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Abstract. This paper concerns eigenvalue problems for second-order random differential
equations with weakly correlated coefficients. The random problem and the mean (de-
terministic) problem are embedded in a parametrized problem whose eigenvalues are
expanded in a power series in the parameter. This expansion leads, via the variational
characterization of the eigenvalues, to computationally accessible upper bounds for the
mean values of the eigenvalues of the original problem.

1. Introduction. Despite their significance for applications, random eigenvalue problems
have received relatively little attention in comparison to that devoted to random initial
value problems. When the random terms are small, perturbation methods have proved
useful [1, 7, 8, 10], If, in addition, the random terms are weakly correlated, then in a
certain limiting sense, each eigenvalue has nearly a normal distribution [3, 9, 11].
Variational methods have also found limited use [1, 2]. In this paper we consider problems
in which the random terms are not small so that a perturbation method is not appropriate.
We seek to exploit the variational characterization of eigenvalues in order to obtain upper
bounds for the mean of each eigenvalue of a fairly wide class of problems.

We consider the problem:
— u" + q(x, u)u = Xu, (1-la)

w(0) = 0, «(1) = 0 (1-lb)
where q(x, w) is a random coefficient whose properties will be delineated later. It is
helpful to introduce the more general problem

u" +{(?0(x) + k[q{x,u) - q0(x)]}u = Xu, (l-2a)

«(0) = 0, u(1) = 0 (l-2b)

'Received July 28, 1983. The results presented in this paper were obtained while the second author was a
Visiting Scholar at Rensselaer Polytechnic Institute.

©1985 Brown University



440 WILLIAM E. BOYCE AND NING-MAO XIA

indexed by the parameter k, where q0(x) = (q(x, w)) and ( • ) denotes the mathematical
expectation. When k - 1 the problem (1-2) reduces to (1-1),while when k — 0 it reduces to
the deterministic problem

— u" + q0(x)u = Aw, (l-3a)

w(0) = 0, w(l) = 0. (l-3b)

Thus the parametrized problem (1-2) provides a means of relating (1-1) with (1-3).
To emphasize the fact that eigenvalues and eigenfunctions of (1-2) depend on k we

denote them by A(/c) and u(x, k) respectively. They are analytic functions of k since k
enters the problem (1-2) in an analytic manner. Thus we can write

w , f ^(n)(0) „ , ^ £ U<"\x, 0) „MK) = L K , u(x,k)= 2.  -j k", (1-4)
n=0 n=0

and we assume that the radius of convergence of each of these series is at least one.
In Sec. 2 we discuss the calculation of A(n,(0) and u<n)(x, 0) so that (1-4) can be used to

determine A(k) and u(x, k).
In Sec. 3 we assume that q(x, w) - q0(x) is weakly correlated with small correlation

length £. Then it follows that <A(2,,)(0)> = 0(e") and <A(2"+1)(0)> = 0(e"+1). This
enables us to calculate (A(k)) and (u(x, k)) from the finite sums

<M«»» £ («(x.k))= £ <»'"'(^.°)>k~ (1.5)
n=0 ' n—0

with an estimate of the error in terms of e.
In using the formulas (1-5) we find that the coefficients (A(n)(0)) and (u(-")(x, 0)) can

be evaluated in terms of infinite eigenfunction expansions. If these are truncated after
some finite number of terms, then an approximation for (A(k)) is obtained, which can be
improved by using more terms in the eigenfunction series. The approximations for
(A(n>(0)) and (M(n)(x,0)) can be related to a finite-dimensional (matrix) eigenvalue
problem, whose eigenvalues are upper bounds for the eigenvalues of the boundary
problem. This is discussed in Sec. 4, and an example is given in Sec. 5.

The methods presented in this paper, while largely formal, are among the first to bring
variational principles and techniques to bear on random eigenvalue problems in a
potentially effective way. Further, these methods can be extended to problems other than
(1-1) in a straightforward way. Since many other second-order equations can be reduced
to the form (1-la) by a preliminary transformation, the problem (1-1) is already fairly
general. However, other second-order equations, higher-order equations, or other boundary
conditions, can be handled as discussed here. In any event the problem must be
self-adjoint, and the eigenvalues bounded below.

2. Eigenvalues and eigenfunctions of the parametrized problem. To use the series
expansions (1-4) for A(k) and u(x, k) it is necessary to derive expressions for derivatives
of A and u with respect to k; we denote these derivatives by and u(n\x, k),
respectively, for n = 1,2, 
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The first step is to determine a boundary value problem satisfied by u(n). Next we
describe an iterative process for the calculation of successive derivatives of any eigenvalue
A,(k) and eigenfunction u,(x, k) of (1-2). We also establish that this process can be
continued indefinitely so that in principle, at least, all derivatives of A,(k) and u,(x, k)
can be found. Finally, explicit formulas are given for X^"\k) and u\n){x, k) for any n.

By differentiating (l-2a) n times with respect to k we obtain
-«<">" + q0u(n) = Q(n)(x, k), (2-1)

where
Q(x, k) = Xu - K[q(x, u) - q0(x)]u (2-2)

and
Q<")(x, k) = d"Q(x,K)/dK".

It is possible to show that
Q("\x,k)= [\u^ - K(q - q0)u^\ + pn

where

Pn(x>K)= L C"XU)(k)u{" J)(x, k) - n[q(x, w) - q0(x)]u{" 1)(x,k), (2-3)
7 = 1

and C" are binomial coefficients. Thus (2-1) has the form
-u(n)"+[q0 +K{q - q0)]u<-n)-\u(n) = pn, n = 1,2,... (2-4a)

which is similar to (l-2a) except for the term pn. The boundary conditions for follow
directly from (l-2b), namely:

M<n)(0, k) = 0, M<n)(l, k) = 0. (2-4b)

If we let A/(k) and u,(x, k) be the /th eigenvalue and eigenfunction of (l-2a, b) and
assume that u, satisfies the normalization condition

f uj(x, k) dx = 1, (2-5)
Jo

then it is easy to show that

Wi") = f1 [l(x> «) - %(*)] uf(x> K) dx- (2-6)
•'o

This is accomplished by replacing u and A in (1-2) by u, and A; respectively, differentiating
(l-2a) once with respect to k, multiplying the resulting equation by u„ and integrating
over [0,1], Integrating by parts and making use of (l-2a) then yields (2-6). Higher
derivatives of A,(k) are then given by:

[q(x,u) - q0(x)]uf{x, k) dx|

dn-lJri u
[q(x,u) ~q0{x)\——-[«,(*, k)u,(x, k)] dx

o dKn
n — 1

= X C"~l f [q{x, u) - ^0(x)]m/O)(x, k)u\"~1~j)(x, k) dx,
7 = 0 J0

n = 2,3,... (2-7)
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To determine the successive derivatives of X;(k) and u,(x, k) with respect to k we start
by solving (1-2) and then use (2-6) to find A'/'(k). Next we find px(x, k) from (2-3), then
solve (2-4) with n = 1 to find m,(1)(x, k), and finally find X(?\k) from (2-7). Then the
process is repeated: p2(x, k), W/2>(x, k), and X^\k) are determined from (2-3), (2-4), and
(2-7) respectively, and so on.

To guarantee that this procedure can be continued indefinitely we must show that

f pnl(x, k)ui(x, k) dx = 0, n = 1,2,... (2-8)
Jo

where p„,(x, k) is obtained from (2-3) by replacing A and u by A, and ut respectively. For
n = 1,

Pv ~ A^M/ —(q — q0)u/, (2-9)

and it follows that

f p1/uldx = Xi})f u] dx - f (q-qQ)ujdx = 0 (2-10)J0 J0 J0

because of (2-5) and (2-6). An inductive argument can be used to establish (2-8) for
n = 2,3,....

Now let us consider the form of the solution of (2-4). Assume that A,(k) is never zero,
and let G(x, y, k) be the Green's function for the operator

d2
L(*)= --T1 + {%(*) + K[q(x,u) - q0(x)]} (2-H)

dx
with the boundary conditions (2-4b). Then u)n)(x, k) must satisfy the integral equation

u\"\x, k) - X J1 G{x, y, K)u(/n)(y) dy = R„,(x, k), (2-12)
Jo

where

Rni(x> K) = C G(x> y> K)p„/(y. 0 dy, (2-13)
o

and pn/(x, k) is given by (2-3) with A and u replaced by A/ and ut respectively. It is
straightforward to show that

(Rnl> "J = f Rnl(X> K)Us(X, K) dx
0
1 fl <2-14)= y J Pm(y> K)uAy< ds< « = 0,1,2,...

and that (Rn/, u,) = 0. Then, assuming that
00 OO

u\n)(x, k) = £ ahus(x, k), Rnl(x, k) = L (/?„/, us)us(x, k), (2-15)
5=1 5=1

it follows that

u\n){x, k) = £ , \S^K\ , s. (Rn„ us)us(x, k) + C,„{k)u,(x, k), (2-16)
,-i Xs(k) - X,(k)
S^= I
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where the coefficient CM is as yet unknown. To determine Cln form the inner product
of (2-16) with U/(x, tc), so that

C/„(k) = f U/n)(x, k)u,(x, k) dx. (2-17)A)
Then differentiate

( uf(x, k) dx = 1 (2-18)
Jo

n times with respect to k; this gives

n d"0 = f -r—^uj(x, k) dx = f XI C"u\j){x, k)u\" j\x, k) dx
J0 «K J0 j = o

= l\ U[(x, k)u\"\x, k) dx
Jo

17-1

+ £ C" f u^ix, k)u\"-j){x, k) dx. (2-19)

Thus

C,„W-{ ] n>2, (2 20)

lo, n = 1.
Finally, substituting from (2-14) and (2-20) into (2-16), we obtain an explicit expression
for u\"\x, k), namely

(„w \ Y"1 U,(X, k)u)n){x, K ) = 2-
1 MK) ~ MK)

s=t I

t f1 K)M,(j, k) ^
, = i yo

-« fl {g(.y,a) ~ <io(y)}uin~1\y,K)Us{y>'<) dy

1 n ^ 1
- -ru,(x, k) £ C" f u<jJ)(x, k)u$"~j)(x, k) dx, (2-21)

1 7 = 1 J0

where the last term in (2-21) does not appear if n = 1.
From (1-4) we have

<M1»=£™ ("2)
n = 0

and in principle we can obtain expressions for (^"'(O)) from (2-6), (2-7), and (2-21). In
practice, it is necessary to make further assumptions about the probabilistic nature of
q(x, co) in order for these expressions to be useful. In the next section we explore the
consequences of assuming that q(x, w) - q0(x) is weakly correlated (in a certain precise
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sense). It ultimately follows from (2-22) that

(Ml))< L + 0(em+1), (2-23)
c '

5 = 0

where ,(0) is obtained from (2-6), (2-7), and (2-21) by setting ur(x, 0) = 0 for
r 3s 2m + 1. Inequality (2-23) is the main result of this paper; it is established in Sec. 4 by
means of an argument based on the variational properties of eigenvalues.

3. Weakly correlated coefficients. The formulas (2-6), (2-7), and (2-21) developed in the
preceding section can be evaluated at k = 0 to obtain and u\"\x, 0). Then the
power series expansions

00 A(,,)(0)
M*)= I (3-1 a)

n-o

, " u\n)(x, 0)
u,(x,k)= £  — k", (3-lb)

n = 0

can be used to find the desired eigenvalue A,(l) and eigenfunction u,(x, 1) of the original
random eigenvalue problem (1-1). Unfortunately, in practice we can only evaluate finitely
many of the terms in (3-1), so the question arises of estimating the errors made in
truncating the series in (3-1).

To this end, it is useful to examine the structure of X("'(k) and ujn)(x, k) in more detail.
When k = 0, as required in (3-1), we show that the randomness in X\"\0) and u\"\x, 0)
depends in a relatively simple way on q(x, u) — q0{x). This enables us, when q(x, u) —
q0(x) is weakly correlated, to derive the expressions (3-12) and (3-13) for (\,(k)) and
(u:(x, k)) with an order estimate of the remainder in terms of the correlation length e.

First, it is possible to show that A("'(k) and u\"\x, k) can be expressed in the form

*<;>(«)- I WwA* - '<*• <3-2a>
'1' • • • Jn

u\"\x,k)= £ Cir..jnjluill2j2 ■ ■ ■ IlnJus{x, k), (3-2b)

where

c 1
IikJk^ = j0 [^(X> w) ~ %(x)\uik(x> K)uJk(x> k) dx> k = l,...,n. (3-3)

It is convenient to express and u\n\x, k) in the form (3-2a, b) in part because
when k = 0 the coefficients C, , and C, , t become deterministic constants. The results'l Jn 'l Jns
(3-2a, b) can be established by induction. For n - 1 we have from (2-6) that

W(k) = f [?(*. w) - 9o(^)] ui(x> K) dx = (3-4)
J(\
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which is of the form (3-2a) with n = 1, C„ = 1, and CIl/i = 0 otherwise. Also, from (2-21)
with n = 1 we obtain

00 ,

u^(x, k)= - £ x _ x IIs(k)us(x, k), (3-5)
5=1 s 1
S=tl

which is of the form (3-2b) with n = 1, C,ss = — (Xs — A/)-1, and Ctj = 0 otherwise.
To complete the induction proof we assume that (3-2a, b) hold for n = 1 and

must show that (3-2a, b) also hold for n = m + 1. To obtain (3-2a) we start by writing
(2-7) in the form

m

A(/" + 1)(k) = [q{x,u) - q0{x)]u\k)(x,K)u\m~k)(x,K.) dx.
k- o •'o

Substituting for and u\m~k) from (3-2b), we obtain:
m ^

^+1)W-Ec;/ [?-?ol £ cii...JkSiiiJi---iikJuSi(x,K)
k = 0 ii.'i A

EC, . /, , • • • /, , uAx, k) dxl\ Jm-ks2 l\J\ lm-kJm-k S2X ' 7
,'l,- • • Jm-k

m
= V cm V r i • •• /

^ k l mJm
k = 0 , s2 >

'l ♦ • • • Jm

■ j\q{x, w) - ?0(jc)] k)uS2(x, k) dx

m

= L c" E c, , /,,. • • • /,,. /,
k—0 i'i , - - - .ym+i

= y c* / • i
>lJl 'm + Um-H

il'- Jm+l

which establishes (3-2a) in general. The derivation of (3-2b) in the general case follows
similar lines and will be omitted.

Our ultimate objective is to use (3-1) to estimate (A^k)) and (u,(x, k)), so we turn
now to a consideration of the quantities A("'(0) and u\n)(x, 0), which are given by (3-2)
with k = 0. In this case the coefficients C, , and C, , t in (3-2) are deterministic, andl\ Jn l\ J ns V ' '

when k = 0 the function ut(x, 0) is also deterministic, since it is an eigenfunction of the
deterministic eigenvalue problem (1-3). Thus randomness enters the expressions for X("\0)
and uj"\x, 0) only through the factors q(x, u) - q0(x) which appear in /,. . (0). From
(3-2) and (3-3) we have

(A(,n)(0)) = £ C, j f■ f <[?(*!,«) - ?0(*i)] [?(■*».«) - ?o(*»)]>
' l * ■ • • Jn J° J°

-u,1(x1,0)uJi{x1,0)--- uiri(xn,0)ujn(xn,0) dx1 ■■■ dxn,

(3-6)
together with a similar expression for («{n)(jc,0)).
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In order to simplify the expression (3-6) we assume that q(x, u) has a short correlation
length e. More precisely, we follow Purkert and vom Scheidt [9] and assume that q(x, u) is
weakly correlated in the following sense. Let S = (xv...,xn) be an «-tuple of real
numbers and let e be a small positive constant. Let Sl = (xh,... ,xik) be a subset of S, and
suppose that jc(i < ■ < xik; this ordering can always be achieved by relabeling the
elements of 5, if necessary. Then Sx is said to be e-neighboring if

k, ~ e, \x,2 - i e. (3-7)

A single element subset is always e-neighboring. The subset Sl is maximally e-neighboring,
with respect to S, if is e-neighboring, but is not contained in any larger e-neighboring
subset of S. It can be shown that S can be separated into disjoint maximally e-neighboring
subsets in a unique way [9], Then a stochastic process f(x,u) is said to be weakly
correlated with correlation length e if, for each n,

(/(*!,«) ••• f(x„,u))
= (/(* 11'w) ••• - (f(xkl,w) ••• f(xkpk,u)),

where the «-tuple S has been separated into the maximally e-neighboring subsets
(xUi... ,xlpi),... ,(xkl,... ,xkpt) and Ef=lpi = n.

Thus we assume that q(x, co) has the property (3-8). In particular, if n = 2, then (3-8)
reduces to

([?(*i.«)-?o(*i)][?(*2.«)-?o(*2)])= ( _ , x I1 2| (3-9)
(^,(*1. x2)> \xi — x2\ ^ £.

If q{x, w) is also stationary, then Rq(x1, x2) has the form

^9(*i> *2) = °qPq(x2 ~ xi)> (3-iO)

where is the (constant) variance and pq is the autocorrelation function of the process
q(x, w) - Equation (3-9) says that q(x1, co) - qQ{xx) and q(x2, u) - q0(x2) are
uncorrelated except in a strip of width yjl e about the line x2 =

Using straightforward arguments similar to those in [3], it is possible to show that

(A(,2m>(0)) = 0(em), (u<j2m)(x, 0)) = 0(em),

(x(/2m + 1)(0)) = 0(em + i), (u(,2m + l)(x, 0)) = 0(em + 1). (3-11)

These estimates for (A(")(0)), for example, come from an identification of the contribu-
tions to (3-6) that are of lowest order in e.

We can now use (3-11) in conjunction with (3-1) to estimate (X7(«)) to any given order
in e. For instance, if we wish to keep terms up to order em, we have

<X,(k)) = £ <X(/")[0)> K" + 0(em + 1). (3-12)
n = 0
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In a similar way

(u,(x,K))= I + 0(em+1). (3-13)
n = 0

4. Upper bounds for (X(l)). For deterministic eigenvalue problems analogous to (1-1) it
is often convenient to determine upper bounds for the respective eigenvalues using the
method of Rayleigh-Ritz-Galerkin. This method [4, 5, 6] is based on the variational
characterization of the eigenvalues when the eigenvalues are bounded below. To adapt this
method to the problem under investigation here we start from the minimum principle
corresponding to (1-1):

A(«) = min f \u'2(x, to) + q(x, io)u2{x, w)] dx, (4-1)
Jo

where the minimization is carried out over an appropriate class of functions. For instance,
to obtain Aj(w), we require that admissible functions satisfy w(0, w) = u( 1, w) = 0 and

f u2(x,u)dx = l. (4-2)
Jo

Since they automatically satisfy the proper boundary conditions, it is convenient to use
the eigenfunctions of the corresponding deterministic problem (1-3) as basis functions.
Thus we assume that

n

u(x,u) = £c,( w)m,.(jc,0), (4-3)
; = 1

where the coefficients c,(to) are to be determined so as to minimize the right side of (4-1)
subject to the condition (4-2). We continue to denote the /th eigenvalue of (1-1) by A/(l),
since (1-1) is obtained from (1-2) by setting k — 1. Then [4 (Page 224), for example] it
follows that

\/(l)<A„/, / = 1,(4-4)
where A nl is the I th eigenvalue of the algebraic problem

= At, (4-5)
in which

i = (cl,...,cn)T, A = (Aij), (4-6)

and

Ajj(u) = J [w-(x,0)wj(x,0) + q(x, w)w,(x,0)uy(x,0)] dx,

i,j=\,...,n. (4-7)

From (4-2) it follows that = 1.
When n = 1, (4-4) reduces to

Ax(l) < An = An = f1 [mJ2(x,0) + q(x, w^^O)] dx, (4-8)
Jc\
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whence

(Ml))* MO), (4-9)
a result that has been known [1] for some time. However, (4-9) does not readily generalize
to higher eigenvalues [2],

To obtain improved estimates of A,(l) from (4-4), we can let n increase. Thus if
w > rc > /, we have

M1)<Ab/<A,/<A// (4-10)
and

lira Am, = Ml)- (4-11)
m—> oo

In practice, the estimates (4-4) or (4-10) are not immediately very useful, because they
require the determination of the eigenvalues of the n X n random matrix A whose
elements are given by (4-7). However, we can also approach the algebraic eigenvalue
problem (4-5) from the point of view of Sees. 2 and 3. Thus we separate the matrix A into
two parts B = (B^) and C = (C,y), where

B,j = f [u'i(x,0)u'J(x,0) + qo(x)u,(x,0)uJ(x,0)\ dx, (4-12)

CU f1 [q(x,u) - qo(x)]ui(x,0)uJ(x,0) dx; (4-13)

then we can imbed (4-5) in the parametrized system:

(B + KCH=Ai (4-14)
The system (4-14) reduces to (4-5) when k = 1 and to the deterministic system

B£=A£ (4-15)
when k = 0. We denote the eigenvalues and eigenvectors of (4-14) by A„,(k) and £„/(k)
respectively for / = 1Observe that

A„/(0) = MO), U0)=[0 1 0]r, (4-16)
where the number 1 appears in the /th position in £n/(0).

We assume that Aj((k) has the convergent power series expansion
00 \(m)(0^

A„,(«) = E (4-17)
m = 0

with radius of convergence p > 1, where the superscript (m) refers to the mth derivative
with respect to k. As in Sec. 3, we now wish to determine the coefficients A(n7'(0). First we
seek formulas for A(™}(k) similar to (2-6) and (2-7). Starting from

(B + kC)Uk) = AMiM, (4-18)
we differentiate with respect to k to obtain

CW) +(B + kC)Z'Jk) = A'Jk)U") + KMi'nM- (4-19)
Multiplying (4-19) on the left by H,(k) and using the symmetry of B and C, we obtain

A^M-^MCUk), (4-20)
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which is analogous to (2-6). Higher derivatives of Aw/(k) are obtained by repeated
differentiation of (4-20), that is,

m — 1

Aft'M = I Cf-ifflX,OCS'r1-^), (4-21)
9=o

which is analogous to (2-7).
In order to use (4-20) and (4-21) to obtain we must first determine £^'(0) for

q = 0,1,... ,m — 1. For q = 0 we obtain £„,(0) by solving (4-15). Then, by differentiating
(4-14) q times we find that satisfies

[B + kC- A„,(k)]^)(K) = Pw(K), q — 1,2,..., (4-22)

where

P„» = E CfAU}(K)llrJ){K) - 9C5<r1)(«c). 9 = 1.2,.... (4-23)
7 = 1

When k = 0 (4-22) reduces to

[B- A„/(0)]^(0) = P<?„/(0), (4-24)

an equation that is readily solved. Multiplying (4-24) on the left by £,[v(0), and using the
symmetry of B and the fact that A„y(0) and £nj(0) satisfy (4-15), it follows that

emu°)-a|:(o)-a!w- <4'25)
On the other hand, we can express 4*^(0) as a linear combination of £nl(0),...,£nn(0):

= e Wnfmns(o)]ans(o)
j=i

" (0)P (0)
■x55rt^e"|0)+lto,,<0)i-'(0)|t-'(0)- (4'26)

I

Finally, by differentiating the equation

inMinM = 1, (4-27)
we find that for q = 1

5^(0)^/(0) = 0, (4-28)
and for q > 2

Cy)7(0)i,/(0) = - \ E C/4ii)r(0)4<r;)(0). (4-29)
j-1
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Thus (4-26) takes the form

C(o)p,./(o)
s*l

- yU°) I CfltfX0)%rJ)(0), q>2,
7 = 1

(4-30)

while for q = 1 the last term on the right side of (4-30) is absent. By means of (4-20),
(4-21), and (4-30), we can evaluate A(n7'(0), and then we can use (4-17) to determine
Ak/(k) for any k in 0 < k < 1.

Next, we wish to consider the effect of reducing the number of base functions from n to
a number r < n. That is, we consider the base functions v^x) = ux{x, 0),... ,vr{x) =
ur(x, 0), ur+1(x) = 0,... ,vn(x) = 0. We partition 4„,(k) so that

U«) (4-3!)
{Vr/(K),

where £h(k) includes the first r components of £„,(«), and Tir/(/c) contains the remaining
n — r components. The matrices B and C can be put in the form

H'; :)■ c-(c; a
where Bn and Cu are r X r submatrices. Then it is possible to show that

t^(o) = (^Q0)). (4-33a)

A(;/(0) = A(;/(0), (4-33b)
for / = 1,... ,r, where 1 < r < n, and for s = 0,1,2,..., although these results are needed
only for ^ < r.

For 5 = 0 the results (4-33) are clearly true, and the general case can be handled by
induction. Assume that (4-33a, b) are true for q < s and then consider q = s. From (4-21)
with m = s and k = 0, note that

5—1

ac;/(o) = I c;-^>r(o)( C!1 °)C/_1"?)(o)
<7 = 0 0 0

= L q-WXo= AW(0), (4-34)

which is (4-33b). Then substitute (4-31) and (4-32) in (4-22) and (4-23), and then set k = 0.
By also making use of (4-33b) and (4-34) we obtain

BnS^O) - Ar/(0K«(0)

= i c/A^m<rrj)(o) - scnti>-i)( o), (4~35a)j
7 = 1

Ar,(0)r,«(0) = 0. (4-35b)
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Since Ar/(0) ¥= 0, it follows from (4-35b) that = 0. Then from (4-35a) we have
SrV)(0) = irPi0)> an^ this establishes (4-33a).

Next, let us consider the relation between A(„7'(0) and The former is obtained
by setting k = 0 in (4-20) or (4-21) while the latter is obtained in a similar way from (2-6)
or (2-7). For m = 0 it is evident that

An/(0) = MO). (4-36)
Further, from (4-20) we have

A$(0) = C(o)cuo) = c„
= C [q{x, a) - q0(x)]uf(x,0) dx

Jo

= X<1»(0), (4-37)

where (2-6) has been used in the last step.
The general case can be illustrated for m = 2. In that case (4-21) yields

a(„2ko) = enlmw(o) + crmuo), (4-38)
where it follows from (4-30) that

I

with Csl given by (4-13). Then by (4-38)

AW)"2j,A.(0)-A„(0V '=1 ^
5# /

On the other hand, from (2-7)

\(,2)(0) = 2 f \q{x, u) — q0(x)\ul{x,0)u'l(x,Q) dx, (4-41)
Jo

where u]{x, 0) can be obtained from (2-21). Making this substitution, we obtain

„ £ {/o[?(*>") - 9o(^)]"/(^,0)Wj(x,0)}2 ^
A/ (0) = Mo) - Mo) * (4-42)

On comparing the expressions for A(2)(0) and A<2)(0), we see that the right-hand side of
(4-40) is identical with the first n terms of the right side of (4-42). Thus

A(„2)(0) = X$(0), (4-43)

where X<2)(0) is obtained from A</2,(0) by setting us(x, 0) = 0 for s = n + 1, n + 2, The
above argument can be extended in a straightforward way and leads to the conclusion that

A<?/(0) = Kqm (4-44)
for all values of q > 2. Since (4-44) clearly holds for q = 0 and q = 1, this establishes
(4-44) for all nonnegative integer values of q.



452 WILLIAM E. BOYCE AND NING-MAO XIA

Finally, we are in a position to estimate (A^l)), the mean of the /th eigenvalue of the
original problem (1-1). From (4-4) and (4-17) we have

A<«','(0) A'.',>(0) , « A'.'/fO)
I —sr1. («5)

s=0 5-0 s=2m+1

and therefore

2f" (A^(0)> , - <A(„s/(0)>
*■)/ ̂  L,

5 = 0

As in Sec. 3 we know that

(Ml))< L AlL«^ZZ + L ^11. (4-46)
cI ^" cI

5=0 i=2m+l

£ <^M> = 0(e-) (4-47)
i=2m+1

and if we also choose n = 2m, then (4-46) becomes
2m

(A(2>,/(0))<X,(1)> < E N 2m',A + 0(em + l). (4-48)
5 = 0 'S-

To evaluate the right side of (4-48) we replace (A^/(())) by (X(2J^ ,(())); this latter
quantity can be calculated from (2-6), (2-7), and (2-21) by setting u2m+1(x, 0) =

5. Example. Consider the example

— u" + q(x, u)u = A«, (5-la)

u(0) = 0, «(1) = 0, (5-lb)
where we assume that

0o(*) =(q(x,u))= 0. (5-2)

The corresponding deterministic problem is:

-u"-Xu (5-3a)
u(0) = 0, w(l) = 0 (5-3b)

with the eigenvalues A,= I2■n2 and eigenfucntions u,(x) = sin l-rrx. In terms of the
parameter k the differential equation is

— u" + Kq(x, u)u — Xu (5-4)

which reduces to (5-3a) or to (5-la) if k = 0 or k = 1 respectively.
To estimate (A^l)), that is, the mean of the /th eigenvalue of (5-1), up to terms of

order e, we make use of (4-48) with m = 1. Thus

<A,(1)) < (A2/(0)) + (A^O)) + <A<|(0)) + 0(e2). (5-5)

Further,

A2/(0) = A,(0) = / V (5-6)



so

Next,

consequently

Further
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(A2/(0 ))=/V. (5-7)

A(2/(0) = X(/1)(0) = f1 q(x, u)uj(x,0) dx; (5-8)
Jo

(A(l](0)) = f (q(x, u))uf(x,0) dx = 0. (5-9)
JC\

AS(0) - X'li(O) - -2 i (540)
S*l

Thus

(A®(0))
= _ y /o1fo(q(x1u)q(y, u))u,(x,0)us(x,0)u/(y,0)us(y,0) dxdy

s=\ MO) - MO)

(5-11)
The integral in (5-11) is simplified by (3-9), and the result is

/ Rq{z,z)u2{z,0)u2{z,0) dz
(A2/(0)) - —2 X> X|(0)_MO) + (5-12)

S^l

the calculations are similar to those in [3] and need not be repeated here. Let us assume
further that Rq{z, z) = 1 and that 1=1. Then s = 2, and

f R (z, z)m2(z,0)u2(z,0) dz — 4 f sin2 7rz sin22ttz dz = 1, (5-13)
Jr\ Jn

so that

(A<|{(0))= -~+0(e3). (5-14)
jTT

Substituting (5-7), (5-9), and (5-14) into (5-5), we finally have

(M(l)) < -n2 - + 6>(e2). (5-15)
37T

Proceeding in the same way for / = 2, we obtain

(A2(l)) < Am1 + + 0(e2). (5-16)
377

Approximations that are higher order in e can be obtained from (4-48) in a similar
manner, by using a larger value of m. To estimate (A,(l)) for I > 2, we must also use a
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larger value of m, since we must always have / < 2m. In these cases the calculations
rapidly become much more cumbersome.

The expressions (5-15) and (5-16) are consistent with the results in [2], namely that
while

(Ml)) < MO) = w2,
the corresponding inequality fails for the second and higher eigenvalues.

One can also obtain an estimate for (X/(l)) from the expression for the density
function for A,(l) given in [3], However, this requires more detailed information about the
random term q(x, co) than does the method presented here.
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