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Abstract

We develop a novel framework for proving converse theorems for channel coding, which is based on the

analysis technique of multicast transmission with an additional auxiliary receiver, which serves as a genie to the

original receiver. The genie provides the original receiver a certain narrowed list of codewords to choose from that

includes the transmitted one. This technique is used to derive upper bounds on the mismatch capacity of discrete

memoryless channels as well as the reliability function with a mismatched decoding metric. Unlike previous works,

our bounding technique exploits also the inherent symmetric requirement from the codewords, leading to these new

upper bounds. Since the computations of most of the known bounds on the mismatch capacity are rather complicated,

we further present a method to obtain relaxed bounds that are easier to compute. As an example, we analyze the

obtained bounds in the binary-input channels case. We conclude by presenting simpler bounds on the reliability

function, and provide sufficient conditions for their tightness in certain ranges of rates.

I. INTRODUCTION

This paper addresses the problem of determining the fundamental limits of reliable communication

over a discrete memoryless channel W with a given decoding metric q. This setup is usually referred

to as mismatched decoding, since the decoding metric differs from the optimal maximum likelihood

(ML) metric that is matched to the communication channel. While the ML decoder minimizes the error

probability, in certain cases it is not applicable for various reasons such as channel estimation errors or for

practical decoder implementation considerations. The highest achievable rate with decoding metric q is

referred to as the mismatch capacity. The problem of determining the fundamental bounds on channels with

mismatched decoding is also related to other information-theoretic setups such as zero-error transmission

over communication channels.

There have been quite a few works on achievable rates for channels with mismatched decoding from

the information theoretic view point. A partial list of works is [1]–[15], and for a survey on the subject

see [16], and references therein.

Early results with a converse flavor were derived in [17], where a necessary and sufficient condition

for the positivity of the mismatch capacity was determined, as well as a single-letter expression for the

mismatch capacity in the case of the binary input binary output channel.

Later works [18], [19] presented among other results, a tight multi-letter soft converse result, and

initiated multi-letter bounds, which involve a max-min form, where the maximum is taken over input

distributions, and a minimum is taken over a set of auxiliary channels that satisfy certain constraints (see

[19, Theorem 4] and [18, Theorems 4-5]).

The work [20] proved a max-min upper bound having a single-letter form. The bound of [20] was

obtained by constructing a graph in the output space of the channel and using graph-theoretic and large

deviations tools.

Tighter max-min single-letter upper bounds on the mismatch capacity were derived in [21] (see also

[22]), using a proof technique based on multicast transmission of only one common message over a
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broadcast channel. This technique relies on extending the single-user channel W with output Y to a channel

that has an additional output Z, with the property that the intersection event of correct q-decoding of the

Y -receiver and erroneous decoding of the auxiliary Z-receiver has zero probability for any codebook

of a certain composition P . This approach led to a strictly tighter bound with a significantly simpler

proof, which holds also for continuous alphabet channels. A tighter bound of a more involved form was

presented in [21]), that relied on considering a Z-receiver which is genie-aided and is informed of the

actual joint empirical distribution of the transmitted codeword and the Z-output sequence. Equivalence

classes of isomorphic channel-metric pairs (W, q) were further introduced in [21], that enabled to derive

a sufficient condition for the tightness of the bound.

In a later work, [23], the class of broadcast channels was enlarged to include channels satisfying that

if the Z-receiver makes an error, then with high probability (approaching 1) so does the Y -receiver.

An improved bound was derived in [24], [25], which further enlarged the class of channels. The above

mentioned bounds are described in detail in this paper, but most of them are quite complicated to compute

in the sense that it is required to solve an optimization problem in order to determine whether a certain

channel belongs to the set or not. The tightest bound known to date which is easily computable in this

sense is the basic bound of [21].

The study of the reliability function (error exponents) of channels with ML decoding has been quite

extensive (see, e.g., [26]–[29]). Clearly, the known upper bounds are applicable also to mismatched

decoding. Lower bounds on the exponents with mismatched decoding were derived in several works

such as [3], [5], [14] (see also [16], and references therein). Recently, an upper bound on the reliability

function with mismatched decoding for zero-rate codes was derived in [30]. For a wide class of channel-

metric pairs, this bound was shown to be tight at R = 0+. In [24], an upper bound was derived for all

rates up to the aforementioned bound of [24] on the mismatch capacity.

In this paper, we refine our multicast approach to allow the genie-aided auxiliary Z-receiver of the

channel to serve as a genie for the original Y -receiver. We call this approach “transmission with a genie-

aided-genie”. The idea is very simple: the genie-aided auxiliary Z-receiver informs the original Y -receiver

of the list of all the codewords that share the same empirical statistics (joint type-class) with the channel

Z-output as that of the actual transmitted codeword. Doing so, it narrows down the list of competing

hypothesized codewords that the original mismatched decoder needs to choose from. We consider channels

satisfying the condition that if the list and yields a lower bound on the probability of error. This leads to

a basic upper bound on the mismatch capacity and the reliability function. We further present possibly

looser bounds which are easily computable.

This paper is organized as follows: In Section II we present notation conventions. A formal statement of

the mismatched decoding setup appears in Section III. In Section IV-A, we present the transmission with

a Genie-Aided-Genie proof technique. Section IV-B summarizes our main results. In Section V, we study

the case of binary-input DMCs. In Section VI we compare our results to former results. Sections VII and

VIII are dedicated to the proofs of the main theorems regarding reliability function and mismatch capacity

theorems, respectively. In Section IX, we establish some simpler bounds on the reliability function and

sufficient conditions for tightness. Section X discusses some concluding remarks. Proofs of additional

results and lemmas appear in the appendix.

II. NOTATION

Throughout this paper, scalar random variables (RVs) are denoted by capital letters, their sample values

are denoted by their respective lower case letters, and their alphabets are denoted by their respective

calligraphic letters; e.g. X , x, and X , respectively. A similar convention applies to random vectors of

dimension n and their sample values, which are denoted in boldface; e.g., x. The set of all n-vectors with

components taking values in a certain finite alphabet are denoted by the same alphabet superscripted by

n, e.g., X n. Logarithms are taken to the natural base e, unless stated otherwise.

For a given sequence x ∈ X n, where X is a finite alphabet, P̂x denotes the empirical distribution on X
extracted from x; in other words, P̂x is the vector {P̂x(x), x ∈ X}, where P̂x(x) is the relative frequency
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of the symbol x in the vector x. The type-class of x is the set of x′ ∈ X n such that P̂x′ = P̂x, which

is denoted Tn(P̂x). Similarly, the joint empirical distribution of two sequences x,y, denoted P̂xy, is the

vector {P̂xy(x, y), (x, y) ∈ X × Y}, where P̂xy(x, y) is the relative frequency of the pair of symbols

(x, y) in the vector (x,y); i.e. the number of indices i such that (xi, yi) = (x, y) normalized by n. The

conditional type-class of y given x is the set of ỹ’s such that P̂x,ỹ = P̂x,y, which is denoted Tn(P̂y|x|x).
The set of all probability distributions on X is denoted by P(X ), the set of conditional distributions from

X to Y is denoted P(Y|X ), and the set of empirical distributions of order n on alphabet X is denoted

Pn(X ).
Information theoretic quantities, such as entropy, conditional entropy, and mutual information are

denoted following the usual conventions in the information theory literature, e.g., H(X), H(X|Y ), I(X ; Y )
and so on. To emphasize the dependence of a quantity on a certain underlying probability distribution, say

µ, we at times use notations such as H(µ), H(µX|Y ), I(µXY ), or Hµ(X), Hµ(Y |X), etc. For P ∈ P(X ),

and V,Q ∈ P(Y|X ) we denote the conditional divergence as D(V ‖Q|P ) =
∑

x,y P (x)V (y|x) log V (y|x)
Q(y|x)

.

The expectation operator is denoted by E(·), and to make the dependence on the underlying distribution

µ explicit, it is denoted by Eµ(·). The cardinality of a finite set A is denoted by |A|. The indicator function

of an event E is denoted by 1{E}.
For two measures P,Q defined on the same measurable space (Ω,F) the measure P is said to be

absolutely continuous w.r.t. Q if for every E ∈ F such that Q(E) = 0 it also holds that P (E) = 0: this is

denoted P ≪ Q.

III. A FORMAL STATEMENT OF THE PROBLEM

Consider transmission over a memoryless channel described by a conditional probability W (y|x), with

input x ∈ X and output y ∈ Y finite alphabets X and Y ; in particular, W (y|x) is a conditional probability

mass function. We define W n(y|x) =
∏n

k=1W (yk|xk) for input/output sequences x = (x1, . . . , xn) ∈ X n

and y = (y1, . . . , yn) ∈ Yn. The corresponding RVs are denoted by X and Y .

An encoder maps a message m ∈ {1, . . . ,Mn} to a channel input sequence xm ∈ X , where the number

of messages is denoted by Mn. The message, represented by the random variable M , is assumed to take

values in {1, . . . ,Mn} equi-probably. This mapping induces an (n,Mn)-codebook Cn = {x1, . . . ,xMn
}

with rate Rn = 1
n
logMn.

Upon observing the channel output y, the decoder produces an estimate of the transmitted message

m̂ ∈ {1, . . . ,Mn}. We consider the decoding rule

m̂ = argmax
i∈{1,...,Mn}

q(xi,y), (1)

where q(xi,y) is a certain additive decoding metric [27, Ch. 2] defined by a single-letter mapping q :
X × Y → R such that

q(x,y) =
1

n

n∑

i=1

q(xi, yi) = EP̂xy
[q(X, Y )] , q(P̂xy), (2)

where for convenience we slightly abuse notation using q for both the per-letter metric q(x, y) and the

n-letter metric q(P̂xy). Throughout the paper it is assumed that ties are broken uniformly between the

maximizers.

Denoting the RV corresponding to the decoded message by M̂q(Y ), we denote the average error

probability as Pe(W, Cn, q) = Pr
[
M̂q(Y ) 6= M

]
.

A rate R is said to be achievable with decoding metric q if there exists a sequence of codebooks Cn,

n = 1, 2, ... such that 1
n
log |Cn| ≥ R and limn→∞ Pe(W, Cn, q) = 0. The channel capacity w.r.t. metric

q, denoted Cq(W ), is defined as the supremum of achievable rates, and is referred to as the mismatch

capacity.
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Since the optimal decoding rule w.r.t. average error probability (of equiprobable messages) is ML,

which is additive for DMCs, Shannon’s channel capacity C(W ) can be viewed in fact as the channel

capacity w.r.t. the metric q(x, y) = logW (y|x); that is,

C(W ) = Cq(W )|q(x,y)=logW (y|x). (3)

A rate-exponent pair (R,E) is said to be achievable for channel W with decoding metric q if there exists

a sequence of codebooks Cn, n = 1, 2, ... such that for all n, 1
n
log |Cn| ≥ R and

lim inf
n→∞

−
1

n
logPe(W, Cn, q) ≥ E. (4)

Equivalently, we say that E is an achievable error exponent at rate R if (R,E) is an achievable rate-

exponent pair.

The reliability function of the channel with decoding metric q is the supremum of achievable error

exponents as a function of the code rate, and is denoted by Eq(R,W ). The reliability function with ML

decoding metric is denoted E(R,W ).
Define the highest achievable exponent with P constant composition codebooks of block length n as

eqn(R,P,W ) , max
Cn⊆Tn(P ): |Cn|≥enR

−
1

n
logPe(q,W, Cn). (5)

Using standard arguments that follow from the fact that the number of type-classes grows polynomially

with n, it can be shown that

Eq(R,W ) = lim inf
n→∞

max
Pn∈Pn(X )

eqn(R,Pn,W ), (6)

and for this reason, the main focus of this paper is on analyzing constant composition codes.

IV. MAIN RESULTS

In this section we present new upper bounds on the mismatch capacity and the reliability function of

the DMC when the decoder uses a mismatched decoding metric q. Before we present our new bounds,

we describe the main idea behind our proof technique.

A. The Multicast Transmission with a Genie-Aided-Genie Proof Technique

We refine our multicast transmission setup which was introduced in [21], that extends the single-user

channel WY |X to a two-output (broadcast) channel WY Z|X having an additional output Z over some finite

alphabet Z . An encoder uses a codebook Cn = {xi}
M
i=1 of size Mn = enR to transmit a message over the

channel.

As in [21, Theorem 2, Eq. (41)], we add a type-genie that informs the Z-receiver of the actual joint

empirical distribution P̂xz of the input and output signals (x, z). The refinement of the proof technique

in this paper, is in that the Z-receiver, which observes z, serves as a genie to the Y -receiver by providing

it with the list

L(z, P̂xz) , Cn ∩ Tn(P̂x|z|z)

,
{
x1(z, P̂xz), . . . ,x|L(z,P̂xz)|

(z, P̂xz)
}

(7)

of all the codewords, which lie in Tn(P̂x|z|z) (the conditional type-class given the received signal z). The

Y -receiver compares the metrics of all the codewords in the list and outputs

m̂ = argmax
i: xi∈L(z,P̂xz)

q(xi,y), (8)

where ties are broken uniformly between the maximizers. This setup is depicted in Fig. 1.
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Encoder
Channel

W n
Y Z|X

X
Y -Decoder q

Y
M M̂

Z

Z−Decoder

List-Genie

Type-Genie

P̂XZ

L(Z, P̂xz) = {xi(Z, P̂xz)}

Fig. 1. Transmission over a two-output (broadcast) channel with mismatched decoding and a Genie-Aided-Genie.

Since by definition the true codeword belongs to this narrowed down list, the error probability in

mismatched decoding of the Y receiver cannot exceed that of the original single-user setup.

The narrowing of the codebook to the list enables to lower bound the average pairwise error probability

within the list since within the list, the joint pairwise empirical distribution of codewords is more con-

strained compared to the entire codebook (in particular, the joint empirical distribution of each codeword

with z is identical) this is beneficial for the bound. The actual size of the list does not play a major role

in the proof, except for exceeding 1; i.e., containing at least one additional message except the transmitted

one.

We show that for rates which exceed our upper bound on the mismatch capacity, Cq(W ), the average

error probability is bounded away from zero. As for rates below Cq(W ), we upper bound the exponent

of the average error probability.

Note that we use the terminology of multicast transmission over a broadcast channel similar to [21],

and we also refer to it as a two-output channel in certain cases where this terminology is more suitable. We

emphasize that this should not be confused with the ordinary broadcast channel over which two separate

messages are transmitted, and each is intended to a different receiver.

A summary of the main differences between the proof technique of this work and previous ones can

be found in Section VI-1.

B. An Overview of the Main Results

In this section we present the new upper bounds on the achievable error exponent using decoding metric

q, and the mismatch capacity Cq(W ). Throughout this paper, we adopt the shorthand notation that W
without subscript signifies the original single-user channel WY |X . Whenever we refer to other marginal

distributions; i.e., WY |XZ , WZ|XY or WY Z|X , the subscript is mentioned explicitly.

1) The Main Upper Bound on Cq(W ): Consider the set of two-output (broadcast) channels:

Wq(PX) =

{
PY Z|X : min

V
UX̃XZY

:VXZY =PXY Z

V
UX̃XZ

=V
UXX̃Z

X̃−(U,Z)−X

(X̃,U)−(X,Z)−Y

Eq(X̃, Y ) ≥ Eq(X, Y )

}
(9)



6

where U is an auxiliary RV1 with alphabet size |U| ≤ |X |2|Z|, and the condition VUX̃XZ = VUXX̃Z

signifies that for all (u, x1, x2, z), VUX̃XZ(u, x1, x2, z) = VUX̃XZ(u, x2, x1, z).

Note that the RVs (U, X̃,X, Y, Z) have the following intuitive explanation originating from the proofs:

X- a typical channel input symbol, (Y, Z) - typical channel output symbols, X̃ - a worst-case competing

codeword symbol, and U - a time-sharing RV.

Next, let

Cq(W ) , max
PX

min
PY Z|X∈Wq(PX), PY |X=W

I(X ;Z), (10)

where throughout this paper, we adopt the convention that the minimum and maximum over an empty

set equal ∞ and −∞, respectively.

Our basic bound on Cq(W ) of the following theorem is proved in Section VII.

Theorem 1. For any W , additive metric q ∈ R ∪ {−∞}, and finite alphabet Z ,

Cq(W ) ≤ Cq(W ). (11)

The bound Cq(W ) is tighter compared to previously known bounds, see Section VI for a comparison

to previous works. Note that Cq(W ) is quite difficult to compute, since in order to determine whether a

two-output channel PY Z|X belongs to the set Wq(PX) or not, one needs to solve the minimization problem

in (12). A similar problem arises with the computation of many of the previous bounds (e.g., those of

[23], [24]). For this reason, in the next section we present a few looser bounds that are easier to compute.

It is worth mentioning though, that denoting

∆q(PXZU , PY |XZ) ,∑

x,z,u,x̃,y

PUZ(u, z)PX|UZ(x|u, z)PX|UZ(x̃|u, z)PY |XZ(y|x, z)[q(x̃, y)− q(x, y)], (12)

the bound Cq(W ) in (10) can also be expressed as

Cq(W ) = max
PX

min
PY Z|X : minPU|XZ

∆q(PXZU ,PY |XZ)≥0,

PY |X=W

I(X ;Z) (13)

= max
(PX , PU|XZ)

min
PY Z|X : ∆q(PXZU ,PY |XZ)≥0,

PY |X=W

I(X ;Z). (14)

In this form of the bound, for every given (PX , PU |XZ), it is easy to determine whether the channel PY Z|X

satisfies ∆q(PXZU , PY |XZ) ≥ 0 or not, nevertheless, one still needs to optimize over the pair (PX , PU |XZ).
2) Possibly Looser Easier to Compute Bounds on Cq(W ): We next present several sets2 of two-output

channels, W̃sym
q (PX), and Wsym

q (PX), W̃q(PX), W
psd
q (PX), which are subsets of Wq(PX).

Consider the following set of symmetric distributions:

Psym(X
2 × Z) , {PX̃ZX ∈ P(X 2 ×Z) : ∀(x, x̃, z), PX̃ZX(x̃, z, x) = PX̃ZX(x, z, x̃)}, (15)

and define

W̃sym
q (PX) ,

{
PY Z|X : min

V
X̃XZY

: VXY Z=PXY Z

V
X̃ZX

∈Psym(X 2×Z)

X̃−(X,Z)−Y

Eq(X̃, Y ) ≥ Eq(X, Y ),

}
(16)

1By inspecting (9) it is evident that without loss of generality one can take U such that Z is a deterministic function of U (perhaps with

larger alphabet for U ), because one can replace any U by U ′ = (U,Z). Therefore, one can add the constraint H(Z|U) = 0 to the set of

the minimization in (9) without changing the resulting bound (10).
2In fact, the sets, as well as Wq(P ) are also functions of the alphabet cardinality |Z|, but for the sake of simplicity we omit this dependence

from our notation.
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Wsym
q (PX) ,

{
PY Z|X : min

V
X̃XZY

: VXY Z=PXYZ

V
X̃ZX

∈Psym(X 2×Z)

X̃−(X,Z)−Y, ∀(x,z), V
X̃|X,Z

(x|x,z)≥PX|Z(x|z)

Eq(X̃, Y ) ≥ Eq(X, Y )

}
. (17)

Further, define the third set of two-output channels

W̃q(PX) ,



PY Z|X :

∀(z,VX|Z):z∈Z,
PZ×VX|Z≪PZX

,
∑

x,x̃,y

V (x|z)V (x̃|z)PY |XZ(y|x, z)[q(x̃, y)− q(x, y)] ≥ 0



 (18)

=

{
PY Z|X :

∀(z,VXY |Z ):z∈Z,
VY |XZ=PY |XZ ,
PZ×VX|Z≪PXZ

EVX|zVY |z
q(X, Y ) ≥ EVXY |z

q(X, Y )

}
(19)

where as mentioned in Section II, ≪ denotes absolute continuity.

Now, denote w.l.o.g. X = {1, ..., |X |}, and consider the collection of symmetric |X | × |X | matrices

{Dq(PY |X,Z=z)}, indexed by z ∈ Z , whose (i, j)-th entries are given by:

{Dq(PY |X,Z=z)}i,j =
∑

y

(
PY |XZ(y|i, z)[q(j, y)− q(i, y)] + PY |XZ(y|j, z)[q(i, y)− q(j, y)]

)
(20)

=
∑

y

[PY |XZ(y|i, z)− PY |XZ(y|j, z)] · [q(j, y)− q(i, y)]. (21)

Denoting that a matrix D is positive semi-definite (p.s.d.) by D � 0, we define the last set of two-output

channels:

Wpsd
q (PX) ,

{
PY Z|X : ∀z ∈ Z, Dq(PY |X,Z=z) � 0

}
. (22)

Let

Csym
q (W ) , max

PX

min
PY Z|X∈Wsym

q (PX), PY |X=W
I(X ;Z) (23)

C̃sym
q (W ) , max

PX

min
PY Z|X∈W̃sym

q (PX), PY |X=W
I(X ;Z) (24)

C̃q(W ) , max
PX

min
PY Z|X∈W̃q(PX), PY |X=W

I(X ;Z). (25)

Cpsd
q (W ) , max

PX

min
PY Z|X∈Wpsd

q (PX): PY |X=W

I(X ;Z). (26)

The possibly looser bounds compared to Cq(W ) are presented in the following proposition, which is

proved in Appendix A.

Proposition 1. For any P ∈ P(X ),

Wpsd
q (P ) ⊆ W̃q(P ) ⊆ Wq(P ), (27)

W̃sym
q (PX) ⊆ Wsym

q (P ) ⊆ Wq(P ) (28)

and therefore

Cq(W ) ≤ C̃q(W ) ≤ Cpsd
q (W ), (29)

Cq(W ) ≤ Csym
q (W ) ≤ C̃sym

q (W ). (30)

As mentioned before, the bound Cpsd
q (W ) has a significant advantage over Cq(W ), since it is easier to

compute in the sense that determining whether a two-output channel PY Z|X belongs to the set Wpsd
q (PX)

requires a simple calculation. In particular, one needs to verify that ∀z ∈ Z, Dq(PY |X,Z=z) � 0 by

checking that the determinants of the 2|X | − 1 minors of each of these |Z| matrices are all non-negative
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[31]. This is in contrast to the calculation of Cq(W ) and similarly several other previous bounds (e.g.,

those of [23], [24]), which require to solve a certain minimization problem, such as the minimization in

(9), in order to determine whether a two-output channel belongs to the set Wq(PX) (see Section VI).

Furthermore, the bound Csym
q (W ) is also easier to compute numerically compared to Cq(W ) and

previous bounds, since the constraints in the definition of the set Wsym
q (P ) limit the range and the

number of degrees of freedom of the solution of the optimization problem. In Section V, we analyze the

various bounds for the binary-input channel case (|X | = 2, |Y| < ∞).

3) Upper Bounds on the Reliability Function with Decoding Metric q: In this section we present our

main bound Eq
sp(R,W ) on the reliability function with mismatched decoding, Eq(R,W ), and similar to

the mismatch capacity, we present looser bounds that are easier to compute.

For P ∈ P(X ) define

Eq
sp(R,P,W ) , min

PY Z|X∈Wq(P ): I(X;Z)≤R
D(PY |X‖W |P ) (31)

Due to (6), our main result concerning the reliability function is presented in terms of upper bounds on

eqn(R,P,W ).

Theorem 2. Let |Z| < ∞, then for all n, and any P ∈ Pn(X )

eqn(R,P,W ) ≤ Eq
sp(R − ǫn,a, P,W ) + ǫn,b, (32)

where ǫn,a = O( logn
n

), and ǫn,b = O( logn
n

).

The main idea of the proof of Theorem 2 was presented in Section IV-A, the full proof can be found

in Section VII, as well as the exact quantities ǫn,a, and ǫn,b. Note that the proof of Theorem 2 can be

shortened to yield the same result as (32) with the exception that Eq
sp is replaced3 by Ẽq,sym

sp .

Now, define further

Ẽq
sp(R,P,W ) , min

PY Z|X∈W̃q(P ): I(X;Z)≤R

D(PY |X‖W |P ) (33)

Eq,psd
sp (R,P,W ) , min

PY Z|X∈Wpsd
q (P ): I(X;Z)≤R

D(PY |X‖W |P ) (34)

Eq,sym
sp (R,P,W ) , min

PY Z|X∈Wsym
q (P ): I(X;Z)≤R

D(PY |X‖W |P ) (35)

Ẽq,sym
sp (R,P,W ) , min

PY Z|X∈W̃sym
q (P ): I(X;Z)≤R

D(PY |X‖W |P ). (36)

Further, let Eq
sp(R,W ), Ẽq

sp(R,W ), Eq,psd
sp (R,W ), Eq,sym

sp (R,W ), Ẽq,sym
sp (R,W ) denote the maximum over

P ∈ P(X ) of the above quantities (31)-(36), respectively. The following theorem states the additional

bounds.

Theorem 3. The following inequalities hold for all (R,P,W )

Eq
sp(R,P,W ) ≤ Ẽq

sp(R,P,W ) ≤ Eq,psd
sp (R,P,W ) (37)

Eq
sp(R,P,W ) ≤ Eq,sym

sp (R,P,W ) ≤ Ẽq,sym
sp (R,P,W ). (38)

The inequalities of (37)-(38) follow from (27)-(28).

The following corollary follows from (6), and Theorems 2 and 3.

Corollary 1. For any |Z| < ∞,

Eq(R,W ) ≤ Eq
sp(R,W ) ≤ Ẽq

sp(R,W ) ≤ Eq,psd
sp (R,W ) (39)

3This is mentioned in Eq. (99) which can replace the stronger result (100), which requires a lightly more involved proof.
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Eq(R,W ) ≤ Eq
sp(R,W ) ≤ Eq,sym

sp (R,W ) ≤ Ẽq,sym
sp (R,W ). (40)

The following corollary, which is easily verified, states that Cq(W ) is a rate above which the average

error probability in q decoding cannot vanish exponentially fast.

Corollary 2. For all R > Cq(W ), Eq
sp(R,P,W ) = 0.

4) Upper Bound on the Reliability Function for Type-Dependent Metrics: Our next corollary extends

the results of Theorems 2 and 3 to the case of type-dependent metrics, similar to the extension in [21]. The

class of type-dependent metrics generalizes additive metrics in the following manner. It is assumed that

the decoding metric q(x,y) depends on x,y solely via their joint empirical distribution; i.e., q(x,y) =
q(P̂x,y), so q can be viewed as a mapping from the empirical distributions to the reals q : Pn(X×Y) → R.

More generally, in order not to restrict attention to a specific block-length n, we assume that it maps the

simplex to a real number; i.e.,

q : P(X × Y) → R. (41)

We refer to this class of metrics as type-dependent (formerly referred to as α-decoders by Csiszár and

Körner [3]). In the case of type-dependent metrics, (1) becomes:

m̂ = argmax
i∈{1,...,Mn}

q(P̂xiy). (42)

The equivalent of the set of two-output channels W̃sym
q (PX) in (16) for type-dependent metrics is given

by

W̃sym
q (PX) ,

{
PY Z|X : min

V
X̃XZY

: V
X̃ZX

∈Psym(X 2×Z),
V
X̃XZY

=PXYZ×V
X̃|XZ

q(VX̃Y ) ≥ q(PXY )

}
, (43)

yielding Ẽq,sym
sp (R,P,W ) as defined in (36).

The result pertaining to type-dependent metrics is the following.

Corollary 3. Let |Z| < ∞, and let q(PXY ) be convex in PY |X for fixed PX , then for all n, and any

P ∈ Pn(X )

eqn(R,P,W ) ≤ Ẽq,sym
sp (R− ǫn,c, P,W ) + ǫn,d, (44)

where ǫn,c = O( logn
n

) and ǫn,d = O( logn
n

), and consequently

Eq(R,W ) ≤ Ẽq,sym
sp (R,W ). (45)

The corollary is proved in Appendix D.

V. BINARY-INPUT CHANNELS

As mentioned above, in [17], a single-letter expression for the mismatch capacity in the case of the

binary input binary output channel was derived. The single-letter converse result reported in [32] for

binary-input DMCs (with 2 < |Y| < ∞) was disproved in [15]. Specifically, a rate based on superposition

coding was shown to exceed the claimed mismatch capacity of [32].

The following lemma specifies simplified explicit expressions for Csym
q (W ), C̃sym

q (W ), and Cpsd
q (W )

for binary input DMCs, by explicitly solving the minimization problems in the definitions of Wsym
q (PX),

W̃sym
q (PX), and Wpsd

q (PX). Let

dq(PY Z|X, z) =
∑

y

[P (y|0, z)− P (y|1, z)][q(1, y)− q(0, y)]. (46)
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Lemma 1. Let WY |X be a DMC with a binary input alphabet X = {0, 1}, and let |Z| < ∞, then4

Csym
q (W ) = max

PX

min
PY Z|X : ∀z: PZ(z)>0,

EPX|z×PY |z
q(X,Y )≥EPXY |z

q(X,Y ),

PY |X=W

I(X ;Z) (47)

= max
PX

min
PY Z|X : ∀z, PZ(z)PX|Z(0|z)PX|Z(1|z)dq(PY Z|X ,z)≥0,

PY |X=W

I(X ;Z). (48)

Consequently

Csym
q (W ) ≤ min

PY Z|X : ∀z, PZ|X(z|0)PZ|X(z|1)dq(PY Z|X ,z)≥0,
PY |X=W

C(PZ|X) (49)

Further,

Csym
q (W ) = C̃sym

q (W ) (50)

and

Cpsd
q (W ) = max

PX

min
PY Z|X : ∀z, dq(PY Z|X ,z)=0

PY |X=W

I(X ;Z), (51)

Lemma 1 is proved in Appendix B. For given PX , it is easy to check whether the condition in the

minimization in (47) is satisfied for a suggested channel PY Z|X , as well as the conditions in (48)-(51).

Further, it is evident that in the binary-input case C̃sym
q (W ) ≤ Cpsd

q (W ).
Example 1): Consider the example X = {0, 1}, Y = Z = {0, 1, 2} (also studied in [15], [24]):

WY |X =

(
0.97 0.03 0
0.1 0.1 0.8

)
, q(x, y) =

(
0 0 0
0 log(0.5) log(1.36)

)
. (52)

It is easy to verify that the following two-output channel

W̃Y Z|X(y, z|x) =





0.77 (x, y, z) = (0, 0, 1)
0.6 (x, y, z) = (1, 2, 2)
0.2 (x, y, z) ∈ {(0, 0, 0), (1, 2, 1)}
0.1 (x, y, z) ∈ {(1, 0, 0), (1, 1, 1)}
0.03 (x, y, z) = (0, 1, 1)
0 otherwise

(53)

satisfies

W̃Y |X = WY |X , W̃Z|X =

(
0.2 0.8 0
0.1 0.3 0.6

)
, (54)

Assume w.l.o.g. that the maximizing PX is non-degenerate (as otherwise the mismatch capacity equals

zero). It is easy to verify that dq(W̃Y Z|X, z) ≥ 0 for all z such that W̃Z|X(z|0)W̃Z|X(z|1) > 0, i.e.,

z ∈ {0, 1}. Thus,

Csym
q (WY |X) ≤ max

PX

I(PX × W̃Z|X) ≈ 0.4081 [bits/channel use], (55)

where PX ≈ (0.59 , 0.41). For a comparison with previous results pertaining to this example and other

cases, see the next Section VI-3.

4Since PY |XZ(y|x, z) is not defined for (x, z) such that PXZ(x, z) = 0, the condition PZ(z)PX|Z(0|z)PX|Z(1|z)dq(PY Z|X , z) ≥ 0
should be understood as PZ(z)PX|Z(0|z)PX|Z(1|z) > 0 ⇒ dq(PY Z|X , z) ≥ 0.
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VI. A COMPARISON TO PREVIOUS RESULTS

We next discuss the relationship between our new results and some relevant previous converse results.

We begin by describing the major differences in the proof technique. Further, in Sections VI-3 and VI-2 we

describe the differences between the mismatch capacity and reliability function expressions, respectively.
1) Main Differences Compared to Proof Techniques of Previous Works: The Z-receiver of our previ-

ous works [21], [23] was either genie-aided or not (depending on the specific theorem), but the major

difference is that it did not serve as a genie to the Y -receiver in these works. These works relied on

an argument that the broadcast channel PY Z|X is such that if the Y -receiver successfully decodes the

message, then so does the Z receiver (in the case of [23] this was relaxed to Z-receiver that is very likely

to succeed).

As for [20], [24], [25], these works did not consider multicast transmission nor genies, the technique

therein relied on a construction of a graph in the output space. Our bounding technique using a two-output

channel, in which the Z-receiver serves as a genie to the Y -receiver is significantly simpler and does not

involve the construction of a graph and graph-theoretic tools.

Another major difference in the proof technique between the current work and [24], [25] is that in the

current work we exploit the symmetric requirement from the codewords: For the reliability function, we

analyze Pr(Eij|xi, z), the probability of the error event Eij that q(xj,Y ) exceeds q(xi,Y ) given that i
is transmitted and z received, and lower bound the average of 1

2
[Pr(Eij|xi, z) + Pr(Eji|xj, z)]; (see Eq.

(81)). For the mismatch capacity upper bound we state a condition such that for any pair of codewords

xℓ,xk in the list, the joint empirical distribution is such that either given (xℓ, z) the event Eℓk is very

likely to occur or given (xk, z) the event Ekℓ is very likely to occur (see Lemma 6 Eqs. (122)-(123)).

The upper bound of [24], [25] implies that the symmetry and between the possible events (of each of

the messages being the transmitted one) was not exploited in the derivation.
2) Reliability Function: The general upper bounds which hold for ML decoding are applicable for

mismatched decoding as well, and in particular, the classical sphere-packing bound [27], which is given

by:

Esp(R,P,W ) = min
PY |X : I(P×PY |X)≤R

D(PY |X‖W |P ),

as it holds for all metrics q including the ML metric.

Consider (37)-(38), yielding that Eq
sp(R,P,W )|q=logW essentially upper bounds eqn(R,P,W )|q=logW .

Taking Z = Y (instead of minimizing) in our bound (31), Eq
sp(R,P,W )|q=logW , and noting that PY |X ×

1{Y=Z} ∈ Wq(PX) (since PXZ = PX̃Z implies that PXY = PX̃Y and thus Eq(X̃, Y ) − Eq(X, Y ) = 0)

yields Eq
sp(R,P,W )|q=logW ≤ Esp(R,P,W ).

In [24], an upper bound on the mismatched reliability function was derived, which we denote (to avoid

confusion) as

f q
sp(R,P,W ) , min

P
Ŷ Y |X

: IP (X;Ŷ )≤R,

minP
X̃|XŶ

: P
XŶ

=P
X̃Ŷ

,

X̃−(X,Ŷ )−Y

Eq(X̃,Y )≥Eq(X,Y )

D(PY |X‖WY |X |PX).

Note that we have (treating Ŷ in the role of Z)

min
P
X̃|XZ

: PXZ=P
X̃Z

,

X̃−(X,Z)−Y

Eq(X̃, Y ) ≤ min
P
X̃|XZ

: P
X̃ZX

∈Psym(X 2×Z)
EP

XZX̃
×PY |XZ

q(X̃, Y ) (56)

where the r.h.s. is the minimization which appears in the definition of W̃sym
q (PX) (see (16)) and thus

Ẽq,sym
sp (R,P,W ) ≤ f q

sp(R,P,W ).

In addition to being at least as tight, the bound Ẽq,sym
sp (R,P,W ) has the advantage that due to the

symmetry, solving the associated minimization problem on the r.h.s. of (56) involves fewer degrees of
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freedom to optimize over and narrower parameters range compared to the l.h.s. of (56). A similar comment

holds even more so when Ẽq,sym
sp (R,P,W ) is concerned, due to the constraint ∀(x, z), PX̃|X,Z(x|x, z) ≥

PX|Z(x|z) in (17).

3) Mismatch Capacity: As mentioned above, [20], a single-letter bound was derived by forming a

transformation of the channel into another translated channel from X to Y such that q-decoding error at

the latter implies q-decoding error at the original channel. The idea was to connect the two channels by

means of a graph in the output space Yn.

In [21], the multicast transmission proof technique was proposed, which yielded a few tighter bounds.

The main idea of the proof is that same message is transmitted simultaneously to two decoders over a

two-output (broadcast) channel WY Z|X with two outputs Y and Z. The Z-decoder employs an additive

decoding metric ρ that can be optimized, and the two-output channel belongs to the set

Γ(q, ρ) ,{
PY Z|X : ∀(x, y, z) : ρ(x, z) − q(x, y) < max

x′∈X
[ρ(x′, z)− q(x′, y)]

PY Z|X(y, z|x) = 0

}
. (57)

It is easily verified (see details in [21]), that any two-output channel in this class has the property that an

error occurs at the Z decoder, only if the Y -receiver makes an error. Thus, for any codebook Cn, we have

Pe(WY |X , Cn, q) ≥ Pe(WZ|X , Cn, ρ) (58)

and the following bound holds for any stationary memoryless channel.

Cq(W ) ≤max
PX

min
PY Z|X∈Γ(q,ρ): PY |X=W

I(X ;Z), (59)

It can be shown that the bound of [20] can be expressed as a special case for the suboptimal choice of

ρ = q and Z = Y . It is very easy to verify whether channel PY Z|X lies in the set of the minimization since

calculating the marginal PY |X involves a simple summation, and since Γ(q, ρ) only dictates constraints

on necessary zero values for PY Z|X . Furthermore, this max-min problem is easily solvable numerically

(see [21, Section IV-C]).

Another bound that was derived in [21] and is applicable to DMCs, enlarges the set of channels to one

that depends also on the input distribution PX . This bound was obtained by including a genie that helps

the Z-receiver by providing it with the actual value of the joint empirical distribution of the transmitted

codeword and the output sequence Z. In [23] the bound was improved to include a minimization over

the larger class of channels

Θ∗(q, PX) ,{
PY Z|X : min

V
X̃XY Z

: VXY Z=PXY Z ,
V
X̃
=PX ,V

X̃Z
=PXZ

Eq(X̃, Y ) ≥ Eq(X, Y )

}
.

These channels satisfy the condition that if the Y -decoder successfully decodes the message, then with

high probability (approaching 1 as the block length tends to infinity), also does the genie-aided Z-decoder.

A further improved bound was derived in [24] where the set of channels is given by

Mmax(q, PX) ,{
PY Z|X : min

V
X̃XY Z

: VXY Z=PXY Z ,
V
X̃
=PX ,V

X̃Z
=PXZ

X̃−(X,Z)−Y

Eq(X̃, Y ) ≥ Eq(X, Y )

}
, (60)

which includes the additional constraint X̃ − (X,Z)− Y . The resulting bound is denoted R̄(W, q).
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Note that
{
VX̃ZX ∈ Psym(X

2 × Z) : VXZ = VX̃Z = PXZ

}
⊆
{
VX̃ZX : VXZ = VX̃Z = PXZ

}
. (61)

Therefore, from (11) we obtain

C̃sym
q (W ) ≤ R̄(W, q). (62)

In the next lemma we show that there are many cases for which (61) is obtained in strict inclusion (for

|X | > 2). It is likely that there exist such cases where strict inclusion results in a strict inequality in (62).

This is reinforced by the fact that Cq(W ) ≤ Csym
q (W ) ≤ C̃sym

q (W ), and since the additional constraint

which appears in Csym
q (W ); i.e., PXX̃(x, x|z) ≥ P 2

X|Z(x|z) may be active. But, even more importantly,

the above mentioned previous bounds except (145) are rather complicated to compute, compared to the

bounds Cpsd
q (W ) and Csym

q (W ).

Lemma 2. For |X | > 2 the following inclusion is strict:
{
VX̃ZX ∈ Psym(X

2 × Z) : VXZ = VX̃Z = PXZ

}
⊂
{
VX̃ZX : VXZ = VX̃Z = PXZ

}
. (63)

Proof. It is sufficient to establish the result for |X | = 3. Consider the following 3× 3 symmetric matrix:

A(z) =




a1(z) a2(z) a3(z)
a2(z) a4(z) a5(z)
a3(z) a5(z) a6(z)


 , (64)

where ai(z) ∈ (0, 1). Next, consider the matrix B(z) which is obtained by subtracting or adding a positive

quantity which satisfies the condition ∆ ≤ min{a2(z), a3(z), a5(z), 1− a2(z), 1− a3(z), 1− a5(z)} from

A(z)’s entries as follows:

B(z) =




a1(z) a2(z) + ∆ a3(z)−∆
a2(z)−∆ a4(z) a5(z) + ∆
a3(z) + ∆ a5(z)−∆ a6(z)


 ., (65)

Note that the condition guarantees that 0 ≤ Bi,j(z) ≤ 1. A more general choice is also applicable

with the appropriate conditions on k1, k2 6= k3, k4 (which are not all necessarily positive) ensuring that

0 ≤ Ki,j(z) ≤ 1 where:

K(z) =




a1(z) + k1 a2(z) + k2 a3(z)− k1 − k2
a2(z) + k3 a4(z) + k4 a5(z)− k3 − k4
a3(z)− k1 − k3 a5(z)− k2 − k4 a6(z) + k1 + k2 + k3 + k4


 .. (66)

Clearly, the sums of corresponding columns and rows of A(z) and K(z) are identical (e.g.
∑

j Ai,j(z) =∑
j Ki,j(z)), but while A(z) is symmetric, K(z) is not (since k2 6= k3). Now, let VXZX̃ ∈ Psym(X

2 ×
Z) which satisfies VXZ = VX̃Z = PXZ be given, and think of Ai,j(z) as VXX̃|Z=z(i, j|z) and define

V ′
XX̃|Z=z

(i, j|z) = Ki,j(z) which is clearly non symmetric. Thus PZ × V ′
X̃X|Z

belongs to the set on the

r.h.s. of (63) but does not belong to the set on the l.h.s. of (63), and the lemma follows.

It is easy to realize that for |X | = 2 the inclusion (61) is not strict; i.e., (61) is obtained with equality.

Combining this with (50), we obtain

If |X | = 2, then R̄(W, q) = C̃sym
q (W ) = Csym

q (W ) ≥ Cq(W ). (67)

Further, unlike our Lemma 1, the optimization problem over VX̃XY Z in (60) associated with binary input

channels was not solved explicitly in [24], and therefore our expression (48) is significantly simpler, and

easier to compute.
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Consequently, for the binary input ternary output Example 1) (see (52)) it was established numerically

in [24] that

R̄(W, q) ≤ 0.4999, (68)

while we rigorously established (55); i.e.,

Csym
q (W ) ≤ max

PX

I(PX × W̃Z|X) ≈ 0.4081. (69)

Note that it is not evident whether the bound 0.4081 may be improved by calculating Cq(W ) rather than

Csym
q (W ), or by another choice of channel instead of W̃Y Z|X .

VII. PROOF OF THEOREM 2

In this section we prove Theorem 2 based on the outline described in Section IV-A.

Let a DMC W = WY |X be given. Fix Pn ∈ Pn(X ), and let Cn = {xi}
Mn

i=1 be a Pn-constant composition

codebook of rate R for the channel WY |X . Consider another channel from X ×Y to a finite set Z denoted

by WZ|XY , which along with WY |X constitutes a two-output channel WY Z|X . For technical reasons, we

assume that WZ|XY takes on the following form:

∀(x, y, z), WZ|XY (z|x, y) = (1− ǫn) ·W
∗
Z|XY (z|x, y) + ǫn ·

1

|Z|
, (70)

where ǫn = 1
n

, and W ∗
Z|XY (z|x, y) is some conditional distribution from X × Y to Z . Note that this

implies that

∀(x, y, z), WY |XZ(y|x, z) =
W (y|x)W (z|x, y)

W (z|x)
≥ WY |X(y|x) ·

ǫn
|Z|

. (71)

Denote

wmin , min
(x,y): W (y|x)>0

WY |X(y|x), (72)

tn,min ,
ǫn
|Z|

· wmin. (73)

Given the channel input X ∈ Tn(Pn), and the joint type-class of (X,Z), P̂XZ = P̂XZ , we clearly have

that Z is distributed uniformly over Tn(P̂Z|X|X); i.e.,

Pr(Z = z|X = x, P̂XZ = P̂XZ) =
1{z∈Tn(P̂Z|X |x)}

|Tn(P̂Z|X|x)|
. (74)

Recall the definition of L(z, P̂xz), and xi(z, P̂xz) in (7), and note that by definition, |L(z, P̂XZ)| ≥ 1 for

any P̂XZ which is a possible joint empirical distribution of a channel input-output sequences pair x, z.

Further recall the assumption that the Y -decoder is informed of the list L(Z, P̂XZ) = {xi(Z, P̂XZ)} and

employs the decoding rule (8).

It is easily verified that for any possible channel output z such that P̂z = P̂Z , it holds that {xi(z, P̂XZ)}
are equiprobable given {Z = z, P̂XZ = P̂XZ}; that is,

P (X = xi(z, P̂XZ)|Z = z, P̂XZ = P̂XZ) =
1

|L(z, P̂XZ)|
. (75)

To see this, note that by applying Bayes’ law twice we have

Pr(X = xi(z, P̂XZ),Z = z|P̂XZ = P̂XZ)

= Pr(Z = z|P̂XZ = P̂XZ) · Pr(X = xi(z, P̂XZ)|Z = z, P̂XZ = P̂XZ) (76)
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= Pr(X = xi(z, P̂XZ)|P̂XZ = P̂XZ) · Pr(Z = z|X = xi(z, P̂XZ), P̂XZ = P̂XZ). (77)

Now, since the code is constant composition, the actual joint type-class P̂XZ does not depend on the

codeword X , and hence Pr(X = xi(z, P̂XZ)|P̂XZ = P̂XZ) =
1

Mn
, and further we have Pr(Z = z|X =

xi(z, P̂XZ), P̂XZ = P̂XZ) =
1

|Tn(P̂Z|X)|
, this yields

Pr(X = xi(z, P̂XZ)|Z = z, P̂XZ = P̂XZ) =
1

|Tn(P̂Z|X)| ·Mn · Pr(Z = z|P̂XZ = P̂XZ)
. (78)

Since the r.h.s. does not depend on i we obtain the desired result (75).

Next, let

Eij , Eij(z, P̂XZ) , {y : q(xj(z, P̂XZ),y) ≥ q(xi(z, P̂XZ),y)}, (79)

and adopt the shorthand notation

xi , xi(z, P̂XZ), L , L(z, P̂XZ). (80)

Since Pr(error|xi, z) = Pr(∪j 6=iEij |xi, z), we have the following lower bound on the average error

probability in q-mismatched decoding at the Y -receiver given that Z = z and P̂XZ = P̂XZ ,

Pr(error|z, P̂XZ = P̂XZ) ≥

{
1

|L|(|L|−1)

∑
i,j∈L, j 6=i Pr(Eij|xi, z) |L| ≥ 2

0 |L| = 1
. (81)

Evidently, we shall focus on the case where (z, P̂XZ) are such that |L| ≥ 2 to obtain a meaningful lower

bound on the error probability. Note that

Pr(Eij|xi, z) =
∑

y: q(xj ,y)≥q(xi,y)

W n
Y |XZ(y|xi, z) (82)

≥
1

(n+ 1)|X |2|Z||Y|
·

∑

V
X̃XZY

∈Pn(X 2×Z×Y):

V
X̃ZX

=P̂xizxj
,

q(V
X̃Y

)≥q(VXY )

e−n·D(V
Y |XZX̃

‖WY |XZ |P̂xizxj
)

(83)

≥
1

(n+ 1)|X |2|Z||Y|
· e−nΩn(P̂xizxj

,WY |XZ). (84)

where for an empirical distribution PX̃ZX ∈ Pn(X
2 × Z) satisfying PX̃Z = PXZ we define

Ωn(PXZX̃ ,WY |XZ) , min
V
X̃XY Z

∈Pn(X 2×Z×Y)∩S(P
XZX̃

)
D(VY |XZX̃‖WY |XZ |PXZX̃) (85)

S(PXZX̃) ,
{
VX̃XY Z ∈ P(X 2 × Z × Y) : VXZX̃ = PXZX̃ , q(VX̃Y ) ≥ q(VXY )

}
. (86)

Consider the function Ω(PXZX̃ ,WY |XZ) which extends Ωn(PXZX̃ ,WY |XZ) in a twofold manner: (a) it

is defined for PX̃ZX ∈ P(X 2 × Z) which need not necessarily be an empirical distribution of order n,

and (b) the minimization is over the simplex P(X 2 ×Z ×Y) rather than empirical distributions; that is,

Ω(PXZX̃ ,WY |XZ) , min
V
X̃XY Z

∈S(P
XZX̃

)
D(VY |XZX̃‖WY |XZ|PXZX̃). (87)

We present the following approximation lemma whose proof appears in Appendix C.

Lemma 3. For all PXZX̃ ∈ Pn(X
2 × Z),

Ωn(PXZX̃ ,WY |XZ) ≤ Ω(PXZX̃ ,WY |XZ) + δn, (88)

where δn = 2 · |X |2|Z||Y|
n

log n2|Z|
wmin

, with wmin defined in (73).
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Thus,

Pr(Eij|xi, z) ≥
1

(n+ 1)|X |2|Z||Y|
· e−n[Ω(P̂xizxj

,WY |XZ)+δn]. (89)

Further,
∑

xi,xj∈L, j 6=i

e−nΩ(P̂xizxj
,WY |XZ)

=
∑

xi,xj∈L, j 6=i

1

2
·
[
e−nΩ(P̂xizxj

,WY |XZ) + e−nΩ(P̂xjzxi
,WY |XZ)

]
(90)

≥
∑

xi,xj∈L, j 6=i

1

2
· e−nmin{Ω(P̂xizxj

,WY |XZ),Ω(P̂xjzxi
,WY |XZ)}, (91)

where (90) follows by switching the roles of the summation indices and multiplying and dividing by

2, (91) follows since for positive A,B, ,we have, A + B ≥ max{A,B}, and since f(t) = e−t is a

monotonically decreasing function.

Now, in analogy to the definition of S(PX̃ZX) in (86), define the following set of conditional distributions

rather than joint distributions

Scond(PXZX̃) ,
{
VY |XZX̃ : PXZX̃ × VY |XZX̃ ∈ S(PXZX̃)

}
. (92)

Next, observe that since Ω(P̂XZX̃ ,WY |XZ) = minV
Y |XZX̃

∈Scond(P̂
XZX̃

)D(VY |XZX̃‖WY |XZ|P̂XZX̃),

min
{
Ω(P̂xizxj

,WY |XZ),Ω(P̂xjzxi
,WY |XZ)

}

≤ min





min
V
Y |XZX̃

∈Scond(P̂xizxj
):

IV (X̃;Y |X,Z)=0

D(VY |XZ‖WY |XZ |P̂XZ),

min
V
Y |XZX̃

∈Scond(P̂xjzxi
):

IV (X̃;Y |X,Z)=0

D(VY |XZ‖WY |XZ |P̂XZ)





(93)

= min
V
Y |XZX̃

∈Scond(P̂xizxj
)∪Scond(P̂xjzxi

):

IV (X̃ ;Y |X,Z)=0

D(VY |XZ‖WY |XZ|P̂XZ) (94)

≤ min
V
Y |XZX̃

∈Scond( 1
2
[P̂xizxj

+P̂xjzxi
]):

IV (X̃;Y |X,Z)=0

D(VY |XZ‖WY |XZ|P̂XZ), (95)

where (94) holds since D(VY |XZX̃‖WY |XZ |P̂xjzxi
) = D(VY |XZ‖WY |XZ|P̂xiz) + IV (X̃ ; Y |X,Z), and

since ∀i, P̂xiz = P̂XZ , (94) holds since min{mint∈S1 f(t),mint∈S2 f(t)} = mint∈S1∪S2 f(t), (95) follows

since Scond(1
2
[P̂xizxj

+ P̂xjzxi
]) ⊆ Scond(P̂xizxj

) ∪ Scond(P̂xjzxi
) which follows from the linearity of the

expectation; that is,

Scond(P̂xizxj
) ∪ Scond(P̂xjzxi

) ,

=
{
VY |XZX̃ : EP̂xizxj

×V
Y |XZX̃

[q(X̃, Y )− q(X, Y )] ≥ 0 or EP̂xjzxi
×V

Y |XZX̃

[q(X̃, Y )− q(X, Y )] ≥ 0
}

(96)

⊇
{
VY |XZX̃ : E 1

2
[P̂xizxj

+P̂xjzxi
]×V

Y |XZX̃
[q(X̃, Y )− q(X, Y )] ≥ 0

}
. (97)

Gathering (81), (89), (91), (95), and denoting kn , δn + |X |2|Z||Y|
n

log(n + 1) + ln(2)
n

we obtain that

whenever |L(z, P̂XZ)| ≥ 2,

Pr(error|z, P̂XZ = P̂XZ)
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≥ min
xi∈L,xj∈L,j 6=i

exp

{
− n

[
min

V
X̃XY Z

∈S( 1
2
[P̂xizxj

+P̂xjzxi
]):

IV (X̃ ;Y |XZ)=0

D(VY |XZ‖WY |XZ|P̂XZ) + kn

]}
. (98)

Since 1
2
[P̂xizxj

+ P̂xjzxi
] ∈ Psym(X

2 × Z) (see (15)), it straightforwardly follows that

min
V
X̃XY Z

∈S( 1
2
[P̂xizxj

+P̂xjzxi
]):

IV (X̃;Y |XZ)=0

D(VY |XZ‖WY |XZ|P̂XZ)

≤ min
VXY Z : VY Z|X∈W̃sym

q (P̂X ): VXZ=P̂XZ

D(VY |XZ‖WY |XZ|P̂XZ), (99)

where W̃sym
q (P̂X) is defined in (16).

We next establish a stronger result with Wq(P̂X) in lieu of W̃sym
q (P̂X), but note that the proof can be

shortened if we wish to prove (32) with Eq
sp replaced by Ẽq,sym

sp .

Claim 1. For any xi,xj ∈ L

min
V
X̃XY Z

∈S( 1
2
[P̂xizxj

+P̂xjzxi
]):

IV (X̃;Y |XZ)=0

D(VY |XZ‖WY |XZ|P̂XZ)

≤ min
VXY Z : VY Z|X∈Wq(P̂X): VXZ=P̂XZ

D(VY |XZ‖WY |XZ|P̂XZ), (100)

Claim 1 is proved in Appendix E.

Hence, from (98) and (100), we obtain that whenever |L(z, P̂XZ)| ≥ 2,

Pr(error|z, P̂XZ = P̂XZ) ≥ e
−n

[
min

VY Z|X∈Wq(P̂X ): VXZ=P̂XZ
D(VY |XZ‖WY |XZ |P̂XZ)+kn

]

(101)

We next present a lemma which enables to assess the size of the list L(Z, P̂XZ) defined in (7).

Lemma 4. Let a codebook Cn = {xi}
Mn

i=1 be given, let X denote the random codeword (distributed

uniforly over Cn), and let Z denote the output of the channel W n
Z|X when fed by X . For any τ ≥ 0,

Pr
(
|L(Z, P̂XZ)| ≥ enτ

∣∣P̂XZ = P̂XZ

)
≥ 1− (n + 1)|X ||Z|−1 · e−n[R−I(P̂XZ)−τ ]. (102)

Lemma 4 is proved in Appendix F.

Note that Lemma 4, implies that for any P̂XZ , ǫ̃n > 0, and ǫn > 0, such that

R ≥ I(P̂XZ) + ǫn +
|X ||Z| − 1

n
log(n + 1) + ǫ̃n, (103)

it holds that

Pr
(
|L(Z, P̂XZ)| < enǫn

∣∣P̂XZ = P̂XZ

)
≤ e−nǫ̃n . (104)

Consequently, if P̂XZ is a possible joint empirical distribution of a codeword and a channel output Z

such that (103) holds, we have for ǫ̃n > 1/n that

Pr(error|P̂XZ) ≥ Pr(error,L(Z, P̂XZ) ≥ enǫn|P̂XZ = P̂XZ) (105)

≥
(
1− e−nǫ̃n

)
· Pr(error|P̂XZ = P̂XZ ,L(Z, P̂XZ) ≥ enǫn) (106)

≥
(
1− e−nǫ̃n

)
· min
z∈Tn(P̂Z ): |L|≥enǫn

Pr(error|P̂XZ = P̂XZ ,Z = z) (107)

≥
(
1− e−nǫ̃n

)
· e

−n[min
VY Z|X∈Wq(P̂X ): VXZ=P̂XZ

D(VY |XZ‖WY |XZ |P̂XZ)+kn]
, (108)
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where the last step follows from (101).

Now, let

Ψ
(
PXZ ,WY |XZ

)
, min

VXY Z∈Wq(P̂X): VXZ=PXZ

D(VY |XZ‖WY |XZ |PXZ). (109)

Since (108) holds for every P̂XZ ∈ Pn(X × Z) such that P̂X = Pn, which is a possible empirical

distribution of X,Z, and which satisfies (103), and since

Pr(error) =
∑

P̂XZ∈Pn(X×Z): P̂X=Pn

Pr(P̂XZ = P̂XZ) · Pr(error|P̂XZ = P̂XZ)

≥
∑

P̂XZ∈Pn(X×Z): P̂X=Pn,

I(P̂XZ)≤R−ǫ′′n

1

(n+ 1)|X ||Z|
e−nD(P̂Z|X‖WZ|X |P̂X) · Pr(error|P̂XZ = P̂XZ), (110)

denoting δ′′n = kn −
1
n
log(1− e−nǫ̃n) + |X ||Z|

n
log(n + 1), we get

−
1

n
log Pr(error) ≤

min
P̂XZ∈Pn(X×Z): P̂X=Pn,

I(P̂XZ)≤R−ǫ′′n

D(P̂Z|X‖WZ|X |P̂X) + Ψ
(
P̂XZ ,WY |XZ

)
+ δ′′n, (111)

where ǫ′′n , ǫn+
|X ||Z|−1

n
log(n+1)+ ǫ̃n. The following lemma shows that the minimization over empirical

conditional distributions Pn(X ×Z) can be approximated by minimization over the simplex P(X ×Z).

Lemma 5. For any Pn ∈ Pn(X ), and any PY Z|X ∈ Wq(Pn), there exists P̂XZ ∈ Pn(X × Z) such that

P̂X = Pn, P̂Z|X × PY |XZ ∈ Wq(Pn),

‖Pn × PZ|X − P̂XZ‖ ≤
|X ||Z|

n
, and PZ|X(z|x) = 0 ⇒ P̂Z|X(z|x) = 0. (112)

Lemma 5 is proved in Appendix H.

Next, let P ∗
XY Z be the minimizer of (109). Note that ‖P ∗

XZ−P̂XZ‖ ≤ |X ||Z|
n

implies |D(P ∗
Y Z|X‖WY Z|X|PX)−

D(P̂Z|X × P ∗
Y |XZ‖WY Z|X|PX)| ≤ 2 |X ||Y||Z|

n
log n + |X ||Y||Z|

n
log n|Z|

wmin
, δn, where wmin is defined in (73)

and further, |I(P ∗
XZ)− I(Pn × P̂Z|X)| ≤ 2 |X ||Z|

n
logn , ǫ1,n.

This implies that for any Pn ∈ Pn(X ),

min
P̂XZ∈Pn(X×Z): P̂X=Pn,

I(P̂XZ)≤R

D(P̂Z|X‖WZ|X |P̂X) + Ψ
(
P̂XZ ,WY |XZ

)

≤ min
PXZ∈P(X×Z): PX=Pn,

I(PXZ)≤R−ǫ1,n

D(PZ|X‖WZ|X|P̂X) + Ψ
(
PXZ ,WY |XZ

)
+ δn. (113)

Thus, we obtained

−
1

n
log Pr(error) ≤ min

PY Z|X∈Wq(Pn): I(Pn×PZ|X)≤R−ǫ1,n−ǫ′′n
D(PY Z|X‖WY Z|X|Pn) + δn + δ′′n. (114)

Now, since WZ|XY can be optimized, with the exception that (70) must hold, we can choose in (70)

W ∗
Z|XY = PZ|XY , yielding ‖WZ|XY − PZ|XY ‖ ≤ ǫn

|Z|
. Since we also have PZ|XY ≪ WZ|XY , from

Pinsker’s inverse inequality (see e.g. [33, Lemma 4.1]), we get D(PZ|XY ‖WZ|XY |Pn × PZ|X) ≤ 2 ǫn
|Z|

,

and consequently

−
1

n
log Pr(error) ≤ min

PY Z|X∈Wq(Pn): I(Pn×PZ|X)≤R−ǫ1,n−ǫ′′n
D(PY |X‖WY |X |Pn) + δn + δ′′n + 2

ǫn
|Z|

. (115)
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Now, taking for example ǫn = ǫ̃n = logn
n

, ǫn = 1
n

, and recalling that tn,min = wmin
1

n|Z|
we obtain

−
1

n
log Pr(error) ≤ min

PY Z|X∈Wq(Pn): I(Pn×PZ|X)≤R−ǫn,a

D(PY |X‖WY |X |Pn) + ǫn,b, (116)

where ǫn,b = 2 |X ||Y||Z|
n

logn+ |X ||Y||Z|
n

log n|Z|
wmin

+ 2 · |X |2|Z||Y|
n

log n2|Z|
wmin

+ |X ||Z|[|X ||Y|+1]
n

log(n+ 1) + ln(2)
n

−
1
n
log(1− 1

n
) + 2 1

n|Z|
and ǫn,a = 2 (|X ||Z|+1)

n
log n+ |X ||Z|−1

n
log(n+ 1).

VIII. PROOF OF THEOREM 1

Let a DMC W = WY |X be given. As in the proof of Theorem 2, consider another channel from X ×Y
to a finite set Z denoted by WZ|XY , which along with WY |X constitutes a two-output channel WY Z|X .

Fix Pn ∈ Pn(X ), and let Cn = {xi}
Mn

i=1 be a Pn-constant composition codebook of rate R for the channel

WY |X . Consider the genie-aided-genie setup depicted in Fig. 1.

First, we treat the case of q = −∞: note that if there exists a pair of symbols (x0, y0) such that

q(x0, y0) = −∞ and W (y0|x0) > 0, then x0 must be absent from Cn for all n sufficiently large, as

otherwise the maximal error probability would not vanish as n tends to infinity. Hence assume w.l.o.g.

∀n, Pn(x) = 0 if
∑

y: q(x,y)=−∞

W (y|x) > 0. (117)

Recall the definition of the list L(z, P̂XZ) (see (7)). We use the shorthand notation L = L(z, P̂XZ),
and xi = xi(z, P̂XZ). Further recall the notation of ∆q(PXZU , PY |XZ) and Wq(PX) defined in (12), (9),

respectively, (see also (13)), and let

Aq(WY |XZ , Pn) ,{
PXZ : PX = Pn, min

PU|XZ

∆q(PXZU ,WY |XZ) ≥ 0

}
(118)

=
{
PXZ : PX = Pn, PZ|X ×WY |XZ ∈ Wq(PX)

}
. (119)

For any collection of codewords L′ ⊆ L such that |L′| ≥ 2, let

P avg,L′

XZX̃
(x, z, x̃) ,

1

|L′|(|L′| − 1)

∑

i,j∈L′: j 6=i

P̂xjzxi
(x, z, x̃). (120)

Lemma 6. If P̂XZ ∈ Aq(WY |XZ , Pn)∩Pn(X×Z), then for any subset L′ ⊆ L(z, P̂XZ) such that |L′| ≥ 2,
∑

x,x̃,z,y

P avg,L′

XZX̃
(x, z, x̃), ·W (y|x, z) [q(x̃, y)− q(x, y)] ≥ 0, (121)

and consequently, for any pair of codewords xℓ,xk in L, either
∑

x,x̃,z,y

P̂xℓzxk
(x̃, z, x) ·W (y|x, z) [q(x̃, y)− q(x, y)] ≥ 0, (122)

or
∑

x,x̃,z,y

P̂xkzxℓ
(x, z, x̃) ·W (y|x, z) [q(x̃, y)− q(x, y)] ≥ 0. (123)

Proof. Recall the definition of P
L′

XZX̃ in (207), hence similar to (221),

1

|L′|(|L′| − 1)

∑

i,j∈L′: j 6=i

∑

x,x̃,z,y

P̂xizxj
(x, z, x̃) ·W (y|x, z) [q(x̃, y)− q(x, y)] (124)
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=
∑

x,x̃,z,y

P avg,L′

XZX̃
(x, z, x̃) ·W (y|x, z) [q(x̃, y)− q(x, y)] (125)

=
|L′|

|L′| − 1

∑

x,x̃,z,y

PXZX̃(x, z, x̃) ·W (y|x, z) [q(x̃, y)− q(x, y)] (126)

≥ min
PUXZ :

PXZ=P̂XZ

|L′|

|L′| − 1

∑

u,x,x̃,z,y

PUZ(u, z)PX|UZ(x|u, z)PX|UZ(x̃|u, z) ·W (y|x, z) [q(x̃, y)− q(x, y)] (127)

≥ 0, (128)

where we abbreviate W = WY |XZ , (126) follows (208), (127) follows by definition of PXZX̃ (see (207)),

and the last step is by definition of Aq(Pn,WY |XZ).

The next lemma shows that for at least half of the pairs of distinct codewords, the pairwise error

probability is bounded away from zero. It is based on [17, Lemma 3], which was used by Csiszár and

Narayan to establish a necessary and sufficient condition for the positivity of the mismatch capacity.

Lemma 7. Assume (117) holds. There exists ν > 0, such that for all n sufficiently large, for any Pn ∈
Pn(X ), any P̂XZ ∈ Aq(WY |XZ , Pn) ∩ Pn(X × Z) and any z ∈ Tn(P̂Z) which satisfies |L(z, P̂XZ)| ≥ 2,

any pair of codewords xℓ,xk in L(z, P̂XZ) such that z is a possible output of W n
Z|X when fed by xℓ or

xk satisfies either

W n
Y |XZ

(
q(xk,Y ) ≥ q(xℓ,Y )

∣∣X = xℓ,Z = z
)
> ν, (129)

or

W n
Y |XZ

(
q(xℓ,Y ) ≥ q(xk,Y )

∣∣X = xk,Z = z
)
> ν. (130)

Proof. From Lemma 6, we know that for any pair of codewords xℓ,xk in L(z, P̂XZ) we have either (122)

or (123). Assume w.l.o.g. that (122) holds, then clearly,

W n
Y |XZ

(
q(xk,Y ) ≥ q(xℓ,Y )

∣∣X = xℓ,Z = z
)

≥ W n
Y |XZ


q(xk,Y ) ≥ q(xℓ,Y ) +

[ ∑

x,x̃,z,y

P̂xℓzxk
(x, z, x̃)W (y|x, z) [q(x̃, y)− q(x, y)]

]∣∣X = xℓ,Z = z




(131)

, W n
Y |XZ

(
n∑

i=1

Si ≥ 0
∣∣X = xℓ,Z = z

)
, (132)

where {Si} are the following RVs satisfying E(Si

∣∣xℓ, z) = 0,

Si,ℓ,k = [q(xℓ,i, Yi)− q(xk,i, Yi)]

− E[q(xℓ,i, Yi)− q(xk,i, Yi)|Zi = zi, Xi = xℓ,i]. (133)

Note also that the distribution of Si given (xℓ, z) depends only on (xℓ,i, xk,i, zi), and therefore, there is a

finite set, denoted P̃ (of size not exceeding |Z||X |2) of conditional distributions that Si can have given

(xℓ, z). Hence, it follows from [17, Lemma 3] that if the q(·) values are bounded, there exists a constant

ν > 0 such that for all n,

W n
Y |XZ

(∑

i

Si ≥ 0

∣∣∣∣xℓ, z

)
> ν. (134)
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It remains to treat infinite values of E (q(xk,Y )|xℓ, z) and E
(
q(xℓ,Y )

∣∣xℓ, z
)
: Since we assume metric

values q ∈ R∪{−∞}, the cases of interest for their values are limited to (c,−∞), (−∞, c), (−∞,−∞),
where c represents a finite constant, respectively. The case (−∞, c) yields the inequality (134) trivially.

Since we assume that z is a possible output of W n
Z|X when fed by xℓ (or xk), the cases (c,−∞) and

(−∞,−∞); i.e., E
(
q(xℓ,Y )

∣∣xℓ, z
)
= −∞, imply that there exists a symbol x0 in xℓ and a pair (x0, y0)

such that W (y0|x0) > 0 and q(x0, y0) = −∞, in contradiction to assumption (117).

Now, since the members of L(z, P̂XZ) are equiprobable given (z, P̂XZ) (see (75)), we obtain from

Lemma 7 that if |L(z, P̂XZ)| ≥ 2, there exists ν > 0 such that

P (error|P̂XZ = P̂XZ ,Z = z)

≥
1

2
ν · 1{P̂XZ ∈ Aq(WY |X,Z , Pn)}. (135)

Next recall (103)-(107), stating that for any P̂XZ , ǫn > 0, and ǫ̃n > 0 such that

Rn ≥ I(P̂XZ) + ǫn +
|X ||Z| − 1

n
log(n+ 1) + ǫ̃n, (136)

it holds that Pr
(
|L(Z, P̂XZ)| < enǫn

∣∣P̂XZ = P̂XZ

)
≤ e−nǫ̃n , and also

Pr(error|P̂XZ = P̂XZ) ≥
(
1− e−nǫ̃n

)
· min
z∈Tn(P̂Z ): |L(z,P̂XZ)|≥enǫn

Pr(error|P̂XZ = P̂XZ ,Z = z). (137)

and thus, we get from (135) and (137) that if (136) holds,

Pr(error|P̂XZ = P̂XZ) ≥
(
1− e−nǫ̃n

)
·
1

2
ν · 1{P̂XZ ∈ Aq(WY |X,Z , Pn)}. (138)

Next, take a vanishing sequence cn that satisfies limn→∞ n[cn −
1
n
|X ||Z| log(n+ 1)] = ∞; we have

Pr(D(P̂Z|X‖WZ|X|Pn) > cn|X = x)

=
∑

z: D(P̂z|x‖WZ|X |Pn)>cn

W n
Z|X(z|x) (139)

≤ (n + 1)|X ||Z|−1 max
P̂Z|X : D(P̂Z|X‖WZ|X |Pn)>cn

e−nD(P̂Z|X‖WZ|X |Pn) (140)

≤ e−n[cn−
1
n
|X ||Z| log(n+1)]. (141)

denote fn = cn −
1
n
|X ||Z| log(n + 1), and dn = ǫn +

|X ||Z|−1
n

log(n + 1) + ǫ̃n, we have

Pr(error) =
∑

P̂XZ∈Pn(X×Z): P̂X=Pn

Pr(P̂XZ = P̂XZ) · Pr(error|P̂XZ = P̂XZ)

≥
∑

P̂XZ∈Aq(WY |X,Z ,Pn)∩Pn(X×Z):

P̂X=Pn, R≥I(P̂XZ)+dn
D(P̂Z|X‖WZ|X |Pn)≤fn

Pr(P̂XZ = P̂XZ) · Pr(error|P̂XZ = P̂XZ) (142)

≥ (1− e−nfn) ·
(
1− e−nǫ̃n

)
·
1

2
ν · 1

{
∃P̂XZ ∈ Kq(R,Pn,WY Z|X)

}
, (143)

where

Kq(R,Pn,WY Z|X) ,

{
P̂XZ ∈ Pn(X ×Z) :

D(P̂Z|X‖WZ|X |Pn)≤fn,

Rn≥I(P̂XZ)+dn,

P̂XZ∈Aq(WY |X,Z ,Pn)

}
. (144)
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The following lemma concludes the proof of Theorem 1.

Lemma 8. For any Pn ∈ Pn(X ) and WY Z|X ∈ Wq(Pn) if R > I(Pn × WZ|X) + ǫ, then the set

Kq(R,Pn,WY Z|X) is non-empty, and consequently there exists ν > 0 (which does not depend on Pn), such

that for any Cn ⊆ Tn(Pn), such that |Cn| > enR, we have Pe(W, Cn, q) > (1− e−nfn) ·
(
1− e−nǫ̃n

)
· 1
2
ν.

Lemma 8 is proved in Appendix I, and this concludes the proof of Theorem 1.

IX. SIMPLER BOUNDS ON THE RELIABILITY FUNCTION AND SUFFICIENT CONDITIONS FOR

TIGHTNESS

We next show how looser yet simpler bounds on the reliability function using the method of [21] can

be derived, and these bounds provide sufficient conditions for tightness for certain ranges of rates.

As mentioned at the beginning of Section VI-3, any two-output channel which belongs to Γ(q, ρ) has

the property that an error occurs at the Z decoder, only if the Y -receiver makes an error, and thus for

any codebook Cn, (58) holds which implies the bound (59) on Cq(W ).
For exactly the same reason, the following bound on the reliability function can be deduced.

Theorem 4. For all Z , additive metrics q, ρ, and a stationary memoryless channel W

Eq(R,W ) ≤ min
PY Z|X∈Γ(q,ρ): PY |X=W

E(R,PY |X). (145)

Additionally, as mentioned above, in [21] equivalence classes of isomorphic channel-metric pairs (W, q)
that share the same mismatch capacity for additive metrics were introduced. The following definition of

[21] is repeated here for completeness.

Definition 1. A channel-metric pair (PZ|X, ρ) is superior to the channel-metric pair (PY |X , q) if there

exists a joint conditional distribution PY Z|X ∈ Γ(q, ρ), whose marginal conditional distributions are PY |X

and PZ|X . The superiority relation is denoted by (PY |X , q) _ (PZ|X, ρ). If both (PY |X , q) _ (PZ|X, ρ)
and (PZ|X , ρ) _ (PY |X , q), denote (PY |X , q) ] (PZ|X , ρ), and the pairs are called isomorphic.

It was proved that if one of the pairs in the class is matched, then the mismatch capacity of the

entire class is fully characterized and equal to that of the matched pair. The following theorem follows

straightforwardly for exactly the same reason of superiority/equivalence.

Theorem 5. If (W, q) _ (PZ|X, ρ) then

Eq(R,W ) ≤ Eρ(R,PZ|X), (146)

and consequently, if (W, q) ] (PZ|X, ρ) then

Eq(R,W ) = Eρ(R,PZ|X). (147)

If there exists a matched channel-metric pair (P̃Z|X , q̃ML) where q̃ML = log P̃Z|X is the maximum

likelihood metric w.r.t. P̃Z|X such that (W, q) ] (P̃Z|X, q̃ML) then

Eq(R,W ) = E(R, P̃Z|X). (148)

Note that the theorem implies that for the range of rates such that E(R, P̃Z|X) is known; e.g., at R = 0+

or above the critical rate where the tangential straight line bound meets the sphere packing bound, the

Eq(R,W ) is known as well.
Theorem 4 can be extended to yield tighter bounds for larger classes of channels that depend also on

the codebook composition P using a similar approach. For example, using the set (see [21])

Γ(q, ρ, P ) ={
PY Z|X : min

V
XY ZX̃

:VX=V
X̃
=P,

VXY Z≪P×PY Z|X ,

ρ(VXZ )≤ρ(V
X̃Z

)

[
q(VX̃Y )− q(VXY )

]
≥ 0

}
. (149)
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X. CONCLUDING REMARKS

The new technique presented in the paper yields the tightest bounds known to date on the mismatch

capacity and the reliability function with mismatched decoding for R > 0. One of the main contributions

of our work is the derivation of bounds that are easier to compute compared to previous bounds, either

by reducing the number of degrees of freedom of the parameters that are optimized in the calculation of

the bounds (such as in Csym
q (W )), or by providing a looser bound that is considerably easier to compute,

Cpsd
q (W ) in addition to our previous bound (59) of [21].

It would be interesting to see whether there are cases for which Cq(W ) can be strictly tighter than

Csym
q (W ) or not; another interesting question is what are the exact relations between the bounds C̃q(W ),

C̃sym
q (W ), Csym

q (W ) and Cpsd
q (W ). A partial answer to this question was given by analyzing the binary

input channels.

Similar questions apply also to the bounds on the reliability function.

APPENDIX

A. Proof of Proposition 1

Proof of Cq(W ) ≤ Csym
q (W ) :

Clearly, the marginal PX̃ZX distribution of PX̃XZU where X̃ − (U,Z) − X and PXZU = PX̃ZU is

symmetric, and thus satisfies PX̃ZX ∈ Psym(X
2 × Z).

Secondly, note that any distribution PX̃XZU where X̃ − (U,Z) − X and PXZU = PX̃ZU satisfies for

any (x, z) ∈ X ×Z:

PX̃X|Z(x, x|z) =
∑

u

PU |Z(u|z)
[
PX|UZ(x|u, z)

]2

≥

[∑

u

PU |Z(u|z)PX|UZ(x|u, z)

]2
(150)

=
[
PX|Z(x|z)

]2
. (151)

where (150) follows from Jensen’s inequality. Hence, PX̃|XZ(x|x, z) ≥ PX|Z(x|z).

Thus the claim Cq(W ) ≤ Csym
q (W ) follows since

min
P
X̃|XZ

: P
X̃ZX

∈Psym(X 2×Z)

∀(x,z), P
X̃|XZ

(x|x,z)≥PX|Z(x|z)

∑

x,x̃,z,y

PXZ(x, z)PX̃ |XZ(x̃|x, z)PY |XZ(y|x, z)[q(x̃, y)− q(x, y)]

≤ min
PU|XZ

∑

u,x,x̃,z,y

PXZ(x, z, u)PX|UZ(x̃|u, z)PY |XZ(y|x, z)[q(x̃, y)− q(x, y)]. (152)

Proof of Cq(W ) ≤ C̃q(W ):

We show that W̃q(PX) ⊆ Wq(PX). Fix PX , and let PY Z|X ∈ W̃q(PX) be given, which implies that for

all (z, VX|Z) such that z ∈ Z , and VX|Z such that PZ × VX|Z ≪ PZX ,
∑

x,x̃,y

V (x|z)V (x̃|z)PY |XZ(y|x, z)[q(x̃, y)− q(x, y)] ≥ 0. (153)

Next fix PU |XZ . Along with PXZ (the marginal of PX×PY Z|X) this also induces PXZU = PXZ×PU |XZ .

From (153) it follows that for all (z, u) ∈ Z×U such that either PX|U=u,Z=z ≪ PX|Z=z or PUZ(u, z) = 0,

it must hold that

PUZ(u, z) ·
∑

x,x̃,y

PX|UZ(x|u, z)PX|UZ(x̃|u, z)PY |XZ(y|x, z)[q(x̃, y)− q(x, y)] ≥ 0. (154)
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Since for any PU |XZ it holds that for all (z, u) ∈ Z×U either PX|U=u,Z=z ≪ PX|Z=z or PUZ(u, z) = 0,

summing over (u, z) we obtain
∑

x,z,u,x̃,y

PUZ(u, z)PX|UZ(x|u, z)PX|UZ(x̃|u, z)PY |XZ(y|x, z)[q(x̃, y)− q(x, y)] ≥ 0, (155)

and this yields that PY Z|X ∈ Wq(PX), because the above holds for any PU |XZ .

Proof of C̃q(W ) ≤ Cpsd
q (W ):

Observe that
∑

x,x̃,y

V (x|z)V (x̃|z)PY |XZ(y|x, z)[q(x̃, y)− q(x, y)]

=
1

2

∑

x

∑

x̃,y

V (x|z)V (x̃|z)
(
PY |XZ(y|x, z)[q(x̃, y)− q(x, y)] + PY |XZ(y|x̃, z)[q(x, y)− q(x̃, y)]

)
(156)

=
1

2

∑

x

∑

x̃

V (x|z)V (x̃|z)Dq(PY |X,Z=z)x,x̃. (157)

Hence, we get for any z ∈ Z ,

Dq(PY |X,Z=z) � 0 ⇒

∀VX|Z : PZ × VX|Z ≪ PXZ ,
∑

x,x̃,y

V (x|z)V (x̃|z)PY |XZ(y|x, z)[q(x̃, y)− q(x, y)] ≥ 0, (158)

because the requirement
∑

x

∑
x̃ V (x|z)V (x̃|z)Dq(PY |X,Z=z)x,x̃ ≥ 0 for any (V (1|z), ..., V (|X ||z)) which

is a probability vector (that has non-negative entries) is looser than the same requirement for any real

vector V ∈ R, which is nothing but the definition of a p.s.d. matrix.

B. Proof of Lemma 1

Consider a binary input DMC, whose transition probability distribution is given by

{W (y|x)}x∈X ,y∈Y , X = {0, 1}, |Y| < ∞. (159)

Let Z be a finite set, and consider the bound Csym
q (W ) in (23), where Wsym

q (PX) is defined in (17),

and can be expressed as

Wsym
q (PX) ,

{
PY Z|X : min

V
X̃ZX

∈Psym(X 2×Z): VXZ=PXZ ,

∀(x,z), V
X̃X|Z

(x,x|z)≥P 2
X|Z

(x|z)

EV
X̃ZX

PY |XZ
[q(X̃, Y )− q(X, Y )] ≥ 0

}
. (160)

We next solve the minimization problem of (160) explicitly. We have from symmetry of V

EV
X̃ZX

PY |XZ
[q(X̃, Y )− q(X, Y )]

=
∑

z,x,x̃

PZ(z)VXX̃ |Z(x, x̃|z)P (y|x, z)[q(x̃, y)− q(x, y)] (161)

=
∑

z,(x,x̃)∈{0,1}2,x̃ 6=x

PZ(z)VXX̃ |Z(x, x̃|z)
∑

y

P (y|x, z)[q(x̃, y)− q(x, y)] (162)

=
1

2

∑

z,(x,x̃)∈{0,1}2,x̃6=x

PZ(z)VXX̃ |Z(x, x̃|z)dq(PY Z|X, z) (163)

=
∑

z

PZ(z)a(z)dq(PY Z|X , z), (164)
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where dq(PY Z|X, z) is defined in (46), and a(z) , VXX̃|Z(0, 1|z) = VXX̃|Z(1, 0|z). Note that the constraint

VX̃,X|Z(0, 0|z) ≥ P 2
X|Z(0|z) combined with VX̃,X|Z(0, 0|z) + VX̃,X|Z(0, 1|z) = PX|Z(0|z) becomes a(z) ≤

PX|Z(0|z)PX|Z(1|z). Therefore, the minimizing a(z) equals

asymopt (z) =

{
0 dq(PY Z|X, z) ≥ 0
PX|Z(0|z)PX|Z(1|z) dq(PY Z|X, z) < 0

. (165)

This yields

min
V
X̃ZX

∈Psym(X 2×Z): VXZ=PXZ ,

∀(x,z), V
X̃,X|Z

(x,x|z)≥P 2
X|Z

(x|z)

EV
X̃ZX

PY |XZ
[q(X̃, Y )− q(X, Y )]

=
∑

z

PZ(z)a
sym
opt (z)dq(PY Z|X , z) (166)

=
∑

z: dq(PY Z|X ,z)<0

PZ(z)PX|Z(0|z)PX|Z(1|z)dq(PY Z|X, z). (167)

Now, this quantity is non-negative iff for all z

dq(PY Z|X, z) < 0 ⇒ PZ(z)PX|Z(0|z)PX|Z(1|z) = 0. (168)

Note that the condition (168) can also be rewritten as:

∀z, PZ(z)PX|Z(0|z)PX|Z(1|z)dq(PY Z|X, z) ≥ 0, (169)

which yields (48), and since

PX|Z(0|z)PX|Z(1|z)dq(PY Z|X , z)

=
1

2

∑

(x,x̃)∈{0,1}2

PX|Z(x|z)PX|Z(x̃|z)dq(PY Z|X, z) (170)

=
∑

(x,x̃)∈{0,1}2

PX|Z(x|z)PX|Z(x̃|z)
∑

y

PY |XZ(y|x, z)[q(x̃, y)− q(x, y)] (171)

=
∑

x̃,y

PX|Z(x̃|z)PY |Z(y|z)q(x̃, y)−
∑

x,y

PXY |Z(x, y|z)q(x, y), (172)

we get the equivalent expression (47).

To obtain (49), assume w.l.o.g. that the maximizing PX is non-degenerate; i.e., PX(0) ∈ (0, 1), as

otherwise Cq(W ) = 0. In this case, the coupling between PX and the set of the minimization is removed

since PZ(z)PX|Z(0|z)PX|Z(1|z)dq(PY Z|X , z) ≥ 0 is equivalent to PZ|X(z|0)PZ|X(z|1)dq(PY Z|X, z) ≥ 0,

and thus

max
PX

min
PY Z|X : ∀z, PZ(z)PX|Z (0|z)PX|Z(1|z)dq(PY Z|X ,z)≥0,

PY |X=W

I(X ;Z)

= max
PX

min
PY Z|X : ∀z, PZ|X(z|0)PZ|X(z|1)dq(PY Z|X ,z)≥0,

PY |X=W

I(X ;Z) (173)

≤ min
PY Z|X : ∀z, PZ|X(z|0)PZ|X(z|1)dq(PY Z|X ,z)≥0,

PY |X=W

max
PX

I(X ;Z) (174)

= min
PY Z|X : ∀z, PZ|X(z|0)PZ|X(z|1)dq(PY Z|X ,z)≥0,

PY |X=W

C(PZ|X), (175)

where (174) follows since maxa∈A minb∈B f(a, b) ≤ minb∈B maxa∈A f(a, b), and the last step follows from

Shannon’s capacity formula.
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The bound (50) follows similarly to (48), but without the constraint VX̃,X|Z(x, x|z) ≥ P 2
X|Z(x|z). The

optimal a(z) of (164) in this case is given by

ãsymopt (z) =

{
0 dq(PY Z|X, z) ≥ 0
min{PX|Z(0|z), PX|Z(1|z)} dq(PY Z|X, z) < 0

, (176)

yielding the condition
∑

z

PZ(z)ã
sym
opt (z)dq(PY Z|X, z)

=
∑

z: dq(PY Z|X ,z)<0

min{PXZ(0, z), PXZ(1, z)} · dq(PY Z|X , z) ≥ 0 (177)

which is equivalent to (169), proving (50).

As for (51), note that

Dq(PY |X,Z=z) =

(
0 dq(PY Z|X, z)

dq(PY Z|X, z) 0

)
, (178)

hence in this case, Dq(PY |X,Z=z) � 0 is equivalent to dq(PY Z|X , z) = 0, which yields (51) so in this case

we have Csym
q (W ) ≤ Cpsd

q (W ).

C. Proof of Lemma 3

Consider the argument of the minimization in (87); i.e.,

D(VY |XZX̃‖WY |XZ|PXZX̃) (179)

=
∑

x,x̃,z

PX̃ZX(x̃, x, z)
∑

y

VY |XZX̃(y|x, z, x̃) log
VY |XZX̃(y|x, z, x̃)

WY |XZ(y|x, z)
, (180)

and recall the definition of Scond(PX̃ZX) in (92).

Clearly, if PX̃ZX is such that Ω(PX̃ZX ,WY |XZ) = ∞, the inequality (88) holds trivially, thus assume

Ω(PX̃ZX,WY |XZ) < ∞, which implies that Scond(PX̃ZX) is non-empty, and that a minimizer satisfies

VY |XZX̃(y|x, z, x̃) = 0 whenever W (y|x, z) = 0. Let V ∗
Y |XZX̃

∈ Scond(PX̃ZX) be such a distribution.

We next show that V ∗
Y |XZX̃

can be approximated by an empirical distribution V
(n)

Y |XZX̃
(y|x, z, x̃) ∈

Scond(PX̃ZX).
To this end, we introduce two additional technical lemmas. The first lemma is obtained as a special case

of Krein-Milman Theorem. It asserts that any distribution in P(A) where A is finite, can be expressed

as a convex combination of no more than 2|A| empirical distributions in Pℓ(A), which are all 1/ℓ close

to it in the L∞-sense:

Lemma 9. Let ξ = (ξ1, ξ2, ..., ξ|A|) ∈ P(A) be a given distribution, let ℓ ≥ 1 be an integer, and consider

the following convex subset of P(A)

Π(ξ, ℓ) ,

{
V ∈ P(A) : ∀j ∈ A,

⌊ℓξj⌋

ℓ
≤ V (j) ≤

⌈ℓξj⌉

ℓ

}
. (181)

There exist K ≤ 2|A| empirical distributions {P (i)}Ki=1 in Π(ξ, ℓ)∩Pℓ(A) such that any P ∈ Π(ξ, ℓ) (and

in particular, ξ) can be expressed as:

P =
K∑

i=1

αi · P
(i) (182)

for some {αi}, such that αi ∈ [0, 1] and
∑K

i=1 αi = 1.
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Proof. By Krein-Milman’s Theorem, Π(ξ, ℓ) is the closed convex hull of its extreme points. The extreme

points of Π(ξ, ℓ) are empirical distributions of order ℓ. There are no more than 2|A| empirical distributions

in Π(ξ, ℓ) ∩ Pℓ(A), because each entry V (j) can only take 2 values.

The next lemma is a straightforward consequence of Lemma 9.

Lemma 10. Let A,B be finite sets, and ℓ an integer. For any QA ∈ Pℓ(A) and VB|A ∈ P(B|A), there

exist empirical distributions P
(j)
AB ∈ Pℓ(A× B), i = 1, 2, ..K, with K ≤ |A| · 2|B|, such that

QA × VB|A =

K∑

j=1

βjP
(j)
AB (183)

and

∀j, P
(j)
A = QA, ‖QA × VB|A − P

(j)
AB‖ ≤

|A||B|

ℓ
, and VB|A(b|a) = 0 ⇒ P

(j)
B|A(b|a) = 0. (184)

Proof. For each a ∈ A, we use Lemma 9 to express VB|A=a as a convex combination of empirical

distributions,

VB|A=a(b|a) =

Ka∑

ia=1

αiaV
(ia)
B|A (b|a), (185)

where Ka ≤ 2|B|, and naturally, if VB|A=a = 0, we take V
(ia)
B|A (b|a) = 0 for all ia, and by definition we

have V
(ia)
B|A=a ∈ Pℓa(A), where ℓa = ℓ ·Q(a), and for all ia, ‖VB|A=a − V

(ia)
B|A=a‖ ≤ |B|

ℓa
.

Now, let j = (i1, ..., i|A|) denote the index that takes K =
∑|A|

x=1Ka values, denote further

P
(j)
AB(a, b) = Q(a) · V

(ia)
B|A (b|a), (186)

thus, we obtain (183), where for j = (i1, ..., i|A|) we have βj = αij , and clearly (184) holds.

Next, we invoke Lemma 10 with
(
n,X 2 × Z, PX̃ZX,Y , V ∗

Y |XZX̃

)
in the roles of

(
ℓ,A, QA,B, PB|A

)
,

respectively, and we let V
(j,n)

Y |XZX̃
denote P

(j)
B|A.

By this construction we have for all j, ‖PXZX̃ × V ∗
Y |XZX̃

− PXZX̃ × V
(j,n)

Y |XZX̃
‖ ≤ |X |2|Z||Y|

n
, and by

affinity of q(·), we have that there must exist at least one index j0 such that q(V
(j0,n)

X̃Y
) − q(V

(j0,n)
XY ) ≥

q(V ∗
X̃Y

)− q(V ∗
XY ) ≥ 0, and hence V

(j0,n)

X̃XY Z
∈ S(PX̃ZX).

Recall again that the argument of the minimization is D(VY |XZX̃‖WY |XZ|PXzX̃), which is equal to

−H(VY |XZX̃)− EP
X̃ZX

×V
Y |XZX̃

logWY |XZ .

Hence, denoting A = |X |2|Z||Y|, and cn = |X |2|Z||Y|
n

from [27, Lemma 2.7], if follows that

|D(V
(j0,n)

Y |XZX̃
‖WY |XZ |PX̃ZX)−D(VY |XZX̃‖WY |XZ |PX̃ZX)|

≤ −2 · cn log
cn
A

+ cn log
1

tn,min
, (187)

where tn,min is defined (73) and this concludes the proof of (88).
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D. Proof of Corollary 3

The proof is similar to that of Theorem 2, so it is advisable to read the latter up to (98), before reading

this proof. For convenience, we introduce the following notation for a joint distribution VX̃XZY ; Let

rq(VX̃XZY ) , q(VX̃Y ). (188)

Denote also

A∗ , {VY |XZX̃ : IV (X̃ ; Y |XZ) = 0}. (189)

We follow the steps of the proof of Theorem 2 up to (98) where step (95) follows since

Scond(
1

2
[P̂xizxj

+ P̂xjzxi
]) ∩ A∗

⊆
(
Scond(P̂xizxj

) ∩ A∗
)
∪
(
Scond(P̂xjzxi

) ∩A∗
)

(190)

is also valid for convex type-dependent metrics. To realize this, note that since P̂xjz = P̂xiz,

(Scond(P̂xizxj
) ∩ A∗) ∪ (Scond(P̂xjzxi

) ∩A∗)

=
{
VY |XZ : rq

(
P̂xizxj

× VY |XZ

)
≥ q(VXY ) or rq

(
P̂xjzxi

× VY |XZ

)
≥ q(VXY )

}
(191)

=

{
VY |XZ :

1

2

(
rq

(
P̂xizxj

× VY |XZ

)
+ rq

(
P̂xjzxi

× VY |XZ

))
≥ q(VXY )

}
(192)

⊇

{
VY |XZ : rq

(
1

2
[P̂xizxj

+ P̂xjzxi
]× VY |XZ

)
≥ q(VXY )

}
, (193)

where the last step follows from convexity of q(PXY ) in PY |X for fixed PX .

Thus, we have (98), i.e.,

Pr(error|z, P̂XZ = P̂XZ)

≥ exp

{
− n max

xi∈L,xj∈L,j 6=i

(
min

V
X̃XY Z

∈S( 1
2
[P̂xizxj

+P̂xjzxi
]):

IV (X̃ ;Y |XZ)=0

D(VY |XZ‖WY |XZ |P̂XZ) + kn

)}
(194)

≥ exp

{
− n

(
max

P
XZX̃

: PXZ=P
X̃Z

=P̂XZ

F (PXZX̃ ,WY |XZ) + kn

)}
, (195)

where

F (PXZX̃ ,WY |XZ) , min
V
X̃XY Z

∈S( 1
2
[P

XZX̃
+P

X̃ZX
]):

IV (X̃ ;Y |XZ)=0

D(VY |XZ‖WY |XZ|P̂XZ). (196)

Next, we use (105)-(107) and this gives for P̂XZ which is a possible joint empirical distribution of a

codeword and a channel output Z such that (103) holds, for ǫ̃n > 1/n

Pr(error|P̂XZ) ≥
(
1− e−nǫ̃n

)
· e−n[maxxi∈L,xj∈L: i6=j F (P̂xizxj

,WY |XZ)+kn] (197)

≥
(
1− e−nǫ̃n

)
· e

−n

[
max

P
XZX̃

: P
XZX̃

=P
X̃ZX

, PXZ=P̂XZ
F (P

XZX̃
,WY |XZ)+kn

]

. (198)

And, similar to (110)-(111) this gives

−
1

n
log Pr(error) ≤
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min
P̂XZ∈Pn(X×Z): P̂X=Pn,

I(P̂XZ)≤R−ǫ′′n

D(P̂Z|X‖WZ|X|P̂X) + max
P
XZX̃

: P
XZX̃

=P
X̃ZX

,

PXZ=P̂XZ

F (PXZX̃ ,WY |XZ) + δ′′n, (199)

where ǫ′′n , ǫn+
|X ||Z|−1

n
log(n+1)+ǫ̃n. It remains to show that the minimization over empirical conditional

distributions Pn(X ×Z) can be approximated by a minimization over the simplex P(X ×Z), as asserted

in the following lemma whose proof appears in Appendix J.

Lemma 11.

min
P̂XZ∈Pn(X×Z): P̂X=Pn,

I(P̂XZ)≤R

D(P̂Z|X‖WZ|X|P̂X) + max
µ
XZX̃

: µ
XZX̃

=µ
X̃ZX

,

µXZ=P̂XZ

F (µXZX̃ ,WY |XZ)

≤ min
PXZ∈P(X×Z): PX=Pn,

I(PXZ)≤R−ǫ1,n

D(PZ|X‖WZ|X |PX) + max
µ
XZX̃

: µ
XZX̃

=µ
X̃ZX

,
µXZ=PXZ

F (µXZX̃,WY |XZ) + δn + ǫ1,n, (200)

where ǫ1,n = 2 |X ||Z|
n

logn and δn = 2 |X ||Y||Z|
n

log n+ |X ||Y||Z|
n

log n|Z|
wmin

, where wmin is defined in (73).

Thus, denoting an = δn + ǫ1,n + δ′′n we proved that

−
1

n
log Pr(error) ≤

min
PXZ∈P(X×Z):

PX=Pn,
I(PXZ)≤R−ǫ′′n−ǫ1,n

D(PZ|X‖WZ|X|PX) + max
µ
XZX̃

:
µ
XZX̃

=µ
X̃ZX

,
µXZ=PXZ

min
V
X̃XY Z

: V
XZX̃

=µ
XZX̃

q(V
X̃Y

)≥q(VXY ),

IV (X̃;Y |XZ)=0

D(VY |XZ‖WY |XZ |PXZ) + an,

(201)

and since D(VY Z|X‖WY Z|X |PZ) = D(PZ|X‖WZ|X|PX) + D(VY |XZ‖WY |XZ |PXZ) and WZ|XY can be

optimized, we can choose in (70) W ∗
Z|XY = PZ|XY , yielding ‖WZ|XY −PZ|XY ‖ ≤ ǫn

|Z|
. Since we also have

PZ|XY ≪ WZ|XY , from Pinsker’s inverse inequality (as mentioned above, see e.g. [33, Lemma 4.1]), we

get D(PZ|XY ‖WZ|XY |Pn × PZ|X) ≤ 2 ǫn
|Z|

, yielding

−
1

n
log Pr(error) ≤ Ẽq,sym

sp (R− ǫ′′n − ǫ1,n, Pn,W ) + an + 2
ǫn
|Z|

. (202)

which concludes the proof.

E. Proof of Claim 1

We prove (100) by establishing that if VXY Z is such that VY Z|X ∈ Wq(P̂X) and VXZ = P̂XZ , then for

any z and xi,xj ∈ L(z, P̂XZ), we have

E 1
2
[P̂xizxj

(x̃,z,x)+P̂xjzxi
(x̃,z,x)]×VY |XZ

[q(X̃, Y )− q(X, Y )] ≥ 0. (203)

To this end we present a few definitions and two lemmas.

Recall the definition of P avg,L′

XZX̃
(see (204)) defined for any collection of codewords L′ ⊆ L such that

|L′| ≥ 2,

P avg,L′

XZX̃
(x, z, x̃) ,

1

|L′|(|L′| − 1)

∑

i,j∈L′: j 6=i

P̂xjzxi
(x, z, x̃). (204)

We next define an additional distribution P
L′

TZXX̃ . Let T be a RV uniformly distributed over {1, ..., n}
and define

P
L′

TZ(t, z) ,
1

n
· 1{z=z(t)} (205)
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P
L′

X|T (x|t) ,

∑
j∈L′ 1{xj(t)=x}

|L′|
(206)

P
L′

TZXX̃(t, z, x, x̃) , P
L′

TZ(t, z)P
L′

X|T (x|t)P
L′

X|T (x̃|t). (207)

The following lemma detects a few relations between P avg,L′

XZX̃
and P

L′

XZX̃ .

Lemma 12. For any collection of codewords L′ ⊆ L such that |L′| ≥ 2 and any z, x 6= x̃

P avg,L′

XZX̃
(x, z, x̃) =

|L′|

|L′| − 1
· P

L′

XZX̃(x, z, x̃). (208)

Further, for any given PY |XZX̃ letting P
L′

XX̃ZY = P
L′

XZX̃ × PY |XZX̃ , and P avg,L′

XX̃ZY
= P avg,L′

XZX̃
× PY |XZX̃ ,

one has

q(P avg,L′

X̃Y
)− q(P avg,L′

XY ) ≥ 0 iff q(P
L′

X̃Y )− q(P
L′

XY ) ≥ 0 (209)

Proof. Recall that all members of L′ lie in Tn(PX|Z|z). Next, based on Plotkin’s counting idea (similar

to [28]), we obtain that for all (x, x̃, z) ∈ X 2 × Z such that x 6= x̃,

|L′|(|L′| − 1) · P avg,L′

XZX̃
(x, z, x̃)

=
∑

i, j 6=i∈L′

P̂xjzxi
(x, x̃, z) (210)

=
∑

j∈L′,i∈L′

P̂xjzxi
(x, z, x̃)−

∑

j∈L′

P̂xjzxj
(x, z, x̃) (211)

=
1

n

n∑

t=1

[ ∑

j∈L′,i∈L′

1{xj(t)=x,z(t)=z,xi(t)=x̃}

]
(212)

=
1

n

n∑

t=1

1{z(t)=z}

[ ∑

j∈L′,i∈L′

1{xj(t)=x} · 1{xi(t)=x̃}

]
(213)

=
1

n

n∑

t=1

1{z(t)=z}

[∑

j∈L′

1{xj(t)=x}

]
·

[∑

i∈L′

1{xi(t)=x̃}

]
(214)

, |L′|2
n∑

t=1

P
L′

TZ(t, z) · P
L′

X|T (x|t) · P
L′

X|T (x̃|t), (215)

where (212) follows since
∑

j∈L′ P̂xjxjz(x, x̃, z) = 0 whenever x 6= x̃, and (214) follows since the

indicator 1{xj(t)=x} does not depend on i. This yields (208). To prove (209), for given PY |XZX̃ denote

P
L′

XX̃ZY = P
L′

XZX̃ × PY |XZX̃ , and P avg,L′

XX̃ZY
= P avg,L′

XZX̃
× PY |XZX̃ , and note that from (208) it follows that

q(P avg,L′

X̃Y
)− q(P avg,L′

XY ) =
|L′|

|L′| − 1
·
(
q(P

L′

X̃Y )− q(P
L′

XY )
)
, (216)

and thus (209) follows.

The following lemma shows that the random variable T (uniformly distributed over {1, ..., n}) can be

replaced by another random variable U of finite alphabet cardinality that does not increase with n.

Lemma 13. There exists a random variable U whose alphabet size is |U| ≤ |X |2|Z|, and a joint

distribution PUXZ ∈ P(U × X ×Z) such that for any (x, x̃, z),
∑

u

PUZ(u, z)PX|UZ(x|u, z)PX|UZ(x̃|u, z) = PXZX̃(x, x̃, z). (217)
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There also exists a joint distribution PUXZ ∈ P(U × X × Z) such that for any (x, x̃, z) (217) holds, Z
is a deterministic function of U , and |U| ≤ |X |2|Z|+ 1.

Lemma 13 is proved in Appendix G. It remains to show that (203) holds for any VXY Z such that

VY Z|X ∈ Wq(P̂X) and VXZ = P̂XZ . Let L̃ = {xi,xj}. Obviously, L̃ ⊆ L, and thus we can invoke (209)

to obtain

E 1
2
[P̂xizxj

+P̂xjzxi
]×VY |XZ

[q(X̃, Y )− q(X, Y )]

=
∑

x,x̃,z,y

P avg,L̃

XZX̃
(x, z, x̃) · V (y|x, z) [q(x̃, y)− q(x, y)] (218)

=
|L̃|

|L̃| − 1

∑

x,x̃,z,y

P
L̃

XZX̃(x, z, x̃) · V (y|x, z) [q(x̃, y)− q(x, y)] (219)

≥ min
PUXZ :

PXZ=P̂XZ

|L̃|

|L̃| − 1

∑

u,x,x̃,z,y

PUZ(u, z)PX|UZ(x|u, z)PX|UZ(x̃|u, z) · V (y|x, z) [q(x̃, y)− q(x, y)] (220)

≥ 0, (221)

where (218) follows by definition of P avg,L̃

XZX̃
, (219) follows from (208), (220) follows by definition of

P
L̃

XZX̃ and from Lemma 13, and (221) follows since VY Z|X ∈ Wq(P̂X) and VXZ = P̂XZ . Thus, we have

shown that (203) holds and consequently also (100).

F. Proof of Lemma 4

From the law of total probability

Pr
(
|L(Z, P̂XZ)| < enτ

∣∣P̂XZ = P̂XZ

)
(222)

=
1

Mn

Mn∑

i=1

Pr
(
|L(Z, P̂XZ)| < enτ

∣∣X = xi, P̂XZ = P̂XZ

)
(223)

=
1

Mn

Mn∑

i=1

∣∣∣{z ∈ Tn(P̂Z|X|xi) : |L| < enτ}
∣∣∣ · 1

|Tn(P̂Z|X|xi)|
(224)

=
1

Mn

∑

z∈Tn(P̂Z ): |L|<enτ

|L| ·
1

|Tn(P̂Z|X |xi)|
(225)

≤
1

Mn
· enτ · |Tn(P̂Z)| ·

1

|Tn(P̂Z|X|xi)|
(226)

≤ (n+ 1)|X ||Z|−1 · e−n[R−I(P̂XZ)−τ ] (227)

= e−n[R−I(P̂XZ)−τ−
|X||Z|−1

n
log(n+1)], (228)

where (224) follows since Z is uniform over Tn(P̂Z|X|xi) given xi, (226) holds by replacing the count

over codewords by a count over sequences z, and (227) follows by a standard bound on the size of a

type-class.

G. Proof of Lemma 13

We prove that while T is a RV uniformly distributed over {1, ..., n}, indeed the cardinality of the

alphabet of the random variable U can be limited without loss of generality by |X |2·|Z|. This is done by an

application of the support Lemma (Caratheodory’s Theorem). Note that by Bayes’ Law PXZX̃(x, x̃, z) =
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∑
t P T (t)

PZX|T (z,x|t)PZX|T (z,x̃|t)

VZ|T (z|t)
, and thus there exists a distribution VUXZ such that the expectations (w.r.t.

U) of the following |U| ≤ |X |2 · |Z| functionals of VXZ|U=u:
{
VZX|U(z, x|u)VZX|U(z, x̃|u)

VZ|U(z|u)

}

(z,x,x̃)∈Z×X 2

, (229)

preserve those of P TXZ ; i.e.,

∀(z, x, x̃),
∑

u

VU(u)
VZX|U(z, x|u)VZX|U(z, x̃|u)

VZ|U(z|u)
=
∑

t

P T (t)
PZX|T (z, x|T = t)PZX|T (z, x̃|T = t)

PZ|T (z|T = t)

(230)

because there are in fact |Z| · |X |2 − 1 degrees of freedom in PZXX̃(z, x, x̃), it suffices to preserve only

|X |2 · |Z| − 1 of the functionals.

As for the last assertion of the lemma, note that preserving the expectation of one additional functional

HV (Z|U = u) = −
∑

x,z VZX|U(z, x|u) log
∑

x′ VZX|U(z, x
′|u) yields

∑

u

VU(u)HT (Z|U = u) =
∑

t

P T (t)HPZ|T
(Z|T = t), (231)

since HP (Z|T ) = 0, Z is also deterministic function of U , where the alphabet cardinality increase is 1.

H. Proof of Lemma 5

Let PXZ = Pn × PZ|X , recall the definition of ∆q(PXZU , PY |XZ) in (12), and let

Qdiff (PXZ , PY |XZ) , min
PU|XZ

∆q(PXZU , PY |XZ). (232)

We use Lemma 10 to express PXZ = Pn × PZ|X as a convex combination of empirical distributions,

with (X ,Z, PXZ , n) in the roles of (A,B, PAB, ℓ), respectively, to obtain

PXZ =
∑

i

βi · P
(i)
XZ (233)

where

∀i, P
(i)
X = PX = Pn, ‖PXZ − P

(i)
XZ‖ ≤

|X ||Z|

n
, and PZ|X(z|x) = 0 ⇒ P

(i)
Z|X(z|x) = 0. (234)

Denote by {P
(i)
U |XZ} the minimizers corresponding to {P

(i)
XZ} in (232), respectively; that is, those {P

(i)
U |XZ}

which satisfy

Qdiff (P
(i)
XZ , PY |XZ) , ∆q(P

(i)
XZ × P

(i)
U |XZ , PY |XZ). (235)

Let {P
(i)

X̃XZU
} be the corresponding induced probabilities (by Bayes’ Law); i.e.,

P
(i)

X̃XZU
(x̃, x, z, u) = P

(i)
XZ(x, z)P

(i)
U |XZ(u|x, z) ·

P
(i)
U |XZ(u|x̃, z) · P

(i)
XZ(x̃, z)

P
(i)
UZ(u, z)

. (236)

Let T be the RV whose distribution is [β1, ..., βK ], and signifies the value of ”i” in (236), we have

PX̃XZT (x̃, x, z, i) = βiP
(i)

X̃ZX
(x̃, x, z), and therefore

max
i

Qdiff (P
(i)
XZ , PY |XZ) (237)

≥
∑

i

βiQdiff (P
(i)
XZ , PY |XZ) (238)
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=
∑

i

βiEP
(i)

XZX̃
×PY |XZ

[q(X̃, Y )− q(X, Y )] (239)

, ∆q(Pn × PZ|X × PU,T |XZ , PY |XZ) (240)

, ∆q(Pn × PZ|X × PŨ |XZ , PY |XZ) (241)

≥ Qdiff (Pn × PZ|X, PY |XZ) (242)

≥ 0, (243)

where (238) follows since the average is upper bounded by the maximal value, in (241) we define

Ũ = (U, T ), and (242) follows by definition of Qdiff as the minimum over PŨ |XZ of ∆q(Pn × PZ|X ×

PŨ |XZ , PY |XZ). The fact that the alphabet of Ũ is larger than that of U does not impair the derivation as

by Caratheodory’s Theorem, any Ũ can be substituted with U of alphabet size not larger than |X |2|Z| as

asserted in Lemma 13. The last step (243) follows since PY Z|X ∈ Wq(PX).

Finally, let i∗ be the maximizer of (237), thus P
(i∗)
XZ serves as the empirical distribution whose existence

is claimed in Lemma 5.

I. Proof of Lemma 8

We continue the proof of Lemma 5 (in Appendix H) applied to WY Z|X in the role of PY Z|X .

To conclude the proof of Lemma 8, we verify that P
(i∗)
XZ ∈ Kq(R,Pn,WY Z|X) by checking that the 3

requirements in its definition (144) are met.

1) From (237)-(243) we have that P
(i∗)
XZ ∈ Aq(WY |XZ , Pn).

2) From (234) we have D(P
(i∗)
Z|X‖WZ|X|Pn) ≤ 2 (|X ||Z|)2

n2·minz,x: WZ|X (z|x)>0 WZ|X(z|x)
= O(1/n2), by the inverse

Pinsker’s inequality (see e.g. [33, Lemma 4.1]). Since fn = cn −
1
n
|X ||Z| log(n+ 1), where cn ≫ 1

n

(for example cn = n−1/2), for n sufficiently large, we clearly have D(P
(i∗)
Z|X‖WZ|X|Pn) ≤ fn.

3) By continuity of the mutual information, inequality (234) also implies that |I(Pn×WZ|X)−I(P
(i∗)
XZ )| ≤

|X ||Z| · logn
n

(see [27, Lemma 2.7]). Since I(Pn ×WZ|X) ≤ R − ǫ, this gives I(P
(i∗)
XZ ) ≤ R − ǫ +

|X ||Z| · logn
n

. Since dn = ǫn + |X ||Z|−1
n

log(n + 1) + ǫ̃n, where both ǫn, ǫ̃n are vanishing sequences,

for n sufficiently large we thus have I(P
(i∗)
XZ ) ≤ R− dn.

Hence, P
(i∗)
XZ ∈ Kq(R,Pn,WY Z|X), and this concludes the proof of Lemma 8.

J. Proof of Lemma 11

Let P ∗
XZ denote the minimizer of the following function

min
PXZ∈P(X×Z): PX=Pn,

I(PXZ)≤R

D(PZ|X‖WZ|X |PX) + max
µ
XZX̃

: µ
XZX̃

=µ
X̃ZX

,
µXZ=PXZ

F (µXZX̃,WY |XZ)

, D(P ∗
Z|X‖WZ|X|PX) + max

µ
XZX̃

: µ
XZX̃

=µ
X̃ZX

, µXZ=P ∗
XZ

F (µXZX̃ ,WY |XZ). (244)

Next, we use Lemma 10 to express P ∗
XZ as a convex combination of empirical distributions P ∗

XZ =∑
i βiP

(i)
XZ , with

(
n,X , Pn,Z, P ∗

Z|X

)
in the roles of

(
ℓ,A, QA,B, PB|A

)
, respectively, and we let P

(i)
Z|X

denote P
(i)
B|A.

By this construction we have for all i, ‖Pn × P ∗
Z|X − Pn × P

(i)
Z|X‖ ≤ |X ||Z|

n
. Now, for each i, denote by

P
(i)

X̃|XZ
the maximizing µ

(i)

X̃|XZ
of: max

µ
XZX̃

: µ
XZX̃

=µ
X̃ZX

, µXZ=P
(i)
XZ

F (µXZX̃ ,WY |XZ), and this gives

max
µ
XZX̃

: µ
XZX̃

=µ
X̃ZX

, µXZ=P ∗
XZ

F (µXZX̃ ,WY |XZ)
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≥ F (
∑

i

βiP
(i)

XZX̃
,WY |XZ) (245)

= min
V
Y |XZX̃

∈Scond( 1
2

∑
i βi[P

(i)

XZX̃
+P

(i)

X̃ZX
]):

IV (X̃ ;Y |XZ)=0

D(VY |XZ‖WY |XZ|
∑

i

βiP
(i)
XZ). (246)

where (245) follows since by definition, the marginal (X,Z) distribution of
∑

i βiP
(i)

XZX̃
is equal to∑

i βiP
(i)
XZ which is equal to P ∗

XZ , and thus
∑

i βiP
(i)

XZX̃
yields an F (·) value that cannot exceed the

maximal possible value. Step (246) is by definition of F (·). Now, by affinity of the expectation, there

must exist i0 such that the minimizing VY |XZX̃ belongs to Scond(1
2
[P

(i0)

XZX̃
+ P

(i0)

X̃ZX
]), and hence

min
V
Y |XZX̃

∈Scond( 1
2

∑
i βi[P

(i)

XZX̃
+P

(i)

X̃ZX
]):

IV (X̃ ;Y |XZ)=0

D(VY |XZ‖WY |XZ|
∑

i

βiP
(i)
XZ)

≥ min
V
Y |XZX̃

∈Scond( 1
2
[P

(i0)

XZX̃
+P

(i0)

X̃ZX
]):

IV (X̃;Y |XZ)=0

D(VY |XZ‖WY |XZ|
∑

i

βiP
(i)
XZ) (247)

≥ min
V
Y |XZX̃

∈Scond( 1
2
[P

(i0)

XZX̃
+P

(i0)

X̃ZX
]):

IV (X̃;Y |XZ)=0

D(VY |XZ‖WY |XZ|P
(i0)
XZ )− δn (248)

= max
µ
XZX̃

: µ
XZX̃

=µ
X̃ZX

, µXZ=P
(i0)
XZ

F (µXZX̃,WY |XZ)− δn, (249)

where (248) follows since by definition
∑

i βiP
(i)
XZ = P ∗

XZ , and since ‖P ∗
XZ − P

(i0)
XZ ‖ ≤ |X |Z|

n
, which

implies that for any PY |XZ , |D(PY |XZ‖WY Z|X |P
(i0)
XZ ) − D(PY |XZ‖WY Z|X |P

∗
XZ)| ≤ 2 |X ||Y||Z|

n
logn +

|X ||Y||Z|
n

log 1
tn,min

, δn, where tn,min is defined in (73). The last step follows by definition of P
(i0)

X̃|XZ

as the maximizing µ
(i)

X̃|XZ
of: max

µ
XZX̃

: µ
XZX̃

=µ
X̃ZX

, µXZ=P
(i0)
XZ

F (µXZX̃ ,WY |XZ).

Now,

D(P ∗
Z|X‖WZ|X |PX) + max

µ
XZX̃

: µ
XZX̃

=µ
X̃ZX

, µXZ=P
(i0)
XZ

F (µXZX̃ ,WY |XZ)

≥ D(P
(i0)
Z|X‖WZ|X |PX) + max

µ
XZX̃

: µ
XZX̃

=µ
X̃ZX

, µXZ=P
(i0)
XZ

F (µXZX̃ ,WY |XZ)− ǫ1,n (250)

≥ min
P̂XZ∈Pn(X×Z): P̂X=Pn,

I(P̂XZ)≤R+ǫ1,n

D(P̂Z|X‖WZ|X|P̂X) + max
µ
XZX̃

: µ
XZX̃

=µ
X̃ZX

,

µXZ=P̂XZ

F (µXZX̃ ,WY |XZ)− ǫ1,n, (251)

where both (250) and (251) hold since ‖P ∗
XZ −P

(i0)
XZ ‖ ≤ |X |Z|

n
, which implies |I(P ∗

XZ)− I(Pn×P
(i0)
XZ )| ≤

2 |X ||Z|
n

logn , ǫ1,n. The last step follows since P
(i0)
Z|X is an empirical distribution of order n, and since

I(P ∗
XZ) ≤ R.
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