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Abstract. The differential-phase-shift (DPS) and the coherent-one-way

(COW) are among the most practical protocols for quantum cryptography,

and are therefore the object of fast-paced experimental developments. The

assessment of their security is also a challenge for theorists: the existing tools,

that allow to prove security against the most general attacks, do not apply to these

two protocols in any straightforward way. We present new upper bounds for their

security in the limit of large distances (d & 50 km with typical values in optical

fibers) by considering a large class of collective attacks, namely those in which

the adversary attaches ancillary quantum systems to each pulse or to each pair

of pulses. We introduce also two modified versions of the COW protocol, which

may prove more robust than the original one.
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1. Introduction

Over recent years quantum cryptography has evolved from niche physics to a technology

that could revolutionize the science of secrecy. The basic idea, as formulated by Bennett and

Brassard in 1984 (BB84), was based on the use of individual qubits [1], quickly ‘translated’

to individual photons. Given the lack of convenient single photon sources, most experiments

use instead weak laser pulses. However, it was then realized that such sources sometimes emit

multiphoton pulses and are thus in danger of photon-number-splitting (PNS) attacks [2]. The

cheap counter-measure to PNS attacks is to reduce further the intensity of the weak laser

pulses, but this solution leads to secret bit rates that scale quadratically with the quantum

channel transmission coefficient, r ∝ t2. Hwang [3] found an elegant way out of this drawback,

suggesting using more than one intensity. This method, called decoy state implementation,

allows one to achieve a linear secret key rate, as for the historical single-qubit protocols [4].

The BB84 protocol in all its implementations, several variations thereof—two-state [5],

six-state [6], SARG04 [7], protocols using higher-dimensional systems [8], etc—and all the

corresponding entanglement-based versions [9], share a common feature: they all send quantum

symbols one by one. However, convenient telecom laser sources emit either a continuous train

of pulses (mode-locked lasers), or a continuous wave (cw) that can be formatted by an intensity

modulator into trains of pulses. This observation led to new protocols for efficient quantum key

distribution (QKD) like the differential-phase-shift (DPS) [10, 11] and the coherent-one-way

(COW) [12, 13] protocols. In both protocols a continuous train of weak laser pulses is sent from
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the sender, Alice, to the receiver, Bob. In the DPS protocol the intensity of the pulses is constant,

but the phase modulated. In the COW protocol, the phases of all pulses are constant, but their

intensity modulated. The DPS and the COW protocols are so-called distributed-phase-reference

protocols: the intervention of an adversary, Eve, is monitored by measuring the coherence

between successive non-empty pulses. Both protocols are robust against PNS attacks, because

these can be detected [13, 14]; security has also been studied against individual attacks [13, 15]

and more recently against some form of intercept-resend attacks based on unambiguous state

discrimination [16]–[18]. However, security against the most general attacks is still elusive:

the tools that have been developed in the last decade to tackle this cannot be applied in any

straightforward way, because both protocols move away from the symbol-per-symbol type of

coding.

The purpose of this paper is to analyze the security of the COW and the DPS protocols

against a large class of collective attacks in the long distance regime (i.e. when the transmission

coefficient t is small). This study leads also to defining variants of the COW protocol, which

make it more robust while keeping its simplicity.

The paper is structured as follows. In section 2, we recall the COW and DPS protocols, as

well as some notions of security bounds. In section 3, we present the bound for security against

a beam-splitting attack (BSA) treated as a collective attack. In section 4, we study a family of

attacks that generalize the BSA by introducing errors. The basic idea is that the adversary, Eve,

attaches ancillary quantum systems to each pulse or to each pair of pulses. For these attacks,

bounds for security are provided in the limits of large distances, typically d & 50 km. These

upper bounds on the secret key rates scale linearly with t .

2. Definitions and tools

The source, on Alice’s side, produces weak coherent pulses. A non-empty pulse is written |α〉, its

mean photon number µ= |α|2. The transmission coefficient of the quantum channel connecting

Alice and Bob is t , the efficiency of Bob’s photon counters is η; we neglect the effects of dark

counts and dead times of the detectors. Accordingly, in the absence of Eve, when Alice sends

|α〉, Bob receives |
√

tα〉 and has a probability 1 − e−µtη(≈ µtη in the limit µt ≪ 1) of detecting

a photon.

2.1. The COW and DPS codings

In the COW protocol, each bit is coded in a sequence of one non-empty and one empty pulse:

the bit value 0 is coded in the sequence |α〉|0〉, the bit value 1 in the sequence |0〉|α〉. These

two states are not orthogonal because of the vacuum component, and can be unambiguously

discriminated in an optimal way by just measuring the time of arrival. This is the very simple

data line, in which the raw key is created. The quantum bit error rate (QBER) Q is, as usual,

the probability that Bob accepts the wrong value of the bit: in physical terms, this means that

Bob has got a detection in a time slot in which Alice has sent an empty pulse. To estimate the

loss of coherence in the channel (and thence Eve’s information), a fraction of the light is sent

into a monitoring line, consisting of an unbalanced interferometer. The phase between the two

arms is chosen so that two consecutive non-empty pulses sent by Alice should always interfere

constructively in one output port (and be detected with probability pD0
> 0) and destructively
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in the other one (pD1
= 0). The departure from this ideal situation is measured by the visibility

V =
pD0

− pD1

pD0
+ pD1

of the interference pattern observed for two consecutive non-empty pulses. Note that there is no

a priori relation between Q and V .

In the DPS protocol, Alice produces a sequence of coherent states of the same

intensity . . . |eiϕk−1α〉|eiϕkα〉|eiϕk+1α〉 . . . , where each phase can be set at ϕ = 0 or ϕ = π . The

bits are coded in the difference between two successive phases: bk = 0 if eiϕk = eiϕk+1

and bk = 1, otherwise. These two cases can be unambiguously discriminated using an

unbalanced interferometer. The same interferometer provides the information about the lack

of coherence in the channel, used to estimate Eve’s information. Contrary to what happens for

COW, the QBER Q and the visibility V of the interference pattern are tightly related in DPS

through the relation Q = 1−V

2
.

2.2. Three versions of COW

In the original version of COW, the pairing of the pulses is known in advance; in addition to

sending the two sequences that code for a bit value, Alice should also send decoy sequences

|α〉|α〉 with probability f in order to prevent a subtle form of PNS attacks. Such sequences do

not code for a bit value: therefore, if they give rise to a detection in the data line, this event must

be eliminated in sifting. Throughout this paper we will set f ≈ 0: in fact, all the bounds for

security that we are going to use are valid only in the asymptotic limit of infinitely long keys, in

which case an arbitrarily small amount of events is sufficient to produce meaningful statistics.

Along with this original version, we introduce and study here two modified versions of

COW, in which the pairing of the pulses is not known a priori by Bob, nor Eve. Alice and

Bob’s devices are the same as in the original version: Alice sends a train of empty or non-empty

pulses; Bob measures the time of arrival on his data line and checks the coherence of successive

non-empty pulses on his monitoring line. Only after the transmission does Alice announce the

pairings publicly; the bit is accepted if Bob has got one and only one detection in the data line

corresponding to that pair of pulses. Given this, the two versions differ in the possible choices

of pulses to be paired.

In COWm1, Alice still pairs consecutive pulses: this makes it the closest analog to DPS.

If she wants to use (almost) all the pulses, she will still send sequences |α〉|0〉 or |0〉|α〉, and

sometimes introduce an unused pulse. In COWm2, Alice is allowed to pair any two pulses;

obviously, all the pulses are used. There is no simple version of DPS that would be analog to

COWm2, because in order to pair arbitrary pulses in DPS, Bob should arbitrarily change the

unbalance in the interferometer3.

Note that many other variants of COW can be imagined, as we mention in appendix A.

2.3. Secret key rates

We consider from now on that the two values 0 and 1 are equally probable both in Alice’s

and in Bob’s list; since this can be obtained by public communication, there is no loss in

3 Note that a modified version of DPS was proposed in [19], where Bob can choose between N path differences

in his interferometer. For a large N , this would be analogous to COWm2. However, Bob needs to modify his

apparatus, which does not make it very practical when N increases.
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generality in this assumption. As said, the bound for security against the most general attack by

an eavesdropper has been elusive to date for both COW and DPS. In this paper, we are concerned

with specific attacks, which of course define only upper bounds for security (i.e. it is guaranteed

that one cannot obtain larger rates). In the family of attacks that we consider, Eve interacts with

the pulses one-by-one or two-by-two, always with the same strategy. She is allowed to keep her

ancillae in a quantum memory, and to extract the largest possible information out of them after

Alice and Bob have run the classical post-processing. Therefore, we will compute the bound for

security against collective attacks (as in most QKD studies to date, we compute this bound for

the asymptotic case of an infinitely long raw key).

For collective attacks, Devetak and Winter [20] have shown that Eve’s information on

Alice’s bits is upper-bounded by the maximal capacity of a channel Alice–Eve, in which Alice

would code her bit value a in the state ρA=a
E . This quantity is called Holevo bound, and reads

χAE ≡ χ
(

ρA=0
E , ρA=1

E

)

= S(ρE)− 1

2
S(ρA=0

E )− 1

2
S(ρA=1

E ), (1)

where ρE = 1

2
ρA=0

E + 1

2
ρA=1

E is Eve’s state and S is the von Neumann entropy. A similar definition

holds for Eve’s information on Bob’s bits. Concerning the Alice–Bob channel, the QBER

is Prob(A 6= B)= Q; in particular, for the conditional Shannon entropy it holds H(A|B)=
H(B|A)= h(Q) where h is the binary entropy. The Devetak–Winter bound reads, for the secret

key rate r :

r = rsift

[

1 − h(Q)− min(χAE, χBE)
]

, (2)

where rsift is the sifting rate, i.e. the probability that Alice and Bob accept a bit; we suppose that

the two protocols are run with the same repetition rate: the rates will be given ‘per time slot’ (or

‘per pulse’, independently of whether the pulse is empty or not). We work in the trusted-device

scenario, in which one assumes that Eve cannot modify the efficiency of Bob’s detectors. Note

that the whole analysis can be readily adapted to the untrusted-device scenario by replacing

everywhere first η→ 1, then t → tη.

3. Collective beam-splitting attack (Q = 0 and V = 1)

The beam-splitting attack (BSA) translates the fact that all the light that is lost in the channel

must be given to Eve. The attack consists of Eve simulating the losses 1 − t by putting a

beam-splitter just outside Alice’s laboratory, and then forwarding the remaining photons to

Bob through a lossless line. Since it simulates exactly Bob’s expected optical mode, the BSA

introduces no errors (here, Q = 0 and V = 1) and is therefore impossible to detect4.

For both COW and DPS, Alice prepares a sequence of coherent states ⊗k|αk〉: each αk

is chosen in {+α, 0} for COW, in {+α,−α} for DPS. Bob receives the state ⊗k|αk

√
t〉: Bob’s

optical mode is not modified. Eve’s state is ⊗k|αk

√
1 − t〉; let us introduce the notations

αE = α
√

1 − t, µE = |αE|2 and

γE = e−µE = e−µ(1−t). (3)

4 Apart from BSA, other attacks exist that do not introduce errors in distributed-phase-reference protocols: for

instance, PNS attacks over the whole key, preserving the coherence (these are hard to parametrize and have

never been studied in detail). For COW, there also exist zero-error attacks based on unambiguous state discri-

mination [16].
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Figure 1. Optimal mean photon number µ and secret key rate as a function of

the distance, for the BSA on the COW and DPS protocols. Detection efficiency:

η = 0.1; losses: 0.25 dB km−1; no dark counts.

When Bob announces a detection involving pulses k − 1 and k, Eve shall extract the highest

possible information out of her systems, measured by the Holevo quantity (1). The information

available to Eve differs for the two protocols, because of the different coding of the bits.

In COW, the bit is 0 when αk−1 = α , αk = 0 and is 1 when αk−1 = 0 , αk = α; so, writing

Pψ the projector on |ψ〉, we have ρA=0
E = ρB=0

E = P+αE,0 and ρA=1
E = ρB=1

E = P0,+αE
; therefore,

noticing that |〈+αE, 0|0,+αE〉| = γE, we obtain

χAE = χBE ≡ χCOW
E (µ, t)= h

(

1 − γE

2

)

. (4)

Since in COW half of the pulses are empty, the secret key rate is given by

rCOW(µ, t)= 1

2

(

1 − e−µtη
) [

1 −χCOW
E (µ, t)

]

. (5)

Since BSA is a pulse-by-pulse attack independent of the pairing, the analysis is unchanged for

COWm1 and COWm2.

In DPS, the bit is 0 when αk−1 = αk and is 1 when αk−1 = −αk . So, with similar notations as

above, we have ρA=0
E = ρB=0

E = 1

2
P+αE,+αE

+ 1

2
P−αE,−αE

and ρA=1
E = ρB=1

E = 1

2
P+αE,−αE

+ 1

2
P−αE,+αE

;

therefore, noticing that |〈+αE| −αE〉| = γ 2
E , we obtain

χAE = χBE ≡ χDPS
E (µ, t)= 2 h

(

1 − γ 2
E

2

)

− h

(

1 − γ 4
E

2

)

, (6)

and the resulting secret key rate is

rDPS(µ, t)=
(

1 − e−µtη
) [

1 −χDPS
E (µ, t)

]

. (7)

Both for COW and DPS, Alice and Bob should choose µ such that the secret key rate is

maximized. We performed this one-parameter optimization numerically. Figure 1 shows the

optimal choice for the intensity µ= µopt and the corresponding secret key rates for the COW

and the DPS protocols.

One notices that the two protocols show similar behaviors against BSA. The optimal choice

of µ is approximately twice as large for COW as it is for DPS; since in COW one pulse out of

two is empty, the number of photons per bit is thus approximately the same. As for the secret key

rates obtained for the respective µopt, they are very similar, within a factor of two. The question

New Journal of Physics 10 (2008) 013031 (http://www.njp.org/)

http://www.njp.org/


7

of whether one protocol performs better than the other one, does not have a clear-cut answer:

other practical issues should be taken into consideration. For instance, we did not consider for

COW the fraction of the signal that should be sent through Bob’s monitoring line, which will

not contribute to the key. We did not consider the losses in Bob’s interferometer either: in DPS,

they will decrease the secret key rates, while in COW, they will not alter the key rates. A more

complete analysis should therefore lead to different factors before the given key rates, and the

factor of two that appears here between the two protocols is not meaningful in itself.

In the limit of large distances µt ≪ 1 (typically, for d & 50 km5), the secret key rates under

a BSA become linear in tη (r = r0tη), and the µopt tend to a constant value (dashed lines on

figure 1). Specifically: for COW, µopt → 0.4583 and r0 ≈ 0.0714; for DPS, µopt → 0.2808 and

r0 ≈ 0.1182. Note that the attacks presented in the next section of this paper shall be studied

only in this limit, due to their complexity, and will coincide with the asymptotic limits for BSA

when Q = 0 and V = 1.

4. Collective attacks with Q> 0,V6 1

In both COW and DPS, bits are coded in the relation between two successive pulses. In the study

of upper bounds, a natural class of attacks is therefore the one in which Eve attacks coherently

pairs of successive pulses. These we call ‘two-pulse attacks’ (2PA). In general, they are

defined by

[|αk−1〉|αk〉]A(k−1,k) ⊗ |E〉E −→ |9[αk−1, αk]〉B(k−1,k),E (8)

with the only constraint that the transformation must be unitary. This class is clearly too large

to be parametrized efficiently. However, in the limit of large distances µt ≪ 1, multi-photon

components on Bob’s side are supposed to be negligible; and Bob will have to check, through

the statistics of his detection rates (singles, double-clicks in two detectors, etc), that this is indeed

the case. In view of this, we restrict our study to the case where, for any two-pulse signal sent

by Alice, Bob’s Hilbert space consists only of the three orthogonal states |00〉 (no photon), |10〉
(one photon at time k − 1) and |01〉 (one photon at time k).

In this section, 2PA are studied on COW (4.1), on COWm1 (4.2) and on DPS (4.4). On

COWm2, since there is no preferred pairing at all, we shall rather study ‘one-pulse attacks’, 1PA

(4.3). The resulting upper bounds will be computed numerically and compared (4.5). Unless

stated otherwise, pure and mixed quantum states are normalized (in the limit µt ≪ 1) in all that

follows.

4.1. Original COW coding: two-pulse attacks

4.1.1. Eve’s attack. In the original COW protocol, the pairing of the pulses sent by Alice is

publicly known. When Eve attacks the pulses two-by-two, we suppose that she does it according

to the same pairing. The three sequences that Alice can send (bit 0, bit 1 and decoy sequence)

5 Of course, the distance cannot be too large: it has to be below the distance where dark counts become important;

and for COW, also below the distance (∼100 km) at which other zero-error attacks become possible [16].
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are modified by Eve’s intervention as

|√µ, 0〉
A
|E〉 −→ |00〉B|vµ0〉E

+
√

(1 − Q)µt |10〉B|p10
µ0〉E

+
√

Qµt |01〉B|p01
µ0〉E

|0,√µ〉
A
|E〉 −→ |00〉B|v0µ〉E

+
√

Qµt |10〉B|p10
0µ〉E

+
√

(1 − Q)µt |01〉B|p01
0µ〉E

(9)

|√µ,√µ〉
A
|E〉 −→ |00〉B|vµµ〉E

+
√

(1 − Q)µt (|10〉B|p10
µµ〉E

+ |01〉B|p01
µµ〉E

),

where |v jk〉E ( j, k ∈ {0, µ}) are the states that Eve attaches to the vacuum part of the signal,

while |p10
jk〉E and |p01

jk〉E are the states that Eve attaches to the 1-photon part of the signal. While

we have left Eve’s states free (up to some constraints to be described soon), we have fixed the

probability amplitude of each term. These amplitudes are motivated by the expected behavior

of an imperfect intensity modulator on Alice’s side, which would prepare pulses of intensity

(1 − Q)µ and Qµ instead of perfectly modulated intensities µ and 0. In this case, for each bit

sequence sent by Alice we still have an average probability µt that a photon arrives at Bob;

in a fraction 1 − Q of these cases, it arrives at the correct time, in the other cases it arrives at

the wrong time, whence Q is indeed the QBER. Again, Bob has to check that the multi-photon

components are negligible.

The relations between Eve’s states are constrained by the requirement that the

transformation must be unitary, and by the results of the parameter estimation (i.e. by the values

of the visibilities). The requirement of unitarity reads (recall that we work in the limit µt ≪ 1)

〈v0µ|vµ0〉 = e−µ, 〈vµµ|vµ0〉 = 〈vµµ|v0µ〉 = e−µ/2. (10)

The visibility in COW is measured only conditioned to the fact that Alice has

sent two consecutive non-empty pulses. There are five such cases: the case of decoy

sequences (two non-empty pulses in the same pair) and the four two-pair sequences

(x, y)= (0µ,µ0), (µµ,µ0), (0µ,µµ) and (µµ,µµ). The corresponding visibilities after

Eve’s intervention are

Vµµ = Re
[

〈p01
µµ|p10

µµ〉
]

, (11)

Vxy = Re
[

〈vx |p01
x 〉〈p10

y |vy〉
]

. (12)

As an example, consider Vµµ. When Alice sends a decoy sequence |√µ,√µ〉, a detection in the

interferometer at the correct timing should reveal the coherence between |10〉 and |01〉. After

Eve’s intervention, the action of the interferometer (non-normalized) reads

|10〉B|p10
µµ〉E

+ |01〉B|p01
µµ〉E

−→ |D0〉(|p10
µµ〉E

+ |p01
µµ〉E

)+ |D1〉(|p10
µµ〉E

− |p01
µµ〉E

). (13)

The probability that the photon going to Bob is detected by detector D0 (resp D1) of the

interferometer is proportional to p0/1 ∝‖ |p10
µµ〉E ± |p01

µµ〉E ‖2= 2 ± 2Re〈p01
µµ|p10

µµ〉 ∝ 1 ± Vµµ,

whence (11). The visibilities Vxy are computed in a similar way, considering that the interference

across the pairing is due to the coherence between |01〉|00〉 and |00〉|10〉. In the present study,

we suppose that Alice and Bob check that all these visibilities are the same:

Vµµ = V0µ,µ0 = Vµµ,µ0 = V0µ,µµ = Vµµ,µµ ≡ V . (14)
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4.1.2. Eve’s information. The task is to compute the information that Eve obtains when

she performs the attack (9). For each bit detected by Bob, if Eve is interested in Alice’s

bit, her information is the Holevo quantity χAE computed for ρA=0
E = (1 − Q)|p10

µ0〉〈p10
µ0| +

Q|p01
µ0〉〈p01

µ0| and ρA=1
E = (1 − Q)|p01

0µ〉〈p01
0µ| + Q|p10

0µ〉〈p10
0µ|; if Eve is interested in Bob’s bit, her

information is the Holevo quantity χBE computed for ρB=0
E = (1 − Q)|p10

µ0〉〈p10
µ0| + Q|p10

0µ〉〈p10
0µ|

and ρB=1
E = (1 − Q)|p01

0µ〉〈p01
0µ| + Q|p01

µ0〉〈p01
µ0|. These are formal expressions, whose value has

to be optimized under the constraints (10) and (14). Now, none of the constraints (10)–(12) on

Eve’s states involves |p10
0µ〉 and |p01

µ0〉. Eve can, therefore choose these two states freely, and the

best choice is obviously to take them orthogonal to one another and to all her other states, in

order to distinguish those cases perfectly. In this case, χAE = χBE = Q + (1 − Q)χ(Pp10
µ0
, Pp01

µ0
),

that we write explicitly as

χCOW = Q + (1 − Q) h

(

1 + |〈p10
µ0|p01

0µ〉|
2

)

. (15)

In particular, Eve has all the information on Alice’s and Bob’s bit when she introduces an error.

So finally, the Devetak–Winter bound for 2PA on COW in the limit µt ≪ 1 reads

rCOW(Q, V )= r0tη with r0 = 1

2
µ

[

1 − h(Q)−χCOW

]

. (16)

Note that r0 does not depend on tη: the long-distance upper bound that we obtain is linear in t .

4.2. COWm1 coding: two-pulse attacks

4.2.1. Eve’s attack. We now consider the first modified version of the COW protocol

(COWm1). In this version, the coding still implies pairs of consecutive pulses, but the pairing

is decided by Alice and Bob a posteriori. Thus, during the exchange of quantum signals, Eve

does not know which pulses she should attack together: half of the times, her 2PA will therefore

be applied on pulses that are not going to be paired to form a bit. In particular, now all four

sequences of two consecutive pulses are possible: the transformation (9) must be complemented

with a fourth line

|0, 0〉A|E〉 −→ |00〉B|v00〉E +
√

Qµt (|10〉B|p10
00〉E

+ |01〉B|p01
00〉E), (17)

where the choice of probability amplitude is dictated by the same considerations as above. The

requirement of unitarity consists of (10) and of the three additional constraints

〈v00|vµµ〉 = e−µ, 〈v00|vµ0〉 = 〈v00|v0µ〉 = e−µ/2. (18)

The computation of the loss of visibility is identical to the case of the original COW, leading to

(11) and (12); as for that case, we shall impose (14). Note that the states |p10
0µ〉, |p01

µ0〉, |p10
00〉, |p01

00〉
do not enter in any of the constraints, and can therefore be chosen orthogonal to each other and

to all other states.

4.2.2. Eve’s information. When it comes to computing Eve’s information, two cases have to

be treated separately:

Case 1. The two pulses that code a bit have been attacked together by Eve. In this case, the

computation of Eve’s information is the same for the original COW protocol (4.1), so χ
(2)
AE = χ

(2)
BE

is given by (15).
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Case 2. The two pulses that code a bit have not been attacked together by Eve. To study this

case, we must consider four pulses. Writing j, k, j ′, k ′ ∈ {0, 1} and neglecting as usual the two-

photon terms, the transformation reads

| j
√
µ, k

√
µ〉

A
| j ′√µ, k ′√µ〉

A
|EE ′〉 −→

√

(k + (−1)k Q)µt |0100〉B|p01
jµ,kµ, v j ′µ,k′µ〉E

+
√

( j ′ + (−1) j ′
Q)µt |0010〉B|v jµ,kµ, p10

j ′µ,k′µ〉E + · · · .
(19)

The terms that we left out do not contribute, for we focus on the case where Bob detects a photon

in one of the two middle time-slots and pairs precisely those slots. Moreover, a posteriori it is

decided that pulses j ′ and k form a bit a, i.e. Alice must have used j ′ = 1 − k = a. Depending

on the sequence sent by Alice and on the bit detected by Bob, Eve’s (unnormalized) state is thus

ρ
A={ jk, j ′k′},B=0
E4

= (k + (−1)k Q)|p01
jµ,kµ, v j ′µ,k′µ〉〈p01

jµ,kµ, v j ′µ,k′µ|, (20)

ρ
A={ jk, j ′k′},B=1
E4

= ( j ′ + (−1) j ′
Q)|v jµ,kµ, p10

j ′µ,k′µ〉〈v jµ,kµ, p10
j ′µ,k′µ|. (21)

Eve’s (now normalized) states conditioned on Alice’s or on Bob’s bit become

ρA=a
E4

=
1

4

∑

j,k′,b

ρ
A={ j ā,ak′},B=b

E4
≡ (1 − Q)ρ

a,b=a
E4

+ Qρ
a,b=ā
E4

, (22)

ρB=b
E4

=
1

4

∑

j,k′,a

ρ
A={ j ā,ak′},B=b

E4
≡ (1 − Q)ρ

a=b,b
E4

+ Qρ
a=b̄,b
E4

, (23)

where ā = 1 − a and b̄ = 1 − b, and where

ρ
0,0
E4

=
1

4

∑

j,k′

|p01
jµ,µ, v0,k′µ〉〈p01

jµ,µ, v0,k′µ|, ρ
0,1
E4

=
1

4

∑

j,k′

|v jµ,µ, p10
0,k′µ〉〈v jµ,µ, p10

0,k′µ|, (24)

ρ
1,1
E4

=
1

4

∑

j,k′

|v jµ,0, p10
µ,k′µ〉〈v jµ,0, p10

µ,k′µ|, ρ
1,0
E4

=
1

4

∑

j,k′

|p01
jµ,0, vµ,k′µ〉〈p01

jµ,0, vµ,k′µ|. (25)

As it happened for COW, ρ
1,0
E4

and ρ
0,1
E4

are orthogonal to one another and to the other two

mixtures; therefore χ
(4)
AE = χ

(4)
BE = Q + (1 − Q)χ(ρ

0,0
E4
, ρ

1,1
E4
).

On average, each of these two cases happens with probability 1

2
, so χAE = χBE is given by

χCOWm1 = Q +
1 − Q

2

{

h

(

1 + |〈p10
µ0|p01

0µ〉|
2

)

+χ
(

ρ
0,0
E4
, ρ

1,1
E4

)

}

. (26)

The Devetak–Winter bound for 2PA on COWm1 in the limit µt ≪ 1 reads

rCOWm1(Q, V )= r0tη with r0 = 1

2
µ [1 − h(Q)−χCOWm1]. (27)
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4.3. COWm2 coding: one-pulse attacks

4.3.1. Eve’s attack. Let’s now consider the second modified version of the COW protocol

(COWm2). In this version, Alice and Bob check the coherence on successive pulses, but pair

arbitrary pulses in order to define key bits. In this case, there is no longer any natural definition

of 2PA: almost always, Eve’s pairing shall not correspond to the pairing that defines a bit.

Therefore, we obtain the upper bound on COWm2 considering 1PA: we suppose that Eve

attaches a probe to each pulse sent by Alice, and performs the transformation

|0〉A|E〉 −→ |0〉B|v0〉E +
√

Qµt |1〉B|p0〉E

(28)

|√µ〉
A
|E〉 −→ |0〉B|vµ〉E

+
√

(1 − Q)µt |1〉B|pµ〉E
,

where |v0/µ〉E are the states that Eve attaches to the vacuum part of the signal, while |p0/µ〉E

are the states that Eve attaches to the 1-photon part of the signal. The probability amplitudes

are fixed according to the same physical considerations done for COW and COWm1. The

requirement of unitarity reads

〈v0|vµ〉 = e−µ/2. (29)

The loss of visibility introduced by Eve’s intervention is computed along the same lines as

in 4.1. Suppose Alice sends a sequence |√µ,√µ〉: in the limit µt ≪ 1, where we neglect

the 2-photon terms, Eve’s intervention leads to |00〉B|vµ, vµ〉E
+

√
(1 − Q)µt[|10〉B|pµ, vµ〉E

+

|01〉B|vµ, pµ〉E
] whence

V = Re
[

〈vµ, pµ|pµ, vµ〉
]

= |〈vµ|pµ〉|2. (30)

None of these constraints involves |p0〉, that can therefore be chosen orthogonal to all other

states of Eve.

4.3.2. Eve’s information. On any pair of pulses that define a bit, Eve’s intervention has the

product structure

|√µ, 0〉
A
|EE ′〉 −→ |00〉B|vµ, v0〉E

+
√

(1 − Q)µt |10〉B|pµ, v0〉E
+
√

Qµt |01〉B|vµ, p0〉E
,

(31)

|0,√µ〉
A
|EE ′〉 −→ |00〉B|v0, vµ〉E

+
√

Qµt |10〉B|p0, vµ〉E
+
√

(1 − Q)µt |01〉B|v0, pµ〉E
.

For each bit detected by Bob, if Eve is interested in Alice’s bit, her information is the Holevo

quantity χAE computed for ρA=0
E = (1 − Q)|pµ, v0〉〈pµ, v0| + Q|vµ, p0〉〈vµ, p0| and ρA=1

E =
(1 − Q)|v0, pµ〉〈v0, pµ| + Q|p0, vµ〉〈p0, vµ|; if Eve is interested in Bob’s bit, her information is

the Holevo quantity χBE computed for ρB=0
E = (1 − Q)|pµ, v0〉〈pµ, v0| + Q|p0, vµ〉〈p0, vµ| and

ρB=1
E = (1 − Q)|v0, pµ〉〈v0, pµ| + Q|vµ, p0〉〈vµ, p0|. Since |vµ, p0〉 and |p0, vµ〉 are orthogonal

to one another and to the other states |pµ, v0〉 and |v0, pµ〉, we have χAE = χBE given by

χCOWm2 = Q + (1 − Q)h

(

1 + |〈v0|pµ〉|2

2

)

. (32)

So finally, the Devetak–Winter bound for 1PA on COWm2 in the limit µt ≪ 1 reads

rCOWm2(Q, V )= r0tη with r0 = 1

2
µ [1 − h(Q)−χCOWm2]. (33)
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4.4. DPS coding: two-pulse attacks

We turn now to the DPS protocol and derive an upper bound for security considering 2PA. The

formalism is analog to the one described for the COWm1 protocol in section 4.2, so we go

fast through many details. The main differences are of course those related to the protocol: the

different coding of bits, and the link between Q and V .

4.4.1. Eve’s attack. We suppose that Eve attaches her probe to two successive pulses sent by

Alice. Four two-pulse sequences are possible: with σ, ω ∈ {+,−}, Eve’s intervention reads

|σ√
µ,ω

√
µ〉

A
|E〉 −→ |00〉B|vσω〉E +

√
µt(σ |10〉B|p10

σω〉E +ω|01〉B|p01
σω〉E), (34)

where |vσω〉E are the states that Eve attaches to the vacuum part of the signal, while |p10
σω〉E

and |p01
σω〉E are the states that Eve attaches to the 1-photon part of the signal (as before, Bob

shall check that the multi-photon components are negligible). The transformation leads to the

expected detection rate µtη for each pulse. The constraint of unitarity reads

〈v++|v−−〉 = 〈v+−|v−+〉 = e−4µ, (35)

〈v++|v+−〉 = 〈v++|v−+〉 = 〈v−−|v+−〉 = 〈v−−|v−+〉 = e−2µ. (36)

The visibilities can now be computed for all possible sequences, since there are no empty

pulses. Formally, the expressions depend on which sequence of pulses was sent, and on whether

the two pulses that interfere belong to a same or to different sequences according to the pairing

chosen by Eve. The resulting visibilities are

Vσω = Re
[

〈p01
σω|p10

σω〉
]

, (37)

Vσω,σ ′ω′ = Re
[

〈vσω|p01
σω〉〈p10

σ ′ω′|vσ ′ω′〉
]

. (38)

Again, Alice and Bob shall check that all these visibilities are equal: for all σ, ω, σ ′, ω′ ∈ {+,−},

Vσω = Vσω,σ ′ω′ ≡ V . (39)

4.4.2. Eve’s information. As happened for COWm1, when it comes to computing Eve’s

information, two cases have to be treated separately:

Case 1. The two pulses that contribute to the detected event have been attacked to-

gether by Eve. The evolution in Bob’s interferometer is σ |10〉B|p10
σω〉E

+ω|01〉B|p01
σω〉E

−→
∑

b |Db〉|ψσ,ω,b〉E with |ψσ,ω,b〉 = σ |p10
σω〉 + (−1)bω|p01

σω〉 (non-normalized). Writing

ρ
A={σω},B=b

E2
= |ψσ,ω,b〉〈ψσ,ω,b|, Eve’s normalized states conditioned on Alice’s bit are

ρA=0
E2

= 1

8

∑

σ,b ρ
A={σσ },B=b

E2
and ρA=1

E2
= 1

8

∑

σ,b ρ
A={σ σ̄ },B=b

E2
(where σ̄ = −σ ); Eve’s normalized

states conditioned on Bob’s bit are ρB=b
E2

= 1

8

∑

σ,ω ρ
A={σω},B=b

E2
. Eve’s information for this

case 1 is then

χ
(2)
AE = χ

(

ρA=0
E2
, ρA=1

E2

)

, χ
(2)
BE = χ

(

ρB=0
E2
, ρB=1

E2

)

. (40)
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Case 2. The two pulses that contribute to the detected event have not been attacked

together by Eve. Then, we have to study the four-pulse sequence, in which the bit has

been produced by the interference of pulses number two and three. The evolution in Bob’s

interferometer is ω|0100〉B|p01
σω, vσ ′ω′〉

E
+ σ ′|0010〉B|vσω, p10

σ ′ω′〉E
−→

∑

b |Db〉|ψσ,ω,σ ′,ω′,b〉E

with |ψσ,ω,σ ′,ω′,b〉 = ω|p01
σω〉|vσ ′ω′〉 + (−1)bσ ′|vσω〉|p10

σ ′ω′〉 (non-normalized). Writing

ρ
A={σω,σ ′ω′},B=b

E4
= |ψσ,ω,σ ′,ω′,b〉〈ψσ,ω,σ ′,ω′,b|, Eve’s normalized states conditioned on Alice’s

bit are ρA=0
E4

= 1

32

∑

σ,ω,ω′,b ρ
A={σω,ωω′},B=b

E4
and ρA=1

E4
= 1

32

∑

σ,ω,ω′,b ρ
A={σω,ω̄ω′},B=b

E4
(where

ω̄ = −ω); Eve’s normalized states conditioned on Bob’s bit are ρB=b
E4

=
1

32

∑

σ,ω,σ ′,ω′ ρ
A={σω,σ ′ω′},B=b

E4
. Eve’s information for this case 2 is then

χ
(4)
AE = χ

(

ρA=0
E4

, ρA=1
E4

)

, χ
(4)
BE = χ

(

ρB=0
E4
, ρB=1

E4

)

. (41)

Each of the two cases happens with probability 1

2
. Therefore, Eve’s average information is

χAE =
χ
(2)
AE +χ

(4)
AE

2
, χBE =

χ
(2)
BE +χ

(4)
BE

2
. (42)

For the versions of COW, some of Eve’s states could be immediately chosen as being

orthogonal to all the other ones; there is no such simplification here. The Devetak–Winter bound

for 2PA on DPS in the limit µt ≪ 1 reads

rDPS(Q, V )= r0tη with r0 = µ

[

1 − h
(1 − V

2

)

− min(χAE, χBE)

]

. (43)

4.5. Numerical optimization and comparison

In the previous subsections, we have derived upper bounds for the secret key rate of COW (16),

COWm1 (27), COWm2 (33) and DPS (43) in the limit µt ≪ 1 of large distances. In this limit,

all these bounds scale linearly with losses: r = r0tη, where only the constant factor r0 depends

on the protocol. Incidentally, we remind that for COWm1 and COWm2 we have supposed that

Alice makes the pairings; if Bob makes them, the rates given above for these protocols should

be divided by 2.

At this point, we want to evaluate these bounds. This involves a double optimization: first,

for a fixed value of µ, one has to find the strategy that maximizes Eve’s information; then, one

has to find the value ofµ that maximizes r—in our case, r0. The details on how the optimizations

over Eve’s strategies were performed, are given in appendices B–E. For COW and COWm2,

these optimizations could be performed analytically, and we give the analytical expressions for

Eve’s optimal states. For COWm1, the optimization was performed numerically, but we could

find an analytical expression for Eve’s states, in which there remain only three parameters to

optimize. For DPS, only numerical optimizations could be performed. The second optimization

(over µ) could only be done numerically in all cases.

The results of the optimizations are shown in figure 2 for the four protocols, as a function

of V , and in the case Q = 0 for all versions of COW. The effect of the QBER in the COW

protocols is shown in figures B.1, C.1 and D.1.

As expected, when V = 1 and Q = 0, the attacks under study coincide for all protocols

with the asymptotic limits for BSA. As was the case for BSA, one notices similar behaviors

for the COW and the DPS protocols, at least for high visibilities: the secret key rates (or the

factors r0) are again very similar, within a factor of two. Again, we cannot conclude that one
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Figure 2. µopt and r0 as a function of the visibility V , for 2PA on the COW,

COWm1 and DPS protocols, and for 1PA on COWm2. For all versions of COW,

we show here the curve for Q = 0.
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Figure 3. Secret key rates as a function of the distance, for 2PA or 1PA on

each protocol (for V = 0.98), compared to BSA. Same parameters as in figure 1.

Recall that the bounds obtained for 2PA and 1PA are valid only in the limit of

large distances.

protocol performs better than the other one. The choice of which protocol to run should be

motivated by various practical reasons that we did not consider here. Still, and as expected, the

modified versions of COW provide better bounds than the original COW: Eve’s attack is less

efficient when Eve does not know how Alice and Bob will choose the pairing of the pulses.

Finally, in order to get the secret key rates for a given distance, one just has to multiply the

factor r0 by tη. We show as an example in figure 3 the rates that we get for each protocol in the

case of V = 0.98 (and still Q = 0 for COW and its variations), compared to BSA.

5. Conclusion

We have provided new upper bounds for the security of the COW (the original and two modified

versions) and the DPS protocols, in the limit of large distances. In all cases, the secret key rate

goes as r ≈ r0tη and therefore scales linearly with the transmission t of the channel; also, all

the values of r0 are similar, within a factor of two for high visibilities. Hence, at least given

New Journal of Physics 10 (2008) 013031 (http://www.njp.org/)

http://www.njp.org/


15

our present-day knowledge, the choice between any of these protocols should be dictated by

practical reasons rather than by security concerns.

The two modified versions COWm1 and COWm2, introduced in a very natural way in the

context of this paper, may also prove very useful in the future to find the bound for security

against the most general attack by the eavesdropper. Indeed, intuition suggests that the random

a posteriori choice of the pairing may provide the symmetry argument, which would allow to

use the exponential De Finetti theorem [21].
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Appendix A. Other possible variants of the COW protocol

In the main text, we introduced two modified versions of COW. More generally, many other

variants can be defined, as we briefly mention in this appendix. We give examples of such

variants, that could be useful for future studies.

There are two main motivations for looking at possible variants: one is to find a more

efficient or more robust protocol (in the present case for instance, COWm1 and COWm2 were

found to be more robust against the attacks under study); the other one is to find a protocol for

which it should be easier to prove the security (for instance, a protocol with more symmetries,

or where the signals that code for different bits would be more independent).

In all the following variants, Alice and Bob use the same devices as in the original COW

protocol: Alice sends a certain fraction q of weak coherent pulses |√µ〉 (with an overall phase

relationship) and a fraction 1 − q of empty pulses |0〉; Bob measures the time of arrival on

his data line and checks the coherence of successive non-empty pulses on his monitoring line.

The only differences lie in the way the classical information is encoded, or in how the key

reconciliation is performed.

We do not provide here a security analysis for the following variants; nonetheless, in order

to give a rough idea of how the various versions should perform, we estimate the sifting rate

rs and the ideal mutual information per sifted pulse IAB between Alice and Bob in the limit of

large distances (µt ≪ 1), in the absence of an eavesdropper and without dark counts. The ideal

key rate would then be r = rs IAB.

The simplest possible coding is that the logical bit value 1 is coded as a non-empty pulse

|√µ〉 and the bit 0 as an empty pulse |0〉. In such a simple coding, the raw key is as long as the

entire train of pulses: rs = 1 (as for instance in continuous variable QKD ([22] and references

therein). However, even in the absence of an adversary and of dark counts, the error rate is

large: Bob is very likely to fail to detect a non-empty pulse, and the quantum channel acts as

a Z-channel, where the bit 0 is always detected correctly, while the bit 1 has a high probability

e−µtη to be detected as a 0. Straightforward application of Shannon channel capacity shows that

in the ideal case, IAB = h(qµtη)− qh(µtη)≈ −qlog2qµtη. For the optimal choice of q = e−1

one finds: r ≈ e−1

ln 2
µtη ≈ 0.53µtη.
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In practice, the main drawback of this basic protocol is the large error rate. In fact, while

IAB can in principle be extracted by error correction (which we have supposed everywhere in

this paper), real codes do not reach this bound and become very inefficient if the error rate is

large. In other words, it is better to try and have fewer, better correlated signals, than to keep

a lot of poorly correlated ones. One possibility to reduce this error rate is to include a sifting

step: Bob would announce his qµtη fraction of time slots where he got a click on his data

line, along with another fraction f0 where he had no click. In this case, the sifting rate reduces

to rs = qµtη + f0, but the fraction of errors to be corrected is also reduced. Depending on the

practical efficiency of the error correction, one can try to optimize f0.

When dealing with such a Z-channel, a way to symmetrize the errors is to code the logical

bits into two physical symbols: ‘0’; → µ0, ‘1’ → 0µ. In this prospect, the original coding of

COW appears very naturally. Contrary to the previous version, there are no more errors due to

the losses (Bob only keeps the cases where he had one detection), and in the absence of dark

counts and of Eve IAB = 1, and r = rs.

In the original version of COW, the pairs of pulses defining each classical bit are

predefined. Alice sends pairs µ0 or 0µ, along with some decoy sequences µµ (and possibly also

sequences 00). When the fraction of decoy sequences is negligible, the sifting rate is rs = 1

2
µtη.

A first possible variant of this original COW corresponds to COWm1, where Alice still

sends sequences µ0 or 0µ, but sometimes she introduces an unused pulse, so that the bit

separations are not known in advance by Eve. Again, if the fraction of unused pulses is

negligible, the sifting rate is rs = 1

2
µtη.

Another variant would be that Alice sends a completely random train of pulses |0〉 and

|√µ〉. She then pairs consecutive pulses a posteriori. Here we lose a factor 1

2
in the sifting rate

(rs = 1

4
µtη) because of the sequences 00 and µµ that Alice sometimes pairs together, but the

security might be easier to analyze.

In the previous two variants, one can also imagine that the pairs are not necessarily

composed of successive pulses (such as in COWm2 for instance). This might be more robust

against Eve’s attacks, but this necessitates a large amount of information to be sent from Alice

to Bob for the key reconciliation.

Also, one can imagine that it is Bob who chooses the pairing: when he gets a detection,

he announces two time-slots (successive or not), and Alice checks that they correspond to a

sequence µ0 or 0µ. Since Bob has approximately a probability 1

2
to announce two time-slots

that correspond to a sequence µµ instead, the sifting rate in this case is rs ≈ 1

4
µtη.

Finally, one can imagine that Alice and Bob use other (longer) sequences of pulses |√µ〉
and |0〉 to encode their classical bits (or dits). All previous variations, whether the way the

pulses are grouped is defined a priori or a posteriori, by Alice or by Bob, whether they group

successive pulses or not, also apply to this more general variant.

Appendix B. Optimization of 2PA on COW

We have to maximize χCOW (15), i.e. to minimize |〈p01
0µ|p10

µ0〉|, submitted to the constraints

〈v0µ|vµ0〉 = e−µ ≡ γ, 〈vµµ|vµ0〉 = 〈vµµ|v0µ〉 = e−µ/2, (B.1)

Re
[

〈p01
µµ|p10

µµ〉
]

= Re
[

〈vx |p01
x 〉〈p10

y |vy〉
]

= V, (B.2)
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for the four two-pair sequences (x, y)= (0µ,µ0), (µµ,µ0), (0µ,µµ) and (µµ,µµ). We

notice that the states |p10
µ0〉 and |p01

0µ〉, whose overlap fully defines Eve’s information, are related

to the states |vµ0〉 and |v0µ〉 through (B.2), specifically

Re
[

〈v0µ|p01
0µ〉〈p10

µ0|vµ0〉
]

= V . (B.3)

So, we focus at first only on finding four states |vµ0〉, |v0µ〉, |p10
µ0〉 and |p01

0µ〉 that satisfy (B.3)

and such that |〈p01
0µ|p10

µ0〉| is minimal. Later, we shall check that we can find states |vµµ〉, |p10
µµ〉,

and |p01
µµ〉 in order to satisfy all the constraints (recall that the states |p01

µ0〉 and |p10
0µ〉 are chosen

to be orthogonal to all other states).

B.1. Parametrization of Eve’s states

First, let’s choose the first two basis vectors such that the states |vµ0〉 and |v0µ〉 read

|vµ0〉 =





√

1+γ

2
√

1−γ
2



 , |v0µ〉 =





√

1+γ

2

−
√

1−γ
2



 . (B.4)

Let’s also define |v⊥
j 〉 as the orthogonal state to |v j〉, in the same two-dimensional (2D) subspace:

|v⊥
µ0〉 =





√

1−γ
2

−
√

1+γ

2



 , |v⊥
0µ〉 =





√

1−γ
2

√

1+γ

2



 . (B.5)

We must have (B.3). Now, if 〈v0µ|p01
0µ〉〈p10

µ0|vµ0〉 /∈ R, then Eve could just add a global phase

to |p10
µ0〉 for instance, and increase V without changing her information. This implies that Eve’s

maximal information compatible with V is obtained when the above quantity is real. Then

we can write, for some factor λ ∈ [V , 1/V ] and some phase φ̃ ∈ R: 〈vµ0|p10
µ0〉 =

√
λV eiφ̃ and

〈v0µ|p01
0µ〉 =

√
V/λeiφ̃. But since the phase φ̃ does not play any role in Eve’s information (which

depends only on |〈p01
0µ|p10

µ0〉|), we can without loss of generality set it to 0. In conclusion, |p10
µ0〉

and |p01
0µ〉 are of the form

|p10
µ0〉 =

√
λV |vµ0〉 −

√
1 − λV cos θ0eiφ0|v⊥

µ0〉 +
√

1 − λV sin θ0|w0〉, (B.6)

|p01
0µ〉 =

√

V/λ|v0µ〉 −
√

1 − V/λ cos θ1eiφ1|v⊥
0µ〉 +

√

1 − V/λ sin θ1|w1〉, (B.7)

where |w0〉 and |w1〉 are any states orthogonal to both |vµ0〉 and |v0µ〉 and θ0, θ1, φ0 and φ1 are

free parameters.

B.2. Results of the optimization

For γ > 2
√

V (1 − V ) (i.e. µ small enough) and V > 1/2, it can be proved analytically6 that the

minimum of |〈p01
0µ|p10

µ0〉| is

|〈p01
0µ|p10

µ0〉| = (2V − 1)γ − 2
√

V (1 − V )
√

1 − γ 2, (B.8)

6 Here are the main steps of the proof: first, one can easily show that θ0, θ1 ∈ [0, π/2], φ0 = φ1 = 0 and 〈w0|w1〉 =
−1 are optimal; once this is fixed, one can show that for any given λ, the minimum of |〈p01

0µ|p10
µ0〉| over θ0 and θ1 is

obtained for θ0 = θ1 = 0; finally, one can prove that λ= 1 is optimal.
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Figure B.1. COW, original version: µopt and r0 for 2PA, for different values

of Q.

obtained for λ= 1, θ0 = θ1 = φ0 = φ1 = 0, in which case |p10
µ0〉 =

√
V |vµ0〉 −

√
1 − V |v⊥

µ0〉,
|p01

0µ〉 =
√

V |v0µ〉 −
√

1 − V |v⊥
0µ〉. Having maximized Eve’s information, one can run the

one-parameter optimization over the pulse intensity µ. The optimal choice µopt and the

corresponding value of r0 are plotted in figure B.1, as a function of V and for different

values of Q.

We still have to check that we can find states |vµµ〉, |p10
µµ〉 and |p01

µµ〉 that satisfy all the

constraints. This is indeed the case. For instance, we complete the previous basis with a third

orthogonal vector and choose

|vµµ〉 =









√

2γ

1+γ

0
√

1−γ
1+γ









, |p10
µµ〉 =











√

1+V

2
c

√

1−V

2
√

1+V

2
s











, |p01
µµ〉 =











√

1+V

2
c

−
√

1−V

2
√

1+V

2
s











, (B.9)

with c =
√

2V

1+V

√

2γ

1+γ
+

√

1−V

1+V

√

1−γ
1+γ

and s =
√

2V

1+V

√

1−γ
1+γ

−
√

1−V

1+V

√

2γ

1+γ
. The fact that the

minimum of |〈p01
0µ|p10

µ0〉| can be reached without using the constraints that involve the sequence

(µ,µ) means that the presence of decoy sequences does not increase the security of COW

against 2PA.

Note finally that if γ 6 2
√

V (1 − V ) or if V 6 1/2, Eve can choose her states |p10
µ0〉

and |p01
0µ〉 (for instance λ= 1, cos θ0 = γ V

(1−V )γ+2
√

V (1−V )
√

1−γ 2
, θ1 = φ0 = φ1 = 0) such that

〈p01
0µ|p10

µ0〉 = 0, in which case Eve can perfectly discriminate the two states: she has the full

information on Alice and Bob’s bit. Therefore, γ > 2
√

V (1 − V ) and V > 1/2 are necessary

conditions for Alice and Bob to establish a secret key.

Appendix C. Optimization of 2PA on COWm1

We have to maximize χCOWm1 (26) submitted to the constraints (B.1), (B.2) and

〈v00|vµµ〉 = e−µ ≡ γ , 〈v00|vµ0〉 = 〈v00|v0µ〉 = e−µ/2. (C.1)
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C.1. Parametrization of Eve’s states

We write the states |v jk〉 as

|vµ0〉 =













√

1+γ

2
√

1−γ
2

0

0













, |v0µ〉 =













√

1+γ

2

−
√

1−γ
2

0

0













,

|v00〉 =













√

2γ

1+γ

0
√

1−γ
1+γ

0













, |vµµ〉 =













√

2γ

1+γ

0

−γ
√

1−γ
1+γ

1 − γ













. (C.2)

These states satisfy the constraints (B.1) and (C.1). We still have four states to consider,

|p10
µ0〉, |p01

0µ〉, |p10
µµ〉 and |p01

µµ〉 (recall that the states |p01
µ0〉, |p10

0µ〉, |p10
µµ〉 and |p01

µµ〉 have already

been chosen orthogonal to all other states). Therefore, Eve’s states under consideration live in

general in an 8D space. We have performed the numerical optimization over the most general

choice of the four |p〉 states that satisfied the constraints (B.2).

C.2. Results of the optimization

The best attack we found can be realized by 4D states and depends only on three free parameters

(θ0, θ1 and φ), that are still to be optimized. Let’s introduce the following vectors:

|v⊥
µ0〉 =













√

1−γ
2

−
√

1+γ

2

0

0













, |v⊥
0µ〉 =













√

1−γ
2

√

1+γ

2

0

0













, |v⊥,1
µµ 〉 =









0

0
√

1 − γ 2

γ









,

|v⊥,2
µµ 〉 =













√

1−γ
1+γ

0

γ

√

2γ

1+γ

−
√

2γ
√

1 − γ













, (C.3)

|w2〉 =









0

1

0

0









, |w3〉 =









0

0

1

0









, |w4〉 =









0

0

0

1









. (C.4)

Our best attack is then defined by

|p10
µ0〉 =

√
V |vµ0〉 −

√
1 − V |wµ0〉, |p01

0µ〉 =
√

V |v0µ〉 −
√

1 − V |w0µ〉, (C.5)

|p10
µµ〉 =

√
V |vµµ〉 −

√
1 − V |w10

µµ〉, |p01
µµ〉 =

√
V |vµµ〉 −

√
1 − V |w01

µµ〉, (C.6)
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Figure C.1. COWm1: µopt and r0 for 2PA, for different values of Q.

where

|wµ0〉 = cos θ0 |v⊥
µ0〉 + sin θ0 cos θ1 |w3〉 + sin θ0 sin θ1 |w4〉, (C.7)

|w0µ〉 = cos θ0 |v⊥
0µ〉 + sin θ0 cos θ1 |w3〉 + sin θ0 sin θ1 |w4〉, (C.8)

|w10
µµ〉 =

1
√

2
(cosφ |v⊥,1

µµ 〉 + sinφ |v⊥,2
µµ 〉)−

1
√

2
|w2〉, (C.9)

|w01
µµ〉 =

1
√

2
(cosφ |v⊥,1

µµ 〉 + sinφ |v⊥,2
µµ 〉)+

1
√

2
|w2〉. (C.10)

Note that these states satisfy a more constraining version of (B.2): 〈p01
µµ|p10

µµ〉 = V, 〈v0µ|p01
0µ〉 =

〈vµµ|p01
µµ〉 = 〈p10

µ0|vµ0〉 = 〈p10
µµ|vµµ〉 =

√
V . Finally, the optimization over the three remaining

parameters θ0, θ1 and φ was performed numerically.

Having maximized Eve’s information, one can run the one-parameter optimization over

the pulse intensity µ. The optimal choice µopt and the corresponding value of r0 are plotted in

figure C.1.

Appendix D. Optimization of 1PA on COWm2

We have to maximize χCOWm2 (32), i.e. to minimize |〈v0|pµ〉|, submitted to the constraints

〈v0|vµ〉 = e−µ/2, (D.1)

|〈vµ|pµ〉|2 = V . (D.2)

The state |p0〉 was already chosen to be orthogonal to the three other states; we have therefore to

work in a 3D Hilbert space. Without loss of generality, we choose the following parametrization,

which ensures automatically that the constraints are satisfied:

|vµ〉 =





1

0

0



 , |v0〉 =





e−µ/2
√

1 − e−µ

0



 , |pµ〉 = eiφ̃





√
V

−
√

1 − V cos θeiφ

√
1 − V sin θ



 , (D.3)
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Figure D.1. COWm2: µopt and r0 for 1PA, for different values of Q.

actually the phase φ̃ does not play any role, and we set it to be 0. So, for a given V and a

given µ, Eve’s states are parametrized by θ and φ.

For e−µ 6 1 − V , Eve can choose φ = 0 and cos θ =
√

e−µ

1−e−µ
V

1−V
, which gives 〈v0|pµ〉 = 0:

in this case, Eve has full information on Alice and Bob’s bit. A necessary condition for Alice

and Bob to have secret bits is therefore to choose µ such that e−µ > 1 − V . In this case, one can

easily show that the minimum overlap is

|〈v0|pµ〉| = e−µ/2
√

V −
√

1 − e−µ
√

1 − V , (D.4)

obtained by setting θ = φ = 0.

Having maximized Eve’s information, one can run the one-parameter optimization over

the pulse intensity µ. The optimal choice µopt and the corresponding value of r0 are plotted in

figure D.1.

Appendix E. Optimization of 1PA and 2PA on DPS

As mentioned in the main text, the optimization of Eve’s information for a 2PA on DPS is more

complicated than the one for COW, because we could not find any evident simplification and

had therefore to start from the general formal expressions. For this reason, we find it useful to

sketch first the study of 1PA on DPS—if only to show that our optimization on the 2PA yields

indeed a more strict bound.

E.1. Optimization of 1PA on DPS

E.1.1. Eve’s attack and information. We have not studied 1PA on DPS in the main text, but

the pattern is the same as for all other attacks, so we just list the main points. Eve’s attack is

defined by (with σ ∈ {+,−})

|σ√
µ〉

A
|E〉 −→ |0〉B|vσ 〉E + σ

√
µt |1〉B|pσ 〉E (E.1)

so the unitarity condition and the visibility constraints read

〈v+|v−〉 = e−2µ ≡ γ, (E.2)
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∀σ, ω ∈ {+,−}, Re
[

〈vσ |pσ 〉〈pω|vω〉
]

= V . (E.3)

This last condition implies 〈v+|p+〉 = 〈v−|p−〉 =
√

V eiφ̃, for some φ̃ which won’t play any role,

and which we set to 0; so we have

〈v+|p+〉 = 〈v−|p−〉 =
√

V . (E.4)

Note how all the states participate in the constraints, contrary to what is the case in all versions

of COW.

To compute Eve’s information, we start from Eve’s conditioned states

ρ
A={σω},B=b

E = |ψσ,ω,b〉〈ψσ,ω,b| with |ψσ,ω,b〉 = σ |pσ , vω〉 + (−1)bω|vσ , pω〉 and the mix-

tures ρ
a,b
E = 1

8

∑

σ ρ
A={σσ(a)},B=b

E where σ(a)= (−1)aσ . Note that these states are not

normalized; rather, Tr(ρ
a,b
E ) is equal to 1+V

2
= 1 − Q if a = b, and to 1−V

2
= Q if a 6= b.

Finally, ρA=a
E =

∑

b ρ
a,b
E and ρB=b

E =
∑

b ρ
a,b
E (now normalized). Eve’s information is given by

χAE = χ(ρA=0
E , ρA=1

E ), and similarly for χBE.

E.1.2. Parametrization of Eve’s states. Eve’s states can be chosen in a 4D Hilbert space. First,

let’s choose a basis with the first two vectors in the subspace spanned by {|v+〉, |v−〉}, and in

which |v+〉 and |v−〉 read

|vσ 〉 =













√

1+γ

2

σ

√

1−γ
2

0

0













(E.5)

so that (E.2) is satisfied. Let’s also define |v⊥
σ 〉 as the orthogonal state to |vσ 〉, in the subspace

spanned by {|v+〉, |v−〉}:

|v⊥
σ 〉 =













√

1−γ
2

−σ
√

1+γ

2

0

0













. (E.6)

The constraint (E.4) on the visibility implies that |pσ 〉 can be written as |pσ 〉 =
√

V |vσ 〉 −√
1 − V |wσ 〉, where |wσ 〉 is any (4-D) state orthogonal to |vσ 〉; this can be further decomposed

as |wσ 〉 = cos θσeiφσ |v⊥
σ 〉 + sin θσ |w′

σ 〉 for some states |w′
σ 〉 orthogonal to both |v+〉 and |v−〉.

Finally, we choose the last two vectors of the basis such that |w′
+〉 and |w′

−〉 read

|w′
+〉 =









0

0

cos(θ/2)eiφ/2

sin(θ/2)eiφ/2









, |w′
−〉 =









0

0

cos(θ/2)e−iφ/2

− sin(θ/2)e−iφ/2









. (E.7)
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Figure E.1. µopt and r0 for 1PA and 2PA on DPS.

In summary, for a given V and a given µ, we are left without loss of generality with the six free

parameters θ+, θ−, θ, φ+, φ− and φ that define

|pσ 〉 =
√

V |vσ 〉 −
√

1 − V cos θσeiφσ |v⊥
σ 〉 −

√
1 − V sin θσ |w′

σ 〉. (E.8)

E.1.3. Results of the optimization. The optimization over the six free parameters was

performed numerically. We find that Eve’s optimal states have real coefficients (the parameters

φ±, φ can be chosen to be 0), and also that θ+ = −θ−. Once we fix this, there remains only two

free parameters to optimize.

Having maximized Eve’s information, one can run the one-parameter optimization over

the pulse intensity µ. The optimal choice µopt and the corresponding value of r0 are plotted

in figure E.1, along with the results for 2PA. In the case V = 1, this attack reduces to the

BSA; in all other cases, the optimal 1PA is manifestly less powerful than the best 2PA we have

found.

Note that after optimization, we find χAE 6 χBE: Eve knows less about Alice’s bit than

about Bob’s.

E.2. Optimization of 2PA on DPS

We now consider the 2PA on DPS, and we have to optimize χAE and χBE as given in (42),

submitted to the constraints

〈vσω|vσ ω̄〉 = 〈vσω|vσ̄ω〉 = e−2µ ≡ γ, 〈vσω|vσ̄ ω̄〉 = e−4µ = γ 2 , (E.9)

Re
[

〈p01
σω|p10

σω〉
]

= Re
[

〈vσω|p01
σω〉〈p10

σ ′ω′|vσ ′ω′〉
]

= V, (E.10)

for all σ, ω, σ ′, ω′ ∈ {+,−}. We see that all the twelve states of Eve appear in the expressions of

the constraints.
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E.2.1. Parametrization of Eve’s states. Without any loss of generality, we choose the

following symmetric parametrization for Eve’s four states |vσω〉:

|v++〉 =













1+γ

2
1−γ

2
√

1−γ 2

2

0













, |v−−〉 =













1+γ

2
1−γ

2

−
√

1−γ 2

2

0













, |v+−〉 =













1+γ

2

− 1−γ
2

0
√

1−γ 2

2













,

|v−+〉 =













1+γ

2

−1−γ
2

0

−
√

1−γ 2

2













, (E.11)

so that (E.9) is satisfied. At this point, we would have to optimize over Eve’s most general states

|p10
σω〉 and |p01

σω〉 that satisfied the constraints (E.10). In general, these eight states live in a 12D

space, and the number of free parameters is quite large.

In order to have a more tractable problem, we make some assumptions (admittedly, we

lose generality here). First, we look for states that satisfy a more constraining version of (E.10),

namely

〈p01
σω|p10

σω〉 = V , 〈vσω|p01
σω〉 = 〈vσω|p10

σω〉 =
√

V , (E.12)

for all σ, ω. Then, we can write

|p01
σω〉 =

√
V |vσω〉 −

√
1 − V |w01

σω〉, (E.13)

|p10
σω〉 =

√
V |vσω〉 −

√
1 − V |w10

σω〉 (E.14)

with 〈vσω|w01
σω〉 = 〈vσω|w10

σω〉 = 0 and 〈w01
σω|w10

σω〉 = 0. Note that this may not be a true

restriction: actually, for all the cases treated above, an analog choice was found to be optimal.

A more serious restriction comes now: we suppose that the eight states |w10
σω〉 and |w01

σω〉 live in

a 6D space and are parametrized only by real coefficients. At this stage, we run the numerical

optimization.

E.2.2. Results of the optimization. After having maximized Eve’s information, one can run

the one-parameter optimization over the pulse intensity µ. The optimal choice µopt and the

corresponding value of r0 are plotted in figure E.1, along with the results for 1PA. In the case

V = 1, this attack reduces again to the BSA.

We did not run the optimization aver all possible states, but we believe that our results are

very close to the optimal bounds we could get for 2PA on DPS. Anyway, even though we might

have missed the true maximum of Eve’s information, the attack we found and the curves that

are plotted still provide valid upper bounds, more strict than the bounds given by 1PA on DPS.

Note finally that as for 1PA, we find after optimization χAE 6 χBE: Eve knows less about

Alice’s bit than about Bob’s.
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