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Upper critical field reaches 90 tesla near
the Mott transition in fulleride superconductors
Y. Kasahara1, Y. Takeuchi2, R.H. Zadik3, Y. Takabayashi4, R.H. Colman3, R.D. McDonald5,

M.J. Rosseinsky6, K. Prassides4,7 & Y. Iwasa2,8

Controlled access to the border of the Mott insulating state by variation of control parameters

offers exotic electronic states such as anomalous and possibly high-transition-temperature

(Tc) superconductivity. The alkali-doped fullerides show a transition from a Mott insulator to a

superconductor for the first time in three-dimensional materials, but the impact of

dimensionality and electron correlation on superconducting properties has remained unclear.

Here we show that, near the Mott insulating phase, the upper critical field Hc2 of the fulleride

superconductors reaches values as high as B90T—the highest among cubic crystals. This is

accompanied by a crossover from weak- to strong-coupling superconductivity and appears

upon entering the metallic state with the dynamical Jahn–Teller effect as the Mott transition

is approached. These results suggest that the cooperative interplay between molecular

electronic structure and strong electron correlations plays a key role in realizing robust

superconductivity with high-Tc and high-Hc2.
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T
he interplay between superconductivity and electron
correlations is one of the central issues in condensed
matter physics. Superconducting (SC) materials based on

Mott insulators, such as two-dimensional (2D) cuprates1 and
organic charge-transfer salts2, are model platforms that have been
extensively studied thus far. A dome-like dependence of the SC
transition temperature Tc as a function of tuning parameters,
such as carrier doping and pressure, has been discussed as a
fingerprint of unconventional superconductivity3. Recent physical
and chemical pressure studies of Cs3C60 have revealed that the
family of cubic fullerides A3C60 (A: alkali metal), where super-
conductivity emerges from the Mott insulating state driven by
dynamical intramolecular Jahn–Teller (JT) distortions and strong
Coulomb repulsion, is a new example of superconductors that
show a dome-like SC phase diagram as a function of unit-cell
volume V (refs 4–9). This suggests the importance of strong
electron correlation to SC mechanisms10 and the need for further
treatment beyond conventional framework of theory11. Recent
study has revealed a crossover in the normal state from the
conventional Fermi liquid to a nontrivial metallic state where JT
distortions persist (JT metal)9,12. There, localized electrons
coexist with itinerant electrons microscopically and heterogene-
ously.

The dependence of the upper critical field Hc2 on Tc is relevant
to the understanding of the dome-like SC phase because Hc2 is
determined by the coherence length (the size of the Cooper pair)
as well as the strength of the pairing potential. Therefore, Hc2 is
also important to understand the underlying mechanism of the

superconductivity. However, for the fullerides, Hc2 as a function
of V has not as yet been determined due to the very large Hc2 and
the need for high pressure to access superconductivity in Cs3C60.

Here we report measurements of Hc2 using a pulsed magnetic
field in RbxCs3� xC60, where superconductivity appears near the
Mott transition even at ambient pressure9. In proximity to the
Mott transition, Hc2 is enhanced up to B90T, which is the
highest among cubic superconductors. We uncovered that Hc2

and the pairing strength increase concomitantly with increasing
lattice volume near the Mott transition, suggesting that molecular
characteristics as well as electron correlations play important
roles for realizing superconductivity with high-Tc and high-Hc2 in
molecular materials.

Results
Temperature dependence of upper critical field. Hc2 of the
fulleride superconductors (Fig. 1a) Na2CsC60, K3C60, and
RbxCs3� xC60 (0ox%3), has been measured by a radiofrequency
technique in pulsed magnetic fields13 up to 62 T (see Methods).
In RbxCs3� xC60 with x%1, the dynamical JT distortions (Fig. 1b)
persist down to low temperature and coexist with the metallic
state, and superconductivity emerges from this JT metal state
(VmaxoVoVcr, in Fig. 1c). Figure 2 shows temperature (T)
variations of frequency shift Df as a function of the magnetic field
H for RbxCs3� xC60 (x¼ 2, 0.75, and 0.35) (see also Supple-
mentary Fig. 1). The T dependence of Hc2, Hc2(T), was
determined as a point at which Df intercepts the normal-state
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Figure 1 | Crystal structure and electronic phase diagram of fcc fullerides. (a) Crystal structure of fcc A3C60. Orange and black

spheres represent A and C atoms, respectively. The C3�
60 anions adopt two orientations related by 90� rotation about the [100] axis. Only one is shown at

each site. (b) Schematic structures of C3�
60 anions and molecular t1u orbitals. At low V, C3�

60 anions are isotropic, and t1u orbitals are triply degenerate. At

large V, dynamical JTdistortions give rise to threefold splitting of the t1u orbitals. (c) Electronic phase diagram of cubic fullerides. Squares and circles are the

superconducting (SC) transition temperature Tc for f.c.c. C
3�
60 anion packings with Pa�3 symmetry and Fm�3m symmetry, respectively. In fcc-Cs3C60 at

ambient pressure, an electron-correlation-driven insulating state (Mott-Jahn-Teller insulator, MJTI) appears, which is accompanied by an intramolecular

dynamical Jahn–Teller (JT) effect distorting the C3�
60 anions and stabilizing the low-spin (S¼ 1/2) states that give rise to an antiferromagnetic insulating

(AFI) state at low temperatures. In the metallic regime, gradient shading from green to orange schematically illustrates a crossover from the conventional

metal to unusual metallic state where JT distortions persist, which we define as the JT metal (JTM) state. The grey line represents the MJTI-to-JTM

crossover line, where the crossover temperatures (crosses) were obtained from X-ray powder diffraction, nuclear magnetic resonance spectroscopy, and

infrared spectroscopy9. The ratio of upper critical field at T¼0 and Tc, Hc2(0)/Tc (yellow triangles), shows an enhancement in the JTM regime. Error bars

represent the s.d. in the values of Hc2(0) estimated from the least-squares fits of equation (1) to Hc2(T) data.
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background (arrows in Fig. 2). Hc2(T) curves for A3C60 are
plotted in Fig. 3a,b for V%Vmax and VmaxoVoVcr in the
proximity of the Mott transition, respectively. Hc2(T) increases
linearly with decreasing T near Tc and has a tendency to saturate
at low temperatures. No obvious upturn of Hc2(T) is found in any
of the samples measured, implying that Hc2(T) can be understood
within a simple single-band picture despite the multiband nature
of the triply degenerate t1u orbitals of C

3�
60 anions, in contrast to

MgB2 and iron pnictides where multiband and multigap beha-
viour with upturn or quasilinear T dependence down to TB0 is
commonly observed.

Volume dependence. In spin-singlet superconductors, Hc2 is
determined by two distinct effects, i.e., the orbital and the Pauli
paramagnetic effect. The orbital limit and Pauli limit are given by
Horb

c2 ð0Þ¼0:69Tc dHc2=dTj jT¼Tc
¼ F0=2px

2
GL and HP¼D0=

ffiffiffi

2
p

mB,
respectively (F0, xGL, D0, and mB are the flux quantum, Ginzburg–
Landau (GL) coherence length, superconducting gap and Bohr
magneton, respectively)14,15. In a weak-coupling BCS super-
conductor, the Pauli limit is HBCS

P [T]¼ 1.84Tc[K]. A simple
estimation from Horb

c2 ð0Þ gives xGL¼ 1.8–4.6 nm (Supplementary
Table 1), which is comparable to the lattice constant. It should be
noted that the fulleride superconductors are in the dirty limit,
ctx0 (c and x0 are the mean free path and Pippard coherence
length, respectively), as demonstrated by transport and optical
measurements16,17. The orientational disorder of the C3�

60 anions

can account for the short c, which is comparable to the
intermolecular separation. The relation xGL¼0:85

ffiffiffiffiffiffiffi

x0‘
p

in
the dirty limit, where x0¼ :vF/pD0 and m�vF¼‘ kF¼‘ ð3p2N

V
Þ1=3

(vF, m�, kF, and N are the Fermi velocity, effective mass,
Fermi momentum, and number of electrons per C60, respecti-
vely) for the parabolic band approximation yield Horb

c2 ð0Þ ¼
0:22 F0

‘
2
D0m

�

‘
V
N

� �1=3
. In the extreme cases (Horb

c2 44HP or
Horb

c2 ooHP), Hc2(0) is determined solely by Hc2
orb or HP.

However, when these two quantities are comparable, Hc2(T)
can be described by the extended WHH formula14, which
considers both the orbital and Pauli paramagnetic effects as well
as spin–orbit scattering,

ln 1
t

� �

¼ 1
2 þ ilso

4g

� �

c 1
2 þ

�hþ 1
2lso þ ig

2t

� �

þ 1
2 � ilso
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� �

c 1
2 þ

�hþ 1
2lso � ig
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� �

�c 1
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� �

;
ð1Þ

where t¼T/Tc, �h¼ 0.281Hc2(T)/H
orb
c2 ð0Þ, g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�h
� �2 � lso=2ð Þ2

q

,
a¼

ffiffiffi

2
p

Horb
c2 ð0Þ=HP, c is the digamma function, and lso is the

spin–orbit scattering constant. With fixed Horb
c2 ð0Þ, finite a

reduces Hc2(0), but it recovers toward the original value with
increasing lso, since spin–orbit scattering suppresses the Pauli
paramagnetic effect.

Horb
c2 ð0Þ was estimated from the initial slope of Hc2(T) since the

Pauli paramagnetic effect is not relevant near Tc (Supplementary
Note 1; Supplementary Fig. 2; and Supplementary Table 1). Then,
Hc2(T) curves were fitted with HP and lso as fitting parameters.
As shown by the solid lines in Fig. 3a,b, Hc2(T) curves are well
described by equation (1). Figure 3c shows Hc2(T) normalized by
Tc dHc2=dTj jT¼Tc

as a function of T/Tc. The normalized Hc2(T)
curves collapse into a single curve except for Na2CsC60, implying
that the parameters a and lso are unchanged in a wide V region of
the phase diagram, resulting in (a, lso)¼ (1.5, 4.4). Figure 3d
displays the evolution of Hc2(0) as a function of V, together with
HBCS

P . Hc2(0) reaches as high as 88 T in RbxCs3� xC60 with x%1
(V^Vmax) very close to the Mott transition. Moreover, Hc2(0) is
clearly larger than HBCS

P at V>Vmax, and the difference between
Hc2(0) and HBCS

P becomes pronounced with increasing V,
although Tc is almost unchanged near the Mott transition.

Discussion
Hc2(0) values reaching B90 T are remarkably high for 3D
materials. Typical examples of 3D superconductors are cubic
Nb3Sn (Hc2(0)¼ 30 T, Tc¼ 18K), which is well known as a
material for a SC magnet18, and Ba1� xKxBiO3 (Hc2(0)¼ 32 T,
Tc¼ 28K)19. MgB2 exhibits strong anisotropy (Hc2(0)¼ 49T and
34 T parallel to the ab plane and c axis, respectively, Tc¼ 39K)18

due to its anisotropic electronic structure. Hc2(0) of the fullerides
is even higher than that of recently discovered H3S super-
conductors with likely a cubic structure (Hc2(0)E70 T,
Tc¼ 203K)20 despite its much higher Tc. In 2D systems under
in-plane applied fields, the orbital effect is quenched and
higher Hc2 can be expected. Very large Hc2 compared with
low Tc has been demonstrated in ion-gated MoS2 (Hc2(0)¼
52 T, Tc¼ 9.7 K)21,22 and monolayer NbSe2 (Hc2(0)¼ 32 T,
Tc¼ 3.0 K)23. In the bulk materials, the in-plane Hc2 of the
cuprates is exceptionally high at above 100 T. However, Hc2 is no
longer a thermodynamic transition line, but a crossover line due
to thermal fluctuations. Contrastingly, Hc2 in pnictides with
TcC30K is as large as that of fullerides24. Therefore, our results
highlight the uniquely high Hc2 measured in the fulleride
superconductors that are cubic, and thus, 3D.

To understand the underlying mechanisms for the evolution of
Hc2(0), we estimated unknown parameters that determine HP and
Horb

c2 (Supplementary Fig. 1), that is, D0 and the product of
parameters in the normal state m�=‘N1=3. D0 can be directly
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estimated from HP. In Fig. 3e, the V dependences of 2D0/kBTc,
which is related to the strength of the pairing interaction, and
m�=m0‘N

1=3 (m0 is the bare electron mass) are shown. At low V,
2D0/kBTc is comparable to the BCS weak-coupling limit value of
3.52. In contrast with the dome-shaped Tc, 2D0/kBTc continuously
increases with increasing V and reaches values as large as 6,
indicating a crossover from weak- to strong-coupling super-
conductivity on approaching the Mott transition. This is in
good agreement with the previous nuclear magnetic resonance
results for RbxCs3� xC60 at ambient pressure9 and for both

fcc- and A15-Cs3C60 under pressure25,26, implying universal
behaviour in the fullerides. On the other hand, m�=m0‘N

1=3 is
almost constant, indicating that both HP/Tc and Horb

c2 ð0Þ/Tc are
solely proportional to 2D0/kBTc. These results lead to the
conclusion that the enhancement of Hc2(0) is dominated by the
strong-coupling effect developing near the Mott transition.

We here recall Hc2(0) of other families of high-Tc or strongly
correlated superconductors, i.e., cuprates, organic k-(ET)2X, and
pnictides24,27–31, having a dome-like SC phase and a proximate
antiferromagnetic phase. In Fig. 4, Hc2(0)/Tc is displayed as a
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function of the relevant tuning parameter for each materials
family. We show Hc2(0) for the in-plane field (H> c), where the
Pauli paramagnetic effect is dominating, in k-(ET)2X and
pnictides but show Hc2(0) for the out-of-plane field (H || c) in
cuprates since there are no reliable estimates of Hc2(0) for H> c.
A remarkable feature of the fullerides is that Hc2(0)/Tc appears to
be strongly enhanced at xr1, where the JT metal phase emerges
(Fig. 1c), with retaining nearly optimal Tc and Hc2(0) values near
the Mott transition. This is in marked contrast to the pnictides
and cuprates. In the pnictides, Hc2(0)/Tc is almost constant across
the SC dome. This is ascribed to the variation of D0, which
linearly scales with Tc (ref. 32), implying constant coupling
strength. Moreover, in pnictides, Tc and Hc2(0) are strongly
reduced upon decreasing doping, associated with the appearance
of the antiferromagnetic phase. Non-monotonic behaviour in
cuprates appears with mass enhancement near p¼ 0.08 and 0.18,

which originates from phase competition between super-
conductivity and Fermi-surface reconstruction or charge-
density-wave order27. This is distinct from the continuous
evolution of Horb

c2 ð0Þ in the fullerides (Supplementary Fig. 2),
suggesting the absence of such competing states. In
k-(ET)2X, there is no competing phase near the Mott transition
and the molecular degrees of freedom are not relevant to the
superconductivity in contrast to the fullerides. Moreover, the SC
pairing is most likely mediated by purely electronic interaction, in
contrast to the fullerides, where there is considerable controversy
because of comparable energy scales in the electron–phonon
and electron-electron interactions33,34. k-(ET)2X shows qualita-
tively similar behaviour with the strong-coupling effects near
the antiferromagnetic phase35. However, the enhancement of
Hc2(0)/Tc is much weaker than that in the fullerides. Therefore,
the steep enhancement of Hc2(0)/Tc and 2D0/kBTc upon entering
the JT metal phase cannot be explained solely by the electron
correlation effect, highlighting the uniqueness of fullerides among
the high-Tc or strongly correlated superconductors. We also
emphasize that it is difficult to reconcile the strong-coupling
effect with the electron–phonon coupling alone25. Our results
establish the importance of both molecular characteristics, absent
in the atom-based superconductors, involving the dynamical JT
effect and the resulting renormalization of the electronic structure
and electron correlation effects for both the high-Tc and the high-
Hc2 in the fullerides, as supported by the recent theoretical
calculations33. This provides a new perspective on realizing
robust superconductivity with high Tc and Hc2 in molecular
materials.

Methods
Sample synthesis and characterization. Fullerene superconductors Na2CsC60,
K3C60, and RbxCs3� xC60 (0ox%3) were synthesized by solid-vapor reaction
method as described in ref. 9. The samples used here were identical to those in
ref. 9. For RbxCs3� xC60 with x¼ 0.5, 1, and 2, our samples correspond to
Rb0.5Cs2.5C60 (Sample I), RbCs2C60 (Sample I), and Rb2CsC60 (Sample II) in ref. 9,
respectively. The samples were characterized by synchrotron X-ray powder
diffraction and magnetization measurements. The phase fraction of the fcc phase
was larger than 70% and typical shielding fraction was B90%.

Measurements of Hc2. Contactless radiofrequency (r.f.) penetration depth
measurements were performed using a proximity detector oscillator technique13

and a pulsed magnetic field up to 62 T in Los Alamos NHMFL. The typical
resonant frequency was B28MHz. The r.f. technique is highly sensitive to small
changes (approximately 1–5 nm) in the r.f. penetration depth l, and thus, it is an
accurate method for determining Hc2 of superconductors. Powder samples were
compressed into pellets and sealed in thin glass capillaries with a small amount of
He gas. Coils that generate and detect microwave signals are directly wound around
the capillary (inset of Fig. 2a). The relative change of l is proportional to the
relative change of the resonating frequency f through the inductance of the coil,
that is, Df/fpDl/l (ref. 13). Upper critical field Hc2 was determined from the field
dependence of the frequency shift Df (Supplementary Fig. 1) as the point at which
the slope of the r.f. signal in the superconducting state intercepts the slope of the
normal state background.

Data availability. The data that support the findings of this study are available on
request from the corresponding authors (Y.K. or Y.I.).
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