index of a

compact domain with boundary on a minimal submanifold of dimension greater than

2 in an Hadamard manifold. We note that their method does not apply in dimension

2. First we have the following:

THEOREM 1. Let f: M—>N be a minimal immersion of a 2-dimensional manifold M

into an n-dimensional Hadamard manifold N, and let D be a simply connected compact

domain on M with piecewise smooth boundary dD. Then we have

Index(/)) = - -i- area(Z>) | A \*dM,

wAere ̂ 4 w the secondfundamentalform off anddM is the area element ofM induced by f.

We also show the following:

REMARK 1. Let / : M^N be a minimal immersion of a 2-dimensional manifold

M into an ^-dimensional Hadamard manifold N, and let D be a compact domain on

M with piecewise smooth boundary dD. Then we have

Index(Z)) =
 <*W~ ^ area(/)) | A \ *dM,

rc JD

where >4 is the second fundamental form of / , dM is the area element of M induced

by / and c = 8 ( v / 57 -3 ) 2 / ( 9 - > / 57 ) 2 (v / 57-7 ) (=143.22- • •).

Let / : M-+N be an immersion of a manifold M into a Riemannian manifold N.

Then a point p on M is said to be a geodesic point if the second fundamental form of

/ vanishes at p. We denote by Nn(a) the ^-dimensional simply connected space form

of constant curvature a. Then we obtain:
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THEOREM 2. Let f: M-^N
n
(a) be a minimal immersion of a 2-dimensional manifold

M into N
n
(a) with a^O, and let D be a simply connected compact domain on M with

piecewise smooth boundary dD and without geodesic points. Then

| \A\*dM\ \A\
4
~*dM

JD JD

for all a e [0.2/3], where A is the second fundamental form of f and dM is the area

element of M induced by f.

In Section 3, we use this theorem to estimate the index of a domain of infinite area.
In the above results, the ambient spaces are all nonpositively curved. However, we

do not assume a^O in the following theorem. Let / : M^N be an immersion of a
manifold M into a Riemannian manifold N, and let A be the second fundamental form
of / . Then a point p on M is said to be an isotropic point if the length of A(X, X) is
constant for any unit vector X at/(p) tangent to/(M). For a function F, we denote
max{F,0} by F

+
.

THEOREM 3. Let f: M-+N
n
(a) be a minimal immersion of a 2-dimensional manifold

M into N
n
(a), and let D be a simply connected compact domain on M with piecewise

smooth boundary dD and without isotropic points. Then

where K,
 ±

K and dM denote the Gaussian curvature, the normal scalar curvature and the

area element of M induced by / , respectively.

See [10] for the definition of the normal scalar curvature. We note that
{{a — K)

2
 —

 L
K} is positive on D because D contains no isotropic points.

As applications of these results, we give sufficient conditions for the stability (cf.
Corollaries 1, 2 and 3).

REMARK 2. (i) Tysk [20], Cheng and Tysk [6] obtained upper bounds for the
index of a complete minimal surface in the Euclidean space.

(ii) In the previous paper [17], we discussed the index of a surface with constant
mean curvature.

The author wishes to thank Professor S. Tanno for his constant encouragement
and advice, and the referees for useful comments.

1. Preliminaries. Let / : M-+N be a minimal immersion of an m-dimensional
manifold M into a Riemannian manifold N, and let D be a compact domain on M

with piecewise smooth boundary dD. We denote by W(D) the space of smooth vector
fields normal to/(M) on D which vanish on dD. For VeW(D) we consider a smooth
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one-parameter family of immersions { / t ;0^ /^ l } of D into N such that / 0 = / ,

ft\dD = f\dD anc* (d/dt)ft\t=0=V. The second variation I(V, V) of the volume functional

of D for the variational vector field Fis defined by I(V9 V) = (d2/dt2)Vol(D, t)\t=0, where

Vol(D, t) is the volume of D with respect to the metric induced by ft. Let 1V and XA

be the normal connection and the Laplacian of the normal bundle TLM of M induced

by / , respectively. Let NR and A denote the curvature tensor of N and the second

fundamental form of / , respectively. We define two smooth sections R and A of

EndC^M) by (Rv, w}^=1{
NR(v, f^f^, w> and <Av, w> = (A\ A"} for v,we

TpM, where {el9 • • •, em} is an orthonormal basis for the tangent space of M at p with

respect to the induced metric ds2. We denote by dM the volume element of (M, ds2).

Then by the second variational formula for minimal submanifolds (see [18]), we have

(1.1) I(V, V)= I ( ^ V F I 2 - ^ ^ V)-\Av\2)dM= I <-(±A + R + A)V, V}dM
JD JD

for Ve W(D). The index of D is defined to be the number of negative eigenvalues,

counted with multiplicities, of the eigenvalue problem

(1.2) (Lk + R + A)V+XV=0 for VeW(D).

The domain D is stable if all the eigenvalues of (1.2) are positive, and D is unstable if

(1.2) has a negative eigenvalue. The index of D thus measures how far D is from being

stable.

2. Proof of Theorem 1.

PROOF OF THEOREM 1. Let W(D), / ( , ) , 1V, ±A and ds2 be as in Section 1. Since

N has nonpositive curvature, we have by (1.1)

(2.1) I(V, V)^ [ (\±W\2-\A\2\ V\2)dM
JD

for Ve W(D). Let fit and Vt be the i-th eigenvalue and the i-th eigenvector field of the

eigenvalue problem

L&V+iiV=0 for VeW(D),

respectively. It is easy to see that fi(>0. Set

)^.(D) = |FG^(D); I <V,Vj>dM=OfoTl£j£i-l\.

We note that (M, ds2) has nonpositive curvature because/(M) is a minimal surface in

an Hadamard manifold. Let V denote the Riemannian connection of (M, ds2). For

Ve Wt{D) we get
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(2.2) f \A\2\V\2dMd\ \A\\

\2
J j \V(\V\2)\dM

2( I \A\*dMj I \V\\xVV\dM

2HTll2( I | A \4dM] I | L!V\2dM

(cf. [9, p. 69]), where for the second inequality we use the Sobolev inequality on the

simply connected nonpositively curved domain (D, ds2) (see [4]). Therefore if

^—[ \AfdM,
D

thenby(2.1)and(2.2),wehave/(F, F)^0forany Ve W^D). From this fact we find that

(2.3) Index(Z))gCard|/; nt<— | \A \A

Let F(D) be the space of smooth functions on D which vanish on dD. Let Af be

the i-th eigenvalue of the eigenvalue problem

0 for

where A is the Laplacian of (Af, ds2). Then

(2.4) £ exp(-^)g(n-2)£ exp(-A(/)
i = l i = l

for / > 0 (see [21, Theorem 2.1] and [8]). Since/(D) is on a minimal surface in an

Hadamard manifold, we have

(2.5) f exp(V)^

fort>0 (see [5] and [11]). Using (2.3), (2.4) and (2.5) we see that

(2.6) Index(D)exp( - — \ \A\*dM)^X e x p ( - ^ i ) ^ £ exp(-fitt)^"—^-area(D)
\ njD ) iei i-i 4nt
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for t>0, where / = { / ; Hi<(l/n)$D\A\4dM}. Thus we have

Index(D)^~area(D)inf — e x p ( - | |A\4dM)=^LZ^larea(Z)) | |A\*dM.
4n r>o t \n JD J 4n2 JD

q.e.d.

Next we show the fact in Remark 1. The proof is the same as that of Theorem 1,

except that we use in (2.2) the Sobolev inequality on a compact domain with boundary

on a minimal surface in an Hadamard manifold (see [19, p. 324] and [9]).

COROLLARY 1. Let f: M-*N be a minimal immersion ofa 2-dimensional manifold

M into an Hadamard manifold N whose sectional curvature is not greater than a<0. Let

D be a simply connected compact domain on M with piecewise smooth boundary dD. Then

D is stable if

L 4

where A is the second fundamental form off anddM is the area element ofM induced by f.

PROOF. Let / ( , ) , ds2, V, F(D) and Xt be as in the proof of Theorem 1. Let v be a

unit vector field normal to/(M) on D. Then as in (2.1) we have

f
(2.7) Ityv, ^v)^ (| V^ |2 - 1 A | V 2)dM

JD

for il/eF(D). As in (2.2) we have

(2.8) I \A\2i//2dM^n-1/2X;1/2( \ \A\AdMJ I \Vi//\2dM

for \//eF(D). We note that the Gaussian curvature of (M, ds2) is not greater than a<0

because of the hypothesis. Combining Theorem 4.4 in [14] with Lemma 2 in [13], we

have Xl^\a\/4. Hence by (2.7) and (2.8), we have I(\j/v, ^v)>0 for any v and any

\j/eF(D) which is not identically zero, under the hypothesis of the corollary. q.e.d.

COROLLARY 2. Let f: M->N be a minimal immersion of a 2-dimensional manifold

M into an Hadamard manifold N whose sectional curvature is not greter than a<0. Let

D be a doubly connected compact domain on M with piecewise smooth boundary dD. Then

D is stable if

I. 16c

where A is the second fundamental form of f, dM is the area element of M induced by

f and c is as in Remrark 1.
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PROOF. The proof is the same as that of Corollary 1, except that we use in (2.8)

the Sobolev inequality in [19]. q.e.d.

3. Proof of Theorem 2. For the proof of Theorem 2 we need the following lemma

(cf. [1, Proposition 2.2]):

LEMMA. Let f: M^Nn(a) be a minimal immersion of a 2-dimensional manifold M

into Nn(a) with a^O. Let A and ds2 denote the second fundamental form and the metric

on M induced by f, respectively. Set ds2 = \A\ads2. Then the Gaussian curvature Ka of

(M, ds2) satisfies Ka^0 for ae [0, 2/3] except at geodesic points.

PROOF. Suppose that p is a non-geodesic point on M. Let K9 V and A denote the

Gaussian curvature, the Riemannian connection and the Laplacian of (M, ds2),

respectively. Then we have

(3.1) K = — — A log(| A |«) =
 2 a ~ l ^ l °L_A l o g ( | A |2)

V a \A\* 2\A\a 2\A\a 4\A\a

_2a-\A\2 a _ $A(\A\2) \V{\A\2)\2\_2a-\A\2

2\A\* 4\A\"\ \A\2 \A\* J 2\A\"

2|,4|2 + a

where we use the Gauss equation for the second equality. In [15] we showed that

(3.2) -<.4, AA}^— \A\*-2a\A\2

(cf. [7] and [18]). Let {et, • • -,en} be an orthonormal basis for the tangent space of

Nn(a) at/(p) such that el9 e2 are tangent to/(M). Let hfj and hfjk be the components of

A and VA with respect to the basis, respectively. Here and in what follows, we use the

following convention on the ranges indices: l^/,y, k^2, 3^/?^«. We may choose

{el9 '"9eH} s o t h a t

0.

for some X and \i. We note that the components hfjk are symmetric in i,j9 k, and satisfy

Mii + M2i = 0. T n u s w e n a v e

(3.3) - y
V(\A\2)

2 ij,0 ij.k.fi k \ij,fi
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Using (3.1), (3.2) and (3.3) we see that for <xe[0, 2/3]

K < __̂  >_1^1 L̂__L_ < o . q.e.d.
4\A\<

PROOF OF THEOREM 2. Let W(D), / ( , ) , TLM, XV and ds2 be as in Section 1. As

in (2.1) we have

(3.4) I(V,V)^\ (\LVV\2-\A\2\V\2)dM

for Ve W{D). Set ds2 = \A\ads2 for ae[0 , 2/3], which is nondegenerate on D because

D contains no geodesic points. Let ±Va and dMa denote the connection of TLM with

respect to ds2 and the area element of (M, ds2), respectively. We see that

\VV\
(3.5) | i V a F | 2 = i — - L and dMx = \A\'dM,

I ̂  I

where V is a smooth vector field normal to/(M) on D. By (3.4) and (3.5) we have for

Ve W{D)

I(V, V)> f Q^Vf-lAf
JD

(3.6)
JD

Let fi* and V\ be the i-th eigenvalue and the i-th eigenvector field of the eigenvalue

problem

^V+fiV^O for VeW(D),

respectively, where xAa is the Laplacian of TLM with respect to ds2. Set

We note that (D, ds2) has nonpositive curvature by the lemma. As in (2.2) for Ve W*(D)

we have

(3.7) | lAf-'lVfdM.Zn-WQif)-1'2^ lA^^dM^'2J I^FI^M.,

where we use the Sobolev inequality on the simply connected nonpositively curved

domain (Z), ds2) (see [4]). Therefore, as in (2.3) we have

(3.8) Index(/))^Cardj/; JI?<— | \A \+~2"dMaj ./; JI?<— | \A \+

Let F(D) be the space of smooth functions on D which vanish on 3D. Let A" be the

i-th eigenvalue of the eigenvalue problem
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where Aa is the Laplacian of (M, ds2). Then

(3.9) f exp(-jif/)g(n-2) £ exp(-A?/)
» = i i=i

for f > 0 (see [21, Theorem 2.1]). Since (/), ds2) is simply connected and nonpositively

curved, we have

(3.10) f
J2

for f > 0 (see the proof of Theorem 2 in [4]). By (3.8), (3.9) and (3.10) we find as in (2.6)

Index(/))exp(-- [ {Af^'dM^9^^ [ dMa
\ n)D ) \6nt JD

for / > 0 . Thus we have

16K

9(n-2)e

16n2

^ f dMa inf — expf- f | A \
4
~

2a
dM?\

JD t>o t \n JD )

f dMa[ \A\*-2*dMaJ^^[ \A\*dM[\A\* dM.
D JD urn JD JD

q.e.d.

COROLLARY 3. Let f: M-+Nn(a) be a minimal immersion of a 2-dimensional

manifold M into Nn(a) with a^O, and let D be a simply connected compact domain on

M with piecewise smooth boundary dD and without geodesic points. Then D is stable if

I M |
a
r f M | \A\*

JD JD

for some a £ [0, 2/3], where A is the second fundamental form off dM is the area element

of M induced by f and j 0 ( = 2.40483- •) is the smallest zero of the Bessel function of

order zero.

PROOF. Let / ( , ) , ds2, dMa, F(D) and X* be as in the proof of Theorem 2. Let Va

denote the Riemannian connection of (M, ds%), and let v be a unit vector field normal

to/(M) on D. Then as in (3.6) we have

(3.11)
JD

for \j/eF(D). As in (3.7) we get

, ^ v ) ^ |
JD
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is simply connected and nonpositively curved, we have

(3.12)

for i// e F(D). Since (Z>,

(3.13)

(see [1, Proposition 3.3]). By (3.11), (3.12) and (3.13), we have /(^v, ^v)>0 for any v

and any i//eF(D) which is not identically zero, under the hypothesis of the corollary.

q.e.d.

Now we recall Mori's examples of complete minimal surfaces in the 3-dimensional

hyperbolic space H3 of constant curvature — 1 (see [12]). Let L4 be the space of 4-tuples

x = (xl9 x2, x3, xA) with the Lorentzian metric ix,yy=—x1y1+x2y2-^x3y3-\-x4y4, for

x, y e L4. We regard H3 as a hypersurface {x e L4; <x, x> = — 1, xx ^ 1} in L4. For each

a> 111, we define an immersion fa: M=Rx S1^!!3 by

1 /A(a,s) cosh </>a(s)\

A(a9s)sinh(t)a(s)

B(a, s) cos 6

B(a, s) sin 6

for se ( — 00, oo), 0e[O, 2TT], where

A(a9s)

and

/ j y /2 / i y / 2
= la cosh(2^)+— 1 , B(a, s) = la cosh(2.s) )

lB(a9t)

Then fa is a minimal immersion and M is complete in the induced metric. Let Aa and

dMa denote the second fundamental form and the area element of M induced by fa9

respectively. Then

= B(a,s)dsdd.
{B(a

For a 6(1/2, 7/2) we have

f f A J ^ 1 V f°° ds f00 ds

\Aa\
adMa\ \Aa\*-"dMa = 64n2(a2 — - —

)M JM V 4 / Jo {B(a9s)}2a-1}0 {Bfas)}1-*-
Therefore, we can estimate the index of a simply connected domain of infinite area on
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M by applying Theorem 2 to a e (1/2, 2/3]. Similarly, we may use Corollaries 1, 2 and
3 to estimate the stability of a domain of infinite area (cf. [16]).

REMARK 3. (i) The surface M is stable with respect to fa if a ̂  17/2 (see [12,
Theorem 2]), and M is unstable with respect to fa if 1 /2 < a < c0 (~ 0.69) (see [3, p. 708]).

(ii) There are classical examples of complete minimal surfaces in the 3-dimensional
Euclidean space. But the author could not find among them a suitable one to which
Theorem 2 is applied as above.

4. Proof of Theorem 3.

PROOF OF THEOREM 3. Let W(D\ / ( , ) , TL
M,

 1V and ds
2 be as in Section 1. Then

we have by (1.1)

(4.1) I(V, V)^ I {|1VK|2-(2a + |^|2)|F|2}rfM= I {\
L
VV\

2
-2(2a-K)\V\

2
}dM

JD JD

for Vs W(D\ where we use the Gauss equation. We consider a flat metric
ds

2
 = {(a-K)

2
-
 1

K}
 1/4

ds
2 on M(see [10, p. 207]), which is nondegenerate on D because

D contains no isotropic points. Let L
V and dM denote the connection of TL

M with
respect to ds

2 and the area element of (M, ds
2
), respectively. We see that

(4.2)
{{a-K)

2
-

±
K}

114

for a smooth vector field V normal to/(M) on Z>, and

(4.3) dM={(a-K)
2
-

1
K}

lf
*dM.

By (4.1), (4.2) and (4.3) we have for Ve W(D)

{(a — K)
2
 —

 1 J£) 1 /

where

(2a-K)
+

(\^V\
2
-2u\V\

2
)dM,

The rest of the proof is identical to those of Theorems 1 and 2. q.e.d.

REFERENCES

[ 1 ] J. L. BARBOSA AND M. DO CARMO, Stability of minimal surfaces and eigenvalues of the Laplacian,

Math. Z. 173 (1980), 13-28.

[ 2 ] P. BERARD AND G. BESSON, Number of bound states and estimates on some geometric invariants,

preprint.



INDEX OF MINIMAL SURFACES 349

[ 3 ] M. DO CARMO AND M. DAJCZER, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer.

Math. Soc. 277 (1983), 685-709.

[ 4 ] S. Y. CHENG AND P. Li, Heat kernel estimates and lower bound of eigenvalues, Comm. Math. Helv.

56 (1981), 327-338.

[ 5 ] S. Y. CHENG, P. Li AND S. T. YAU, Heat equations on minimal submanifolds and their applications,

Amer. J. Math. 106 (1984), 1033-1065.

[ 6 ] S. Y. CHENG AND J. TYSK, An index characterization of the catenoid and index bounds for minimal

surfaces in * 4 , Pacific J. Math. 134 (1988), 251-260.

[ 7 ] S. S. CHERN, M. DO CARMO AND S. KOBAYASHI, Minimal submanifolds of a sphere with second

fundamental form of constant length, in Functional Analysis and Related Fields, (F. E. Browder,

ed.), Springer-Verlag, Berlin, Heidelberg, New York, 1970, 59-75.

[ 8 ] H. HESS, R. SCHRADER AND D. A. UHLENBROOK, Kato's inequality and the spectral distribution on

Laplacians on compact Riemannian manifolds, J. Diff. Geom. 15 (1980), 27-37.

[ 9 ] D. HOFFMAN, Lower bounds on the first eigenvalue of the Laplacian of Riemannian submanifolds, in

Minimal Submanifolds and Geodesies, (M. Obata, ed.), Kaigai Publ., Tokyo, 1978, 61-72.

[10] T. ITOH, Minimal surfaces in a Riemannian manifold of constant curvature, Kodai Math. Sem. Rep.

25 (1973), 202-214.

[11] S. MARKVORSEN, On the heat kernel comparision theorems for minimal submanifolds, Proc. Amer.

Math. Soc. 97 (1986), 479-482.

[12] H. MORI, Minimal surfaces of revolution in H3 and their global stability, Indiana Univ. Math. J. 30

(1981), 787-794.

[13] R. OSSERMAN, A note on Hayman's theorem on the bass note of a drum, Comm. Math. Helv. 52

(1977), 545-555.

[14] R. OSSERMAN, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182-1238.

[15] M. SAKAKI, Remarks on the rigidity and stability of minimal submanifolds, Proc. Amer. Math. Soc.

106 (1989), 793-795.

[16] M. SAKAKI, Estimates on the stability of minimal surfaces and harmonic maps. J. Math. Soc. Japan

41 (1989), 641-650.

[17] M. SAKAKI, On the index of surfaces with constant mean curvature, preprint.

[18] J. SIMONS, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968), 62-105.

[19] S. TANNO, Remarks on Sobolev inequalities and stability of minimal submanifolds, J. Math. Soc.

Japan 35 (1983), 323-329.

[20] J. TYSK, Eigenvalue estimates with applications to minimal surfaces, Pacific J. Math. 128 (1987), 361-366.

[21] H. URAKAWA, Stability of harmonic maps and eigenvalues of the Laplacian, Trans. Amer. Math. Soc.

301 (1987), 557-589.

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

HIROSAKI UNIVERSITY

HIROSAKI 036

JAPAN




