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Abstract

We propose a new characterization of inner and outer bounds of some network information
theoretic regions in terms of upper concave envelopes of certain functions of mutual information.
While this characterization is related to the characterization using auxiliary random variables,
it is shown that the new characterization can make computations of boundary points much
simpler. Further this representation also leads to some new kinds of factorization inequalities
concerning information theoretic quantities. It also provides some new pathways into proving
optimality of certain achievable rate regions.

1 Introduction

In multiterminal information theory problems one wishes to compute optimal communication rates
over a noisy network subject to some decoding constraints. A lot of the basic problems in this field
has been open for more than three decades. In this paper we are mainly going to focus on the
broadcast channel [1], though some of the ideas presented here have also been applied to obtain
new results in the interference channel, and can be applied to other settings as well. A focus of this
paper is to formulate some of the inner and outer bounds using the language of concave envelopes,
and then show that this formulation has some advantages over the traditional approach, i.e. using
auxiliary random variables. Indeed this work is motivated by recent results [2, 3, 4, 5] regarding
explicit computation of inner and outer bounds in some examples.

A broadcast channel refers to a communication scenario where a single sender wishes to com-
municate different messages to multiple receivers over a noisy medium. Let us consider the simple
case of a two-receiver broadcast channel. In this setting a sender X wishes to communicate two
messages, say M1,M2, to two receivers Y,Z over a discrete memoryless channel q(y, z|x) so that
receiver Y can decode message M1 with high probability and receiver Z can decode M2 with high
probability.

(M1,M2) Encoder
Xn

q(y, z|x)

Decoder 1

Decoder 2

Y n

Zn

M̂1

M̂2

Figure 1: A broadcast channel

Let the channel have an input alphabet X and output alphabets Y,Z respectively. We assume
that |X |, |Y|, |Z| < ∞. A rate pair (R1, R2) is said to be achievable if there exists a sequence of
codes consisting of
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• An encoder which maps a message pair (m1,m2) according to Θ : [1 : 2nR1 ]× [1 : 2nR2 ] 7→ X n,

• A decoder (at receiver Y ) that maps a received sequence Y n according to Ψ : Yn 7→ [1 : 2nR1 ],

• A decoder (at receiver Z) that maps a received sequence Zn according to Φ : Zn 7→ [1 : 2nR2 ],
so that the probability of error defined as

P (n)
e = max

m1∈[1:2nR1 ],
m2∈[1:2nR2 ]

P((Ψ(Y n),Φ(Zn)) 6= (m1,m2)|X
n = Θ(m1,m2))

goes to zero as n goes to infinity.

Remark 1. Here we require that the maximal probability of error goes to zero. However it is
known[6] that the region corresponding to average probability of error, i.e. the decoding error
averaged over a uniform distribution of the message pairs, matches the region corresponding to the
maximal probability of error.

The closure of the set of all achievable rate pairs is known as the capacity region. A computable1

characterization of the capacity region for the two-receiver broadcast channel is still unknown, and
is one of the most fundamental open problems in the field of multi-user information theory. In
particular there are computable inner bounds and outer bounds to the capacity region of the two-
receiver broadcast channel.

Motivation

The motivation for this work comes from the following observation: recently established capacity
regions [13, 8] in the broadcast channels rely on the properties of the extremal auxiliary random
variables, i.e. auxiliary random variables that result in points on the boundary of the capacity
region. These auxiliary random variables were shown to possess additional properties and the
establishment of the capacity regions utilized these properties. Similarly, in a few other cases as
well, the extremal auxiliary random variables were observed to have a simple structure (examples
will be given in later sections) while the proofs of these were quite involved. In this work we
present a different representation using the idea of concave envelopes. While concave envelopes (or
convex hulls) and auxiliary random variables were always known to be connected (for example, the
use of Caratheodory’s theorem in bounding the cardinality of the auxiliary random variables); the
principle advantage of this representation is that the only auxiliary random variables that show up
in computation of the concave envelopes are the extremal ones. In some sense this is an interchange
of operations: traditionally one writes a region in terms of auxiliary random variables and the does
an optimization problem if one is interested in computing the boundary points; in the current
form, we first obtain the concave envelopes (indirectly an optimization over the auxiliary random
variables) and then write the region in terms of concave envelopes. As we shall see below (an
interested reader may also refer to the related work in [17, 18, 12]) this representation has some
definite advantages.

Outline

In the next section we will revisit superposition coding region, one of the earliest examples to use
the auxiliary random variables idea, and discuss some properties of extremal distributions in some

1A rate region is said to be computable if for every ǫ > 0, one can find a bounded time Tǫ such that the region
can be approximated to within ǫ in time Tǫ.
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well-known examples here. Then we will give an equivalent representation using concave envelopes
and show how this representation yields simple proofs of the previously mentioned extremal dis-
tributions. In the next section, we will briefly mention other settings where the concave envelope
representations naturally arise. Subsequently we will introduce the factorization property of some
the concave envelopes discussed previously and show role of these factorization inequalities in es-
tablishing the optimality of the regions involved. We also present a conjecture, which if established,
would yield the capacity region of a degraded message setting with three receivers, a problem that
has been open for some time.

2 Superposition coding region

The superposition coding strategy [1] was introduced for the degraded broadcast channel, i.e. the
receiver Z is a noisier version of receiver Y or mathematically X → Y → Z forms a Markov chain.

2.1 Superposition coding region for degraded broadcast channel

Superposition coding region, S, is the union of all non-negative rate pairs (R1, R2) satisfying:

R2 ≤ I(V ;Z)

R1 ≤ I(X;Y1|V ).

Note that by the data-processing inequality we have I(V ;Y ) ≥ I(V ;Z). (This inequality allows
receiver Y to decode the message M2.) In the absence of such an ordering one usually requires the
constraint R1 +R2 ≤ I(X;Y ) as well.

The superposition region for the degraded broadcast channels satisfies certain properties:

1. S is a convex, closed and bounded set belonging to the positive quadrant.

2. For a fixed µ let
Vµ = max

(R1,R2)∈S
R1 + µR2.

Then we can recast S as

S = ∩µ≥1{(R1, R2) ∈ R
2
+ : R1 + µR2 ≤ Vµ}.

The second condition says that the region can be considered as the intersection of the supporting
hyperplanes, which follows from the convexity.

2.2 Superposition coding region for some examples

In this section, we exhibit the superposition coding region for some known examples. Note the
simplicity of the structure of the optimal (V,X) in all of these examples. In the following examples
we are interested in computing Vµ which in turn characterizes S as mentioned earlier.

Remark: The previously known rigorous proofs of the optimality of the (V,X) in each of these
cases were non-trivial exercises.
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Example 1: The degraded BSC channel

Consider the following degraded broadcast channel depicted in the Figure 2. The superposition
coding region can be obtained by consider just V → X ∼ BSC(s), shown by Wyner and Ziv [7] as
predicted by Cover [1]. This in particular implies that

Vµ = max
(R1,R2)∈S

R1 + µR2 = max
s∈[0, 1

2
]
h(s ∗ p)− h(p) + µ

(

1− h(s ∗ p ∗ q)
)

,

where “∗” refers to binary convolution defined as a∗b = a(1− b)+ b(1−a), and h(x) := −x log2 a−
(1− x) log2(1− x) refers to the binary entropy function.

The proof of this fact turned out to be non-trivial and involved showing the convexity of the
following function: h(p ∗h−1(x)) in x. Further more, this technique could not be extended towards
other symmetric channels.

Recently [8, 9], a new symmetrization based argument, proved that to maximize R1 + µR2 for
any µ > 1 it suffices to consider V → X to be BSC(s). Further, this proof could also be generalized
to binary input symmetric output channels. In the next section, we will use a similar idea but give
an even simpler proof of this same result.

V X Y Z

s p q

Figure 2: A degraded BSC

Example 2: The degraded Z channel

Consider the degraded Z-channel shown in Figure 3. It turns out that maxR1 + µR2 can be
computed [10] by just considering V → X being another Z-channel. This is again a very arduous
proof. We will show a very simple proof of this fact in the next section.

V X Y Z

s p q

Figure 3: A degraded Z-channel

That is, in particular,

Vµ = max
s,v∈[0,1]

vh((1−s)(1−p))−v(1−s)h(1−p)+µ
(

h(v(1 − s)(1− p)(1− q))− vh
(

(1− s)(1− p)(1 − q)
))

,

where v = P(V = 1).
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Example 3: Degraded Gaussian channel

Consider the degraded additive Gaussian channel shown in Figure 4. Here Y = X+N1, Z = Y +N2

where N1, N2 are independent Gaussian random variables. To compute the superposition coding
region it suffices [11] to consider X = U + V where U and V are independent Gaussian random
variables. The proof of this result uses entropy power inequality, a highly non-trivial result.

The technique we employ can again be used to show this result without needing to resort to
the Entropy Power Inequality. This argument can be inferred from the results in [12].

+ + +V

U

X

N1 N2

Y
Z

Figure 4: A Gaussian degraded broadcast channel

2.3 A representation of the region using concave envelopes

2.3.1 On upper concave envelopes

Let f(x) be a function defined on a convex set D. The notation C[f(x)] refers to the upper concave
envelope of a function f(x) (on the domain D). The upper concave envelope, g(x), of the function
f(x) can be expressed in many equivalent ways:

• g(x) is the smallest concave function such that g(x) ≥ f(x), ∀x ∈ D. Here smallest is defined
in a point-wise sense.

• g(x) = supµx

∫

f(x)dµ, where µx is the set of all probability measures on D (when D is
measurable) with mean value x. If x lives in a finite dimensional Euclidean space, then by
Caratheodory’s theorem

g(x) = sup
xi,pi

d+1
∑

i=1

pif(xi)

where {pi} is a (d+ 1)-dimensional probability vector and
∑d+1

i=1 pixi = x.

In general computing the upper concave envelope is a global operation and hence it is probably
best represented by the supporting hyperplanes to the original function.

2.3.2 Superposition coding region using concave envelopes

Given a broadcast channel and µ > 1 consider the following function of p(x) defined as

S(X) := C[I(X;Y )− µI(X;Z)].

Note, the set D used here is the set of all probability distributions on X .

Claim 1. For a degraded broadcast channel X → Y → Z and µ > 1

max
(R1,R2)∈C

R1 + µR2 = max
p(x)

(µI(X;Z) + C[I(X;Y )− µI(X;Z)]) .
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A standalone proof (i.e. not dependent on the current proofs by explicitly identifying the
auxiliaries in the usual representation) is not known, and is a very interesting question to explore.

Proof. This proof directly follows from our explicit knowledge of the capacity region characteriza-
tion using auxiliary random variables.

max
(R1,R2)∈C

R1 + µR2

= max
p(v,x)

V→X→(Y,Z)

µI(V ;Z) + I(X;Y |V )

= max
p(v,x)

V→X→(Y,Z)

µI(X;Z) + I(X;Y |V )− µI(X;Z|V )

= max
p(x)

(

µI(X;Z) + max
p(v|x)

(I(X;Y |V )− µI(X;Z|V ))

)

= max
p(x)

(I(X;Z) + C[I(X;Y )− µI(X;Z)]) .

Thus we have expressed Vµ in an alternate form according to

Vµ = max
p(x)

(µI(X;Z) + C[I(X;Y )− µI(X;Z)]) .

Remark 2. As said in the motivation, it is clear that the only auxiliary random variables that show
up in the computation of the concave envelopes are the extremal ones. As mentioned previously,
some of the recent capacity results that were established for broadcast channels [13, 8] exploited
the properties of the extremal auxiliary random variables to fashion a converse. Hence focusing
on extremal random variables, we hope to extract more insight into the finer properties of the
boundary points of the various regions.

2.4 Evaluation of the superposition coding using the concave envelope representation

In all of these examples, we wish to compute for µ > 1,

max
p(x)

µI(X;Z) + C[I(X;Y )− µI(X;Z)].

Further we also wish to compute the optimal (V ∗,X∗) that yield C[I(X;Y ) − µI(X;Z)] at the
optimal input distribution.

Example 1: Degraded BSC

Consider the channel in Figure 2. Observe that

max
p(x)

(

µI(X;Z) + C[I(X;Y )− µI(X;Z)]
)

≤ max
p(x)

µI(X;Z) + max
p(x)

C[I(X;Y )− µI(X;Z)].

Now observe that I(X;Z) achieves its global maximum at P(X = 0) = 1
2 . Further, note that

C[I(X;Y ) − µI(X;Z)] also obtains the global maximum at P(X = 0) = 1
2 , due to symmetry of
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Figure 5: I(X;Y )− µI(X;Z): Degraded BSC with p = 0.1, q = 0.1, µ = 1.6

I(X;Y )−µI(X;Z) about P(X = 0) = 1
2 . This is because the function I(X;Y )−µI(X;Z) attains

a global maximum at points P(X = 0) = s,P(X = 0) = 1 − s for some 0 ≤ s ≤ 1
2 . Further

(V,X) is a doubly symmetric binary source. Hence consider a binary and uniform V ∗ such that
P(X = 0|V ∗ = 0) = s and P(X = 0|V ∗ = 1) = 1 − s. Note that with this choice we attain the
global maximum of C[I(X;Y )− µI(X;Z)] at P(X = 0) = 1

2 .
In Figure 2.4, we plot the function I(X;Y )−µI(X;Z) and its concave envelope (in red) for the

choice of parameters p = 0.1, q = 0.1, µ = 1.6. Notice the symmetry about P(X = 0) = 1
2 .

Thus, we obtain in a very simple fashion, the well-known result

Vµ = max
(R1,R2)∈S

R1 + µR2 = max
s∈[0, 1

2
]
h(s ∗ p)− h(p) + µ

(

1− h(s ∗ p ∗ q)
)

.

Example 2: Degraded Z-channel

Consider the channel in Figure 3. Observe that if P(X = 1) = x then

f(x) := I(X;Y )− µI(X;Z) = h(xp̄)− xh(p̄)− µ
(

h(xp̄q̄)− xh(p̄q̄)
)

.

Here p̄ = 1− p, q̄ = 1− q. Consider the second derivative of f(x) and we obtain that

f ′′(x) ln 2 = −
p̄

x(1− p̄x)
+ µ

p̄q̄

x(1− p̄q̄x)
.

Observe that this function has at most one zero in x ∈ [0, 1], and this zero occurs when 0 ≤ µq̄−1 ≤
p̄q̄(µ− 1). For this regime of parameters observe that whenever 0 ≤ x ≤ x∗ :=

µq̄−1
p̄q̄(µ−1) the function

f(x) is convex and beyond that it is concave. Therefore its concave envelope will be of the following
form: for 0 ≤ x ≤ xt, the concave envelope will be a straight line, tangential to f(x) at xt(≥ x∗)
and after that it will follow the curve.

Hence for any P(X = 1) ∈ [0, 1], the concave envelope is either the function f(x) at P(X =
1) = x or it is a convex combination of two points x1 = 0, x2 = xt, i.e. P(X = 1|V = 0) = 0,P(X =
1|V = 1) = xt and the distribution on V satisfies xt P(V = 1) = x. Thus the optimal V → X is
also a Z-channel.
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Figure 6: I(X;Y )− µI(X;Z): Degraded Z with p = 0.1, q = 0.5, µ = 2.3

In Figure 6, we plot the function I(X;Y )− µI(X;Z) and its concave envelope (in red) for the
choice of parameters p = 0.1, q = 0.5, µ = 2.3.

Remark 3. The degraded Gaussian example has been be dealt with in [12] for a much more general
setting. The key idea of the proof is to show the optimality of Gaussian using a factorization of
concave envelopes. Notice that the proofs of the optimality we developed in this section using
concave envelopes is much simpler than the original proofs. Further the concave envelopes have a
reasonably simple characterization. This is a key and continuing observation across other examples.

3 Concave envelopes arising in other settings

Here we consider a couple of other network information theory settings and we define the ap-
propriate concave envelopes that characterize the various regions. Please see [14] for the various
definitions of the settings and proofs of their optimality.

3.1 Channels with state known non-causally at the encoder

This setting, shown in Figure 7, represents a communication scenario over a state-dependent channel
where the state distribution varies i.i.d. according to a fixed distribution p(s). The goal is for a
single sender X to maximize the reliable transmission rate to a receiver Y over this state dependent
channel. One also assumes that the entire state sequence Sn is known non-causally at the encoder,
like in a scenario of coding over memory with defects.

Here the capacity[15] or maximum achievable rate is given by

max
p(u,x|s)

I(U ;Y )− I(U ;S)

= max
p(u,x|s)

H(Y )−H(S) + (H(S|U)−H(Y |U))

= max
p(x|s)

H(Y )−H(S) + C[H(S)−H(Y )].

Thus maxp(x|s)H(Y )−H(S)+C[H(S)−H(Y )] yields an alternate representation of the capacity.
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Encoder p(y|x, s) Decoder
M Xn Y n

M̂

sn

Figure 7: Point-to-point system with state information at encoder

Given a p(s) the function H(S) − H(Y ) is a function of p(x|s), i.e. it is a function of |S|
probability vectors of size |X |. Hence the concave envelope is taken over this domain. Further
H(S) −H(Y ) is a convex function of p(x|s) and hence the concave envelope of (H(S) −H(Y )) is
supported at its extreme points. This implies that it suffices to consider p(x|u, s) to be an vertex
of the probability simplex, or in other words x = f(u, s), a deterministic function of u and s.

3.2 Wiretap Channel

This setting, shown in Figure 8, represents a scenario where a sender X wishes to communicate a
message M reliably to a receiver Y while keeping it secret from an eavesdropper Z.

Encoder
p(y, z|x)

Y n

Zn

M
Xn

M̂Decoder

Eavesdropper

Figure 8: The wiretap channel

The maximal achievable secrecy rate [16] is given by

max
p(u,x):

U→X→(Y,Z)

I(U ;Y )− I(U ;Z)

= max
p(q,u,x):

(Q,U)→X→(Y,Z)

I(U ;Y |Q)− I(U ;Z|Q)

= max
p(x)

C
[

I(X;Y )− I(X;Z) + C[I(X;Z)− I(X;Y )]
]

.

Thus maxp(x) C
[

I(X;Y )− I(X;Z)+C[I(X;Z)− I(X;Y )]
]

yields an alternate expression to the
secrecy rate.

Remark 4. It is worth noting that although the expressions for the capacity rate look similar in terms
of auxiliary random variables for both the above settings, the concave envelope representations are
different and so is the domain on which the concave envelope is computed.
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In the previous sections we described how one may obtain alternate representations of the
various capacity regions and rates using the concave envelope representation. In the next section
we will describe how one may verify the optimality of such representations using the factorization
approach2.

4 Factorization of concave envelopes

Testing of the optimality of expressions using concave envelopes follow a reasonably straightforward
path in general. The first step is to verify that the n-letter forms of the expressions approach
capacity (this is the easy part usually as this follows from Fano’s inequality). The second step is
to verify that normalized two-letter form of the concave envelope expression does not improve on
the single-letter expression rate. Then by repeated application of this doubling idea, we show that
there is not increase along the dyadic powers and hence combining this with the first observation,
we have the required optimality.

We generalize the second step to say that a particular concave envelope expression Fq(X) defined
over the input distributions of a channel possesses the factorization property if the corresponding
expression defined over the joint input distributions of a product channel q1 × q2 satisfy

Fq1×q2(X1,X2) ≤ Fq1(X1) + Fq2(X2),

where the first function Fq1×q2(X1,X2) is evaluated at p(x1, x2) and the functions Fq1(X1), Fq2(X2)
are evaluated at the marginal distributions p1(x1) :=

∑

x2
p(x1, x2), p2(x2) :=

∑

x1
p(x1, x2) respec-

tively.

Remark 5. Note that factorization property in particular implies that the normalized two-letter
form of the concave envelope expression does not improve on the single-letter expression. However,
it is stronger than that, as it establishes the sub-additivity with respect to any product channel
and for any pair of distributions and not just the maximizers.

Remark 6. The factorization inequalities have, to the best of the knowledge of the author, not been
observed earlier3 for the functions that we describe in the sections below. These are inequalities
observed by the concave envelopes and not by the underlying functions. The proofs of the factor-
ization inequalities here are motivated by the usual converses and in particular the Csiszar-sum
lemma. However the statement of the inequalities themselves suggest the existence of alternate
proof forms.

4.1 Illustrations of optimality

In this section we will illustrate the above general technique for the three settings for which we
derived the concave envelope representations earlier.

4.1.1 Degraded broadcast channel

We wish to show that, when µ ≥ 1,

R1 + µR2 ≤ µI(X;Z) + C[I(X;Y )− µI(X;Z)],

for any rate pair (R1, R2) that belongs to the capacity region.

2The factorization approach was briefly developed in [17] and [18]; and it was exploited further in [12].
3One of these inequalities is mentioned in a related work of the author[12] while different factorization inequalities

have also been proved for special classes of channels in [17], [18].
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First note the following from Fano’s inequality:

R1 + µR2 ≤
1

n

(

µI(M2;Z
n) + I(M1;Y

n|M2)
)

+ ǫn

=
1

n

(

µI(M1,M2;Z
n) + I(M1;Y

n|M2)− µI(M1;Z
n|M2)

)

+ ǫn

≤
1

n

(

µI(Xn;Zn) + I(Xn;Y n|M2)− µI(Xn;Zn|M2)
)

+ ǫn

≤
1

n

(

µI(Xn;Zn) + C[I(Xn;Y n)− µI(Xn;Zn)]
)

+ ǫn,

where the last inequality follows from the definition of the concave envelope. Since ǫn → 0 as
n → ∞ we have that the normalized n-letter version indeed tends to capacity.

Thus we are done (from 2-letter to 2k-letter is just a repeated application to larger channels) if
we show that for any product broadcast channel we have

µI(X1,X2;Z1, Z2) + C[I(X1,X2;Y1, Y2)− µI(X1,X2;Z1, Z2)]

≤ µI(X1;Z1) + C[I(X1;Y1)− µI(X1;Z1)] + µI(X2;Z2) + C[I(X2;Y2)− µI(X2;Z2)].

Since the channel is a product channel we have Z1 → X1 → X2 → Z2 forming a Markov chain,
implying that

I(X1,X2;Z1, Z2) = I(X1;Z1) + I(X2;Z2)− I(Z1;Z2) ≤ I(X1;Z1) + I(X2;Z2).

The proof is completed if we show that

C[I(X1,X2;Y1, Y2)− µI(X1,X2;Z1, Z2)]

≤ C[I(X1;Y1)− µI(X1;Z1)] + C[I(X2;Y2)− µI(X2;Z2)].

Observe that for any U → (X1,X2) → (Y1, Y2, Z1, Z2) where (Y1, Z1) → X1 → X2 → (Y2, Z2)
is Markov (i.e. the underlying channel is a product channel) we have by routine manipulations

I(X1,X2;Y1, Y2|U)− µI(X1,X2;Z1, Z2|U)

= I(X1;Y1|U, Y2)− µI(X1;Z1|U, Y2)

+ I(X2;Y2|U,Z1)− µI(X2;Z2|U,Z1)− (µ − 1)I(Z1;Y2|U)

≤ C[I(X1;Y1)− µI(X1;Z1)] + C[I(X2;Y2)− µI(X2;Z2)],

where the last inequality follows from the definition of the concave envelope and that (U, Y2) →
X1 → (Y1, Z1) and (U,Z1) → X2 → (Y2, Z2) form Markov chains. Maximizing the left hand side
over the choices of U we obtain that

C[I(X1,X2;Y1, Y2)− µI(X1,X2;Z1, Z2)]

≤ C[I(X1;Y1)− µI(X1;Z1)] + C[I(X2;Y2)− µI(X2;Z2)],

as desired.

4.1.2 Channels with state known non-causally at the encoder

Here we wish to show that the maximum sum-rate is bounded above by

max
p(x|s)

H(Y )−H(S) + C[H(S)−H(Y )].
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Clearly from Fano’s inequality

R ≤
1

n

(

I(M ;Y n)− I(M ;Sn)
)

+ ǫn

=
1

n

(

H(Y n)−H(Sn) +
(

H(Sn|M)−H(Y n|M)
)

)

+ ǫn

≤
1

n

(

H(Y n)−H(Sn) + C[H(Sn)−H(Y n)]
)

+ ǫn.

The proof is completed if we show the factorization over product channelss. Towards this end
first observe that H(Y1, Y2)−H(S1, S2) ≤ H(Y1)−H(S1) +H(Y2)−H(S2), since independence of
state realizations implies H(S1, S2) = H(S1) +H(S2). Further observe that

H(S1, S2|U)− µH(Y1, Y2|U)

= H(S1|U, Y2)−H(Y1|U, Y2) +H(S2|U,S1)−H(Y2|U,S1)

≤ C[H(S1)−H(Y1)] + C[H(S2)−H(Y2)],

and by taking the maximum over all choices of U → (S1, S2,X1,X2) → (Y1, Y2) we get the desired
inequality.

4.1.3 Wiretap Channel

In this case we wish to show that

C ≤ max
p(x)

C
[

I(X;Y )− I(X;Z) + C[I(X;Z) − I(X;Y )]
]

.

Again from Fano’s inequality and the secrecy constraints we have that

C ≤
1

n

(

I(M1;Y
n)− I(M1;Z

n)
)

+ ǫn

≤
1

n

(

I(Xn;Y n)− I(Xn;Zn) + I(Xn;Zn|M1)− I(Xn;Y n|M1)
)

+ ǫn

≤
1

n
C
[

I(Xn;Y n)− I(Xn;Zn) + C[I(Xn;Zn)− I(Xn;Y n)]
]

+ ǫn.

To show the factorization, i.e.

C
[

I(X1,X2;Y1, Y2)− I(X1,X2;Z1, Z2) + C[I(X1,X2;Z1, Z2)− I(X1,X2;Y1, Y2)]
]

≤ C
[

I(X1;Y1)− I(X1;Z1) + C[I(X1;Z1)− I(X1;Y1)]
]

+ C
[

I(X2;Y2)− I(X2;Z2) + C[I(X2;Z2)− I(X2;Y2)]
]

,

observe that

I(X1,X2;Y1, Y2|Q)− I(X1,X2;Z1, Z2|Q) + I(X1,X2;Z1, Z2|U,Q)− I(X1,X2;Y1, Y2|U,Q)

= I(X1;Y1|Q,Y2)− I(X1;Z1|Q,Y2) + I(X1;Z1|U,Q, Y2)− I(X1;Y1|U,Q, Y2)

+ I(X2;Y2|Q,Z1)− I(X2;Z2|Q,Z1) + I(X2;Z2|U,Q,Z1)− I(X2;Y2|U,Q,Z1)

≤ C
[

I(X1;Y1)− I(X1;Z1) + C[I(X1;Z1)− I(X1;Y1)]
]

+ C
[

I(X2;Y2)− I(X2;Z2) + C[I(X2;Z2)− I(X2;Y2)]
]

.

Thus taking maximum over Q,U we obtain the desired factorization inequality.
In the next section we present a factorization inequality that appears to be true from numerical

simulations and whose establishment would solve an interesting problem that has been open for
about three decades.
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4.2 A conjecture

We now present a conjecture that is related to showing the optimality of superposition coding for
a three receiver broadcast channel with two degraded message sets. In this communication setting,
message M0 is required to be decoded by all three receivers Y1, Y2, Y3 while the message M1 is only
required to be decoded by receivers Y1, Y2. The best known achievable region in this scenario is
given by the following: the union of rate pairs R0, R1 satisfying the following constraints

R0 ≤ I(U ;Y3)

R0 +R1 ≤ I(U ;Y3) + I(X;Y1|U)

R0 +R1 ≤ I(U ;Y3) + I(X;Y2|U) (1)

R0 +R1 ≤ I(X;Y1)

R0 +R1 ≤ I(X;Y2)

over all choices of random variables U → X → (Y1, Y2, Y3) is achievable. The achievability follows
from superposition coding strategy [1]. Unfortunately the optimality of this scheme has remain
unsolved for over three decades.

Conjecture 1. Let X → (Y1, Y2, Y3) be a discrete memoryless broadcast channel whose transition
probability is given by q(y1, y2, y3|x). For 0 ≤ λ ≤ 1, µ ≥ 1 consider the function (on p(x)) defined
by

T
q
λ,µ(X) := C[λI(X;Y1) + (1− λ)I(X;Y2)− µI(X;Y3)].

Let T q1×q2
λ,µ (X1,X2) be defined similarly for a product broadcast channel q1(y1, z1|x1)× q2(y2, z2|x2).

We claim that the following factorization inequality holds:

T
q1×q2
λ,µ (X1,X2) ≤ T

q1
λ,µ(X1) + T

q2
λ,µ(X2).

If Conjecture 1 is valid then it is immediate that the following function

(α1+α2+α3)I(X;Y3)+C[α2I(X;Y1)+α3I(X;Y2)−(α1+α2+α3)I(X;Y3)]+α4I(X;Y1)+α5I(X;Y2)

factorizes for any αi ≥ 0, i = 1, . . . , 5. This in turn implies that the normalized two-letter version of
the region in equations (1) reduces to the single-letter form. Since the n-letter form of the region
approaches capacity (easy to see using Fano’s inequality), we obtain the optimality of superposition
coding region.

Thus showing the optimality of the superposition coding region has been reduced to establishing
the veracity of an information inequality involving concave envelopes of linear combination of
mutual information terms. Similar statements can also be made for some other instances in network
information theoretic settings.

5 Conclusion

In this article, we describe a novel way of representing achievable regions using concave envelopes.
This representation has been shown to vastly simplify explicit calculations of the regions in several
instances. One of the major achievements of this line of work, going beyond existing known facts,
is in establishing the capacity region of the two receiver MIMO Gaussian broadcast channel in [12].
In this work, we present the preliminary observations that indeed precede the above mentioned
result. Further we also propose a conjecture which would help resolve an important open problem.
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