
TECTONICS, VOL. 11, NO. 4, PAGES 823-835, AUGUST 1992 

UPPER JURASSIC-LOWER CRETACEOUS 

BASINAL STRATA ALONG THE 

CORDILLERAN MARGIN: IMPLICATIONS 

FOR THE ACCRETIONARY HISTORY OF 

THE ALEXANDER-WRANGE LLIA- 

PENINSULAR TERRANE 

William C. McClelland 1 and George E. Gehrels 
Department of Geosciences, University of Arizona, 
Tucson 

Jason B. Saleeby 
Division of Geological and Planetary Sciences, California 
Institute of Technology, Pasadena 

Abstract. Upper Jurassic and Lower Cretaceous 
bashal strata are preserved in a discontinuous belt along 
the inboard margin of the Alexander-Wrangellia- 
Peninsular terrane (AWP) in Alaska and western 
Canada, on the outboard margin of terranes in the 
Canadian Cordillera accreted to North America prior to 
Late Jurassic time, and along the Cordilleran margin 
from southern Oregon to southern California. Nearly all 
of the basinal assemblages contain turbiditic strata 
deposited between OxfordJan and Albian time. Arc-type 
volcanic rocks and abundant volcanic detritus in many of 
the assemblages suggest deposition within or adjacent to 
a coeval arc complex. On the basis of the general 
similarities between the basinal sequences, we propose 
that they record involvement of the AWP in the Late 
Jurassic-Early Cretaceous evolution of the Cordilleran 
margin. A geologically reasonable scenario for the 
accretion of the AWP includes (1) Middle Jurassic 
accretion to the Cordilleran margin, in particular the 
Stikine and Yukon-Tanana terranes, in a dextral 

transpressional regime, (2) Late Jurassic-Early 
Cretaceous overall northward translation of the AWP 

and evolution of a series of transtensional basins within a 

complex dextral strike-slip system along the Cordilleran 
margin, and (3) mid-Cretaceous structural imbrication of 
the AWP and inboard terranes that either terminated or 

resulted in a change in the character of deposition in the 
marginal basins. Mid-Cretaceous deformation along the 
inboard margin of the AWP was broadly synchronous 
with contractional deformation throughout the Cordillera 
and most likely due to changes in subduction zone 
parameters along the Cordilleran margin, outboard of the 
AWP, rather than collision of the AWP. 

INTRODUCTION 

Terranes of the Canadian Cordillera [e.g., Coney et 
al., 1980] are typically divided into (1) fragments accreted 
to the continental margin prior to Late Jurassic time and 
(2) fragments structurally imbricated with inboard 
terranes during mid-Cretaceous (Albian-Cenomanian) 
time [e.g., Monger et al., 1982]. The Alexander, 

1Now at Department of Geological Sciences, 
University of California, Santa Barbara. 

Copyright 1992 
by the American Geophysical Union. 

Paper number 92TC00241. 
0278-7407/92/92TC-00241 $10.00 

Wrangellia, and Peninsular terranes, collectively referred 
to as the AWl:' (Figure 1), comprise the latter group. 
Mid-Cretaceous crustal shortening and high-pressure 
metamorphism involving the AWP and inboard terranes 
are cited by many workers as evidence for AWP 
accretion [Davis et al., 1978; Coney et al., 1980; Csejtey 
et al., 1982; Monger et al., 1982; Saleeby, 1983; Jones et 
al., 1986; Crawford et al., 1987; Brandon et al., 1988]. In 
contrast, arguments based on faunal and stratigraphic 
similarities and/or distribution of plutonic and volcanic 
arc rocks across terranes of the Canadian Cordillera have 

been used in models favoring pre-Early Cretaceous [e.g., 
Kleinspehn, 1985; Armstrong, 1988] or pre-Late Jurassic 
[e.g., Anderson, 1976; Jeletzky, 1984; Tipper, 1984; van 
der Heyden, 1992] accretion of the AWl'. Additional 
models propose a Late Jurassic and/or Early Cretaceous 
migrating or zippering suture [e.g., Armstrong, 1988; 
Wernicke and Klepacki, 1988; Pavlis, 1989]. 

Gehrels and Saleeby [1985] suggested that a belt of 
discontinuous transtensional basins containing Upper 
Jurassic and Lower Cretaceous fiyschlike clastic and 
volcanic strata evolved along the Cordilleran margin from 
southern Alaska to at least southern California during 
the northward migration of the AWl:' in Late Jurassic- 
Early Cretaceous time. The following paper modifies 
and expands on these earlier ideas by summarizing the 
age and stratigraphic character of the basinal 
assemblages observed along the Cordilleran margin and 
the Middle Jurassic to mid-Cretaceous tectonic setting in 
which they evolved. The ensuing discussion presents a 
general model for the evolution of the marginal basins 
and accretionary history of the AWP. 

PRE-LATE JURASSIC EVOLUTION OF THE 

ALEXANDER-WRANGELLIA-PENINSULAR 

TERRANE 

The Alexander and Wrangellia terranes (Figure 1), 
originally defined by apparent differences in their 
Paleozoic to Late Triassic histories [Jones et al., 1•972, 
1977], were adjacent to one another by Pennsylvanian 
time (308 _ 6 Ma) [Gardner et al., 1988]. The earliest 
demonstrable ties between the Peninsular and Wrangellia 
terranes are Late Triassic in age [Plafker et al., 1989]. 
The Paleozoic basement history of the Alexander terrane, 
which is the most complete of the AWP triad, indicates 
that the crustal fragment evolved as an island arc 
complex, perhaps in proximity to the Gondwana orogenic 
system prior to Devonian time [Gehrels and Saleeby, 
1987]. Nd isotopic studies suggest an intraoceanic 
environment for the Alexander-Wrangellia terrane 
through Late Triassic time [Samson et al., 1989, 1990]. 

Paleomagnetic data from Wrangellia [Hillhouse and 
Gromm6, 1984] and the Alexander terrane [Haeussler et 
al., 1989] suggest that the AWP was located 
approximately 10 ø to 20 ø north or south of the 
paleoequator during Late Triassic time. Assuming a 
northern Late Triassic paleolatitude, paleomagnetic data 
for southern Wrangellia (Vancouver Island) are not 
discordant with respect to North America [May and 
Butler, 1986]. There are, however, no rigorous 
constraints on the choice of northern versus southern 

hemisphere Late Triassic position for the AWP. The 
southern option is favored on the basis of reported 
differences between Late Triassic AWP and North 

American fauna [Tozer, 1982; Newton, 1983; Silberling, 
1985]. Placing the AWP in an equatorial eastern Pacific 
position within the faunal realm of the South American 
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margin (southern hemisphere) in Late Triassic time is 
consistent with these differences. 

Comparison of Pliensbachian ammonites suggests a 
northern hemisphere position and latitudinal 
displacement of approximately 2400 km with respect to 

North America for Wrangellia during Early Jurassic time 
[Taylor et al., 1984; Smith and Tipper, 1986]. On the 
basis of faunal and stratigraphic similarities between 
Callovian basinal strata observed from Wrangellia to the 
eraton, Tipper [1984] and Jeletzky [1984] argued that 
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Fig. 1. Generalizcd tcrrane map of the western Cordillera showing the distribution of the Upper 
Jurassic-Lower Cretaceous basinal assemblages and geographic regions discussed in the text. 
Figure is modified after Jones et al. [1987], Wheeler et al. [1988], and Silberling et al. [1987]. 
Abbreviations are NMRT, northern Rocky Mountain trench; PR, Prince Rupert; QCI, Queen 
Charlotte Islands; and VI, Vancouver Island. Other abbreviations are defined in the legend. 
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Wrangellia was near its present position relative to 
cratonal North America by late Middle Jurassic time. 
Paleomagnetic data from Upper Jurassic clastic strata 
(Naknek Formation) indicate 3500 (_ 1000) km of post- 
Jurassic northward translation for the Peninsular terrane 

[Stone and McWilliams, 1989] using the reference pole of 
Gordon et al. [1984]. Recalculating the estimate using 
the Glance Conglomerate reference pole [May and 
Butler, 1986] and accounting for possible inclination error 
induced during deposition and compaction [Coe et al., 
1985] yields nearly concordant results. Thus significant 
post-Jurassic latitudinal translation of the Peninsular 
terrane relative to North America is permissible but not 
required. From the constraints outlined above, we 
conclude'that the AWP was most likely positioned in the 
eastern Pacific basin, south (•30') of the North 
American margin, during Late Triassic time and moved 
northward to near its present position with respect to 
cratonal North America by Late Jurassic time. 

MIDDLE JURASSIC TECTONISM ALONG THE 

CORDILLERAN MARGIN 

Middle Jurassic accretionary events in the Canadian 
Cordillera include (1) east directed thrusting of the 
Quesnellia, Yukon-Tanana and Slide Mountain terranes 
over cratonal North America [Price, 1981; Monger et al., 
1982; Brown et al., 1986; Armstrong, 1988], (2) obduction 
of the Cache Creek terrane onto Stikine and Quesnellia 

[e.g., Mortimer, 1986; Cordey et al., 1987], and (3) 
amalgamation of the Stikine, Bridge River, and 
Cadwallader terranes [Rusmore et al., 1988] (Figure 1). 
Although strongly modified by late Mesozoic and 
Cenozoic tectonism, all terranes inboard of the AWP in 
the Canadian Cordillera appear to be tied to North 
America with no intervening subduction zones by Late 
Jurassic time. Terranes outboard of North American 

basement in Blue Mountains region of northeastern 
Oregon and western Idaho (Figure 1) were reportedly 
amalgamated during or prior to Late Jurassic time [e.g., 
Av6 Lallemant, 1992] and accreted to North America 
during Early Cretaceous time [Lurid and Snee, 1988]. By 
analogy with correlative terranes in the Canadian 
Cordillera (see review by Oldow et al. [1989]), we 
assume that these terranes were accreted to North 

America by Late Jurassic time. Early to mid-Cretaceous 
(118-88 Ma) deformation along the Salmon River suture 
zone [Lurid and Snee, 1988] most likely reflects 

modification of the original accretionary boundary. A 
Middle Jurassic arc in the Klamath-Sierra Nevada region 
(Figure 1) was constructed on a diverse basement of 
previously accreted Paleozoic and Upper Triassic-Lower 
Jurassic arc fragments and m61ange complexes (see 
reviews by Burchfiel et al. [1992] and Saleeby and Busby- 
Spera [1992]). The arc complex, active from 
approximately 177 to 159 Ma, was deformed during a 
west-vergent contractional event between 169 and 161 Ma 
[Wright and Fahan, 1988]. 

Middle Jurassic deformation in the Alexander terrane 

is recorded by a dextral transpressional shear zone 
(Duncan Canal shear zone of McClelland and Gehrels 
[1990]) in central southeastern Alaska (Figure 1) and 
imbrication of the Alexander terrane and metamorphic 
rocks equivalent to the Yukon-Tanana terrane in 
southern southeastern Alaska [Saleeby and Rubin, 1990]. 
Southwest directed Middle Jurassic (Aalenian-Bajocian) 
compressional deformation of Wrangellia is observed on 
the Queen Charlotte Islands [Lewis et al., 1991]. 

Deformation of similar age may be recorded by the 
Middle Jurassic Kotsina conglomerate in the Wrangellia 
and Peninsular terranes in southern Alaska [Plafker et 
al., 1989]. 

Middle Jurassic deformation and terrane accretion 

along the Cordilleran margin marked the demise of a 
west facing late Paleozoic-Early Jurassic fringing arc 
complex represented by disrupted arc and oceanic 
assemblages of Cache Creek affinity (Figure 1) and 
generally inboard island arc sequences (McCloud belt) 
[Miller, 1987, and references therein]. The pre-Middle 
Jurassic position of the Stikine terrane relative to rocks 
of Cache Creek affinity is uncertain (compare Wernicke 
and Klepacki [1988] and Oldow et al. [1989]). We 
assume that it occupied its present position relative to 
inboard terranes by Late Jurassic time. On the basis of 
evidence for imbrication of the Alexander and Yukon- 

Tanana terranes and widespread deformation within the 
AWP, we conclude that the AWP was involved in Middle 
Jurassic deformation and accretion observed along the 
Cordilleran margin. 

UPPER JURASSIC-LOWER CRETACEOUS BASINAL 

ASSEMBLAGES 

Variably deformed Upper Jurassic-Lower Cretaceous 
basinal assemblages are preserved along the AWP suture 
zone from southern Alaska to southern British Columbia 

and along the Cordilleran margin at least as far south as 
the Klamath-Sierra Nevada region (Figure 1). Individual 
assemblages differ in pre-Upper Jurassic basement rocks, 
provenance, and detailed stratigraphy, but a common 
evolution and tectonic setting are inferred from the 
general similarity in age and lithologic character. 

Alaska-Northwestern Canada 

Southern Alaska. The Kahiltna terrane (Figure 1) 
includes Kimmeridgian to Valanginian volcaniclastic 
turbidites of the Koksetna River sequence (Figure 2a) 
[Wallace et al., 1989] and clastic strata as young as 
Cenomanian that are structurally intermixed with small 
blocks of Triassic and older strata of uncertain origin 
[Jones et al., 1982]. The Koksetna River sequence 
apparently was derived from and deposited on the 
Peninsular terrane [Wallace et al., 1989]. At its southern 
margin, the Kahiltna terrane is separated from the 
Wrangellia and Peninsular terranes by southeast dipping 
mid-Cretaceous thrust faults [e.g., Csejtey et al., 1982; 
Nokleberg et al., 1985]. The Kahiltna terrane is 
currently juxtaposed with the Yukon-Tanana and other 
terranes to the north along the Denali, Hines Creek, and 
Chilchitna faults (Figure 1). Depositional ties between 
the Kahiltna basin and the northern terranes have not 

been documented. Stanley et al. [1990] suggested that 
the Wrangellia and Kahiltna terranes were underthrust 
beneath the Yukon-Tanana terrane to the north during 
mid-Cretaceous time. Significant pre-Late Cretaceous 
(pre-95 Ma) displacement along the Hines Creek fault 
[Wahrhaftig et al., 1975] indicates that mid-Cretaceous 
contractional deformation was accompanied by dextral 
strike-slip translation. 

Eastern Alaska. OxfordJan to Barremian volcaniclastic 

turbidites of the Nutzotin Mountains sequence in eastern 
Alaska (Figures 1 and 2b) unconformably overlie and 
were in part shed from Wrangellia [Berg et al., 1972]. 
These rocks, apparently deposited in a northeastward 
deepening basin, are overlain by Lower Cretaceous arc 
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volcanic and volcaniclastic rocks of the Chisana 

Formation that may record east directed subduction 
beneath the outboard margin of the AWP [Berg et al., 
1972; Barker, 1988]. Similar but unfossiliferous volcanic 
and volcaniclastic strata along the Denali fault mark the 
northwestern continuation of this belt [Nokleberg et al., 
1985]. 

The Dezadeash Formation, exposed northeast of the 
Denali fault in Yukon (Figure 1), comprises Oxfordian to 
Valanginian argillite and graywacke turbidites (Figure 2c) 
that were derived from a source area to the southwest 

and are likely correlative with the Nutzotin Mountains 
sequence [Eisbacher, 1976]. The Dezadeash strata are 
structurally overlain to the northeast by the Kluane schist 
which may have been in part derived from the 
Dezadeash turbidites. We infer that metamorphism and 
imbrication of the Kluane schist and Dezadeash 

Formation are related to mid-Cretaceous deformation 

similar to that observed in southern and southeastern 

Alaska. Stratigraphic relationships between the 
Dezadeash Formation and inboard terranes (Yukon- 
Tanana) have not been demonstrated. 

Southeastern Alaska. The Gravina belt in 

southeastern Alaska (Figure 1) includes OxfordJan to 
Albian (and possibly Cenomanian) argillite, volcanic- 
lithic graywacke turbidites, and minor conglomerate 
(Figure 2d) [Berg et al., 1972; Brew and Karl, 1988; 
Gehrels et al., 1992]. Mafic volcanic rocks are 
dominantly Early Cretaceous in age [e.g., Brew and Karl, 
1988; Gehrels et al., 1992] but are in part of probable 
Late Jurassic age [e.g., Rubin and Saleeby, 1991b; 
McClelland et al., 1992a]. Berg et al. [1972] and most 
subsequent workers concluded that the Gravina belt 
depositionally overlies the Alexander terrane. To the 
east, the Gravina belt is separated from the Yukon- 
Tanana, Stikine, and Taku terranes by east dipping mid- 
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Cretaceous thrust faults [Gehrels et al., 1990, 1992; 
Rubin et al., 1990; Rubin and Saleeby, 1992; McClelland 
et al., 1992b]. Gravina strata reportedly depositionally 
overlie the Taku terrane [Rubin and Saleeby, 1991a] and 
detrital zircon studies suggest that the Gravina belt 
received detritus from and therefore may have 
depositionally overlain the Yukon-Tanana and Stikine 
terranes [Gehrels and Greig, 1991]. 

The Gravina-Nutzotin belt is inferred to have been 

deposited in an intra-arc basinal setting [Berg et al., 
1972; Rubin and Saleeby, 1991b; McClelland et al., 
1992a]. Late Jurassic and Early Cretaceous plutons 
representing intrusive components of the arc system 
intruded the Wrangellia and Alexander terranes in 
southeastern Alaska [Berg et al., 1972; Gehrels and Berg, 
1988]. In southern Alaska and Yukon, the arc is 
expressed as the Tonsina-Chichagof belt [Hudson, 1983] 
and Saint Elias suite [Dodds and Campbell, 1988]. 
Tithonian-Valanginian components of the Chugach 
terrane including the McHugh Complex in southern 
Alaska are preserved outboard of the AWP as scattered 
fragments along the Border Ranges fault (Figure 1). 
These fragments are interpreted as remnants of the 
accretionary complex associated with the west facing 
Gravina-Nuzotin arc [Berg et al., 1972; Pavlis, 1982; 
Gehrels and Berg, 1988; Plafker et al., 1989]. Likely 
candidates for the northern or western continuation of 

the basinal arc complex include Late Jurassic-Early 
Cretaceous arc fragments in the Togiak, Nyac, and 
Koyukuk terranes in western Alaska (Figure 1) [Box and 
Patton, 1989; Plafker et al., 1989; Wallace et al., 1989]. 

Central British Columbia. Clastic strata that are 

probably correlative with the Gravina belt are observed 
west of the Coast Mountains batholith as far south as 

the Prince Rupert region (Figure 1) [Woodsworth and 
Orchard, 1985; Crawford et al., 1987]. Extension of 
these rocks into the batholith at this latitude has been 

proposed through correlation of the Khutzeymateen 
Group with the Gravina belt [Douglas, 1986]. This 
correlation is tenuous since quartzite observed in this 
sequence is characteristic of rocks equivalent to the 
Yukon-Tanana terrane in the Prince Rupert region [M. 
L. Crawford, personal communication, 1988; Gareau, 
1991] rather than the Gravina belt. Late Jurassic and 
Early Cretaceous plutons representing the southern 
continuation of the Gravina arc are observed south of 

Prince Rupert [van der Heyden, 1992] and on the Queen 
Charlotte Islands (Figure 1) [Anderson and Greig, 1989]. 
Tithonian to Upper Cretaceous clastic strata on the 
Queen Charlotte Islands are inferred to have been 

deposited in a forearc setting, west of the Early 
Cretaceous arc [Haggart, 1991; Lewis et al., 1991]. An 
influx of Upper Cretaceous conglomerates (Honna 
Formation) likely reflects uplift of the Coast Mountains 
due to mid-Cretaceous crustal thickening [Higgs, 1990, 
and references therein]. 

Middle Jurassic (Bathonian) to Cenomanian marine 
and nonmarine clastic and minor volcanic rocks are 

preserved east of the Coast Mountains in the Bowset 
Basin (Figure 1) [Evenchick, 1991, and references 
therein]. This sequence was likely deposited in a 
foredeep formed in response to Middle Jurassic west 
directed emplacement of the Cache Creek terrane on the 
Stikine terrane [e.g., Eisbacher, 1985]. Bathonian to 
Kimmeridgian and Hauterivian to Albian volcaniclastic 
and volcanic rocks along the western margin of the 
Bowser Basin [Anderson, 1989; Bassett, 1991] may record 
proximity of the basin to the Late Jurassic-Early 
Cretaceous arc developed on the AWP to the west. 

Southern Coast Mountains, Cascades, and San Juan 
Islands 

Upper Jurassic-Lower Cretaceous strata in the 
southern Coast Mountains, northwest Cascades, and the 
San Juan Islands are generally coeval but vary in 
stratigraphy and basement character. They are divided 
into (1) the Tyaughton-Methow basin which is likely tied 
to the Stikine and inboard terranes, (2) strata associated 
with varied Middle Jurassic and older arc terranes in the 

southern Coast Mountains and northern Cascades, and 
(3) a western assemblage associated with disrupted 
complexes and Middle-Late Jurassic ophiolitic rocks in 
the San Juan Islands and western Cascades (Figure 1). 

Tyaughton-Methow basin. The Tyaughton and 
Methow basins, offset approximately 100 km by dextral 
displacement on the Fraser-Straight Creek fault system 
(Figure 1) [Price et al., 1985; Kleinspehn, 1985], include 
OxfordJan to Albian volcaniclastic sandstone, siltstone, 
argillite, and conglomerate with minor andesitic volcanic 
rocks (Figures 2e and 2f) [Garver, 1989; Umhoefer, 1989; 
McGroder et al., 1990, and references therein]. 
Callovian Tyaughton strata apparently depositionally 
overlie the Cadwallader terrane [Rusmore et al., 1988] 
which is correlative with the Stikine terrane [Umhoefer, 
1990; Rusmore and Woodsworth, 1991]. Oxfordian and 
younger strata in the Methow basin are separated from 
adjacent terranes by the Ross Lake, Hozameen, and 
Pasayten faults. Lithologic similarities between Lower to 
Middle Jurassic strata in the Methow basin (Ladner 
Group) and coeval strata to the east (Ashcroft 
Formation) [Monger, 1986; McGroder, 1991] suggest 
deposition of Upper Jurassic and younger Methow strata 
on or at least near the accreted Quesnellia, Stikine, and 
Cache Creek terranes. Strata within the Tyaughton and 
Methow basins were apparently derived from an eastern 
source until Albian time [e.g., Kleinspehn, 1985] although 
Jeletzky and Tipper [1968] suggested that Hauterivian 
strata in the Tyaughton basin were in part westerly 
derived. Clastic rocks in the western Tyaughton basin 
interfinger with Lower Cretaceous volcanic rocks 
indicating that the Tyaughton basin may have been 
bounded by a volcanic arc to the west [Garver et al., 
1988]. A major change in Tyaughton-Methow 
sedimentation in Albian time reflected by a double-sided 
(west and east) infilling of coarse clastic material 
[Garver, 1989] was coincident with the development of 
the mid-Cretaceous eastern Cascades fold belt 

[McGroder, 1989]. 
Southern Coast Mountains and north central Cascades. 

Mafic and minor felsic volcanic rocks, volcaniclastic 
graywacke, and argillite of the Gainbier assemblage 
(including the Nooksack Group) range from Oxfordian to 
Albian in age [e.g., Misch, 1966; Wheeler and McFeely, 
1987; Woodsworth and Monger, 1992]. Gambler strata 
in the southern Coast Mountains and northern Cascades 

occur as fault slices in a west-vergent mid-Cretaceous 
thrust system [e.g., Misch, 1966; Brandon et al., 1988; 
Journeay, 1990]. Oxfordian to Valanginian volcaniclastic 
rocks and Lower Cretaceous volcanic rocks west of 

Harrison Lake (Figure 2g) [Arthur, 1986; Monger, 1989] 
stratigraphically overlie the Middle Jurassic Harrison 
Lake Formation which is likely correlative with strata in 
Wrangellia [Friedman et al., 1990]. Hauterivian- 
Barremian arc-type volcanic and volcaniclastic rocks, 
largely preserved as pendants, are widespread across the 
Coast Mountains [Woodsworth and Monger, 1992]. 
Gainbier strata in the east central Coast Mountains are 



828 McClelland et al.: Basinal Strata on the Cordilleran Margin 

juxtaposed against the Stikine terrane along east-vergent 
Late Cretaceous thrust faults [Crawford et al., 1987; 
Rusmore and Woodsworth, 1989; van der Heyden, 1992] 
such that primary stratigraphic relationships between the 
Stikine terrane and Gambler assemblage are uncertain. 
Lower Cretaceous calc-alkaline volcanic rocks in the 

Gambier assemblage and Late Jurassic (165-145 Ma) and 
Early Cretaceous (120-114 Ma) plutons [Armstrong, 
1988; Friedman, 1989; van der Heyden, 1992] in 
Wrangellia mark the southern continuation of the 
Gravina arc. In the Whitesail Lake region (Figure 1), 
Late Jurassic plutons intrude metamorphic rocks likely 
derived from the Stikine terrane and thus provide an 
additional Late Jurassic link between the AWP and 

Stikine terranes [van der Heyden, 1992]. We infer that 
the Gambler arc evolved along the eastern edge of 
Wrangellia and western margin of the Tyaughton- 
Methow basin on the Stikine and Quesnellia terranes. 

San Juan Islands. Upper Jurassic-Lower Cretaceous 
strata comprising the Constitution Formation, Lummi 
Group, and Spieden Group are preserved in thrust slices 
of the mid-Cretaceous northwest Cascades-San Juan 

thrust system (Figure 1). Although these units and their 
basement assemblages are fault-bounded, most are 
similar to other components in the Cordillera. 

The Decatur terrane includes the Fidalgo Complex 
and Lummi Group (Figure 2h) [Garver, 1988a, and 
references therein]. Back-arc ophiolitic basement of the 
Fidalgo Complex is intruded by arc-related plutons and 
overlain by volcanic rocks of Callovian to Oxfordian age 
[Brandon et al., 1988; Garver, 1988a]. The volcanic 
sequence is interlayered with and overlain by Oxfordian 
to Tithonian argillite, chert, and volcaniclastic rocks that 
are in turn unconformably overlain by Tithonian to 
Valanginian volcaniclastic strata of the Lummi Group 
[Garver, 1988a]. The Fidalgo Complex and similar 
ophiolitic complexes in the western and central Cascades 
[Whetten et al., 1980; Miller, 1985] may have evolved as 
small pull-apart segments along transform faults [e.g., 
Brandon et al., 1988]. Direct correlation of the Lummi 
Group-Fidalgo Complex with the Great Valley sequence- 
Coast Range ophiolite (described below) proposed by 
Garver [1988b] implies significant northward translation 
of the Fidalgo Complex during Hauterivian to Aptian 
time. Similar northward translation has been proposed 
for blueschist-grade metamorphic rocks of the Shuksan 
metamorphic suite in the Cascades [Brown and Blake, 
1987] and clastic rocks of the western m61ange belt in 
the western Cascades [Jett and Heller, 1988]. 

The Constitution Formation consists of Upper 
Jurassic-Lower Cretaceous volcaniclastic sandstone, 
mudstone, chert, and minor pillow basalt (Figure 2i) 
[Brandon et al., 1988]. Although currently fault- 
bounded, the presence of detritus and slide blocks likely 
shed from adjacent terranes in the San Juan Islands and 
northern Cascades suggests deposition of the sequence 
near the Cordilleran margin [Brandon et al., 1988]. The 
Constitution Formation is similar to the Pacific Rim 

Complex and Pandora Peak unit on Vancouver Island 
[Rusmore and Cowan, 1985; Brandon, 1989], western 
m61ange belt in the western Cascades (see Tabor et al. 
[1989] for review), Rimrock Lake inlier in the southern 
Cascades [Miller, 1989], and Yolla Bolly terrane (part of 
the Franciscan Complex) in southwestern Oregon and 
California [e.g., Blake et al., 1985]. Although distinct in 
stratigraphic detail, most of these assemblages are 
associated with or contain detritus from Late Jurassic arc 

complexes. The m61anges are inferred to have formed in 

a complex dextral strike-slip fault system active in the 
forearc region of the Early Cretaceous arc along the 
Cordilleran margin [e.g., Rusmore and Cowan, 1985; 
Brandon, 1989]. 

Oxfordian to Hauterivian volcaniclastic strata, breccia 
and conglomerate of the Spieden Group were deposited 
within or adjacent to a Late Jurassic arc complex (Figure 
2j) [Johnson, 1981]. The Spieden Group presently lies 
within the footwall of the San Juan thrust system, but 
correlation of these rocks with Wrangellia is uncertain 
[Brandon et al., 1988]. Callovian to Albian clastic rocks 
of Wrangellia on Vancouver Island (Figure 1) lack 
evidence for coeval arc volcanism and may be in part 
correlative with forearc strata on the Queen Charlotte 

Islands [Muller et al., 1981]. Similarities with coeval 
rocks in the Harrison Lake region [Johnson, 1981] 
suggest that the Spieden Group was deposited along the 
western flank of the Gambier arc. 

Blue Mountains Region 

Callovian to Oxfordian turbidites in the Blue 

Mountains region (Figure 1) overlie Middle Jurassic 
forearc deposits and older arc assemblages in the 
Wallawa (also Seven Devils) and Izee terranes [Vaillet, 
1977; Dickinson and Thayer, 1978]. Late Jurassic-Early 
Cretaceous basinal rocks are absent in this region, 
presumably due to Late Jurassic deformation [e.g., Av6 
Lallemant, 1992] that was followed by emplacement of 
Early Cretaceous (144 Ma and younger) arc-related 
plutons (N. W. Walker, personal communication, 1992). 
Widespread deposition of Albian to Cenomanian 
synorogenic conglomerate reflects mid-Cretaceous 
deformation [Lund and Snee, 1988, and references 
therein]. 

Sierra Nevada-Klamath Mountains Region 

Upper Jurassic-Lower Cretaceous basinal strata in 
the Klamath Mountains and western Sierra Nevada 

region include the Galice and Mariposa formations, 
Great Valley sequence, and Myrtle Group (Figure 1). 
These clastic strata are typically underlain by Middle- 
early Late Jurassic ophiolites and coeval volcanic arc 
complexes. In the Klamath Mountains, the Galice 
Formation and related units consist of argillite, 
volcaniclastic graywacke, and minor conglomerate and 
chert of late Oxfordian-early Kimmeridgian to latest 
Jurassic age (Figure 2k) [e.g., Harper and Wright, 1984; 
Wyld and Wright, 1988]. This sequence and its probable 
equivalents depositionally overlie the 161-164 Ma 
Josephine and Devils Elbow ophiolites [Saleeby, 1982, 
1992; Harper and Wright, 1984; Wright and Wyld, 1986; 
Wyld and Wright, 1988] and possibly the Preston Peak 
mafic complex [Snoke, 1977]. In addition, the clastic 
rocks interfinger with and overlie the Rogue arc 
sequence [Garcia, 1982]. Oxfordian to lower 
Kimmeridgian slate, graywacke, and argillite in the 
western Sierra Nevada foothills region (Mariposa 
Formation) typically contain abundant chert and 
metamorphic clasts but at least locally contain a 
significant volcanic component (Figure 21) [Saleeby, 1986; 
Sharp, 1988]. These rocks overlie and interf'mger with 
Callovian to lower OxfordJan volcanic rocks deposited 
within an extensional arc constructed on Middle Jurassic 

and older ophiolite m61ange basement of the Sierran 
foothills and Calaveras chert and argillite m61ange 
[Saleeby and Busby-Spera, 1992, and references therein]. 
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Upper Tithonian to Valanginian turbiditic strata of the 
basal Great Valley sequence overlie OxfordJan to 
Tithonian pelagic, volcanic, and volcaniclastic rocks and 
the 170-160 Ma Coast Range ophiolite (Figure 2m) [e.g., 
Hopson et al., 1981, 1991]. The turbidites are dominated 
by chert and metamorphic detritus shed from the 
adjacent Cordilleran margin [Dickinson and Rich, 1972; 
Ingersoll, 1983; Seiders, 1988]. The Wild Rogue 
ophiolite and overlying arc-type volcanic rocks and Upper 
Jurassic-Lower Cretaceous clastic strata (Myrtle Group) 
in southwestern Oregon (Figure 1) are similar to the 
Coast Range ophiolite and Great Valley sequence [Blake 
et al., 1985; Saleeby, 1992]. 

Middle to Late Jurassic ophiolites and extensional arc 
complexes in the Klamath-Sierra Nevada region are 
interpreted to have formed in a forearc to intra-arc and 
interarc transtensional rift system beginning at 
approximately 170 Ma (Bathonian) and continuing to 
early Oxfordian time [Saleeby, 1992, and references 
therein]. Most of the ophiolites are clearly associated 
with arc complexes but some ocean floor remnants, such 
as the Point Sal (southern Coast Range) ophiolite, are 
separated from overlying arc-related rocks by a 
substantial hiatus and remained distal to arc 

sedimentation [Hopson et al., 1991]. Arc volcanics were 
typically onlapped by turbiditic strata between Oxfordian 
and Tithonian time. Late Jurassic deformation in the 

Klamath-Sierra Nevada region terminated clastic 
deposition of the Galice and Mariposa Formations and is 
reflected by a change in basin geometry and deposition 
of the lower Great Valley sequence. 

OVERVIEW OF THE UPPER JURASSIC-LOWER 

CRETACEOUS BASINAL ASSEMBLAGES 

Upper Jurassic-Lower Cretaceous basinal assemblages 
along the Cordilleran margin from southern Alaska to 
southern California are divided into three main groups 
based on their basement character: (1) those deposited 
on the eastern edge of the AWP, (2) those deposited on 
inboard terranes that were accreted to North America 

prior to Late Jurassic time, and (3) those deposited on 
Middle-Late Jurassic ophiolitic basement or pre-Late 
Jurassic accretionary complexes. Despite variance in 
local provenance, stratigraphy, and basement type, the 
basinal assemblages share several common elements: (1) 
sedimentation in all of the basins initiated or changed in 
character during Oxfordian-Kimmeridgian time, (2) 
deposition of arc-type volcanic rocks or detritus shed 
from coeval arc complexes in many of the basins during 

Oxfordian-Albian time, and (3) clastic sedimentation in 
all of the basins changed in character during mid- 
Cretaceous time. Products of Late Jurassic-Early 
Cretaceous arc magmatism are preserved in the AWP, 
southwestern Stikine terrane, and the Klamath-Sierra 
Nevada region. The clastic basins are inferred to have 
evolved in close association with this arc system which 
records northeast directed subduction along the 
Cordilleran margin from Late Jurassic to mid-Cretaceous 
time [e.g., Engebretson et al., 1985]. 

ACCRETIoNARY HISTORY OF THE AWP 

The following section discusses a geologically 
reasonable scenario for the Middle Jurassic accretion and 

northward migration of the AWP along the Cordilleran 
margin during Late Jurassic-Early Cretaceous time. It is 
by no means a unique solution to the accretion of the 

AWP and is similar in some aspects to models presented 
by Saleeby and Gehrels [1988], Brandon et al. [1988], 
Pavlis [1989], Plafker et al., [1989], Wallace et al. [1989], 
van der Heyden [1992], Burchild et al. [1992], Saleeby 
and Busby-Spera [1992], and others. 

As outlined above, paleobiogeographic and 
paleomagnetic data suggest that the AWP was 
considerably south of its present location with respect to 
North America in Late Triassic time and migrated 
northward during Late Triassic-Middle Jurassic time. 
Accretion of the AWP to the Cordilleran margin prior to 
Late Jurassic time is suggested by (1) imbrication of the 
Alexander and Yukon-Tanana terranes and deformation 

within the AWP prior to deposition of Oxfordian strata 
in the Gravina basin [McClelland and Gehrels, 1990; 
Saleeby and Rubin, 1990], (2) emplacement of Late 
Jurassic arc-related plutons in both the Wrangellia and 
Stikine terranes [Armstrong, 1988; van der Heyden, 
1992], (3) the presence of detritus derived from the 
Yukon-Tanana and Stikine terranes in the Gravina belt 

[Gehrels and Greig, 1991] and clasts derived from the 
Quesnellia-equivalent(?) Chilliwack terrane in Middle 
Jurassic Wrangellia-equivalent strata beneath the 
Gambier assemblage in the Harrison Lake region 
[Monger, 1989; Friedman et al., 1990]. Since there is 
currently no evidence for a subduction complex 
separating the AWP and Stikine terrane, we conclude 
that the initial Middle Jurassic AWP-Cordilleran margin 
juxtaposition resulted from either oblique subduction 
along the margin south of the Stikine terrane followed by 
northward displacement along a dextral strike-slip fault 
system or migration of the AWP along the Cordilleran 
margin as a forearc fragment above a coeval east dipping 
subduction zone (see Saleeby and Busby-Spera [1992] for 
discussion). Oblique or transpressional accretion of the 
AWP, most likely along the paleo-Oregon-Washington 
margin, was apparently synchronous with Middle Jurassic 
accretion of the Stikine and inboard terranes. Middle 

Jurassic contractional deformation in the Klamath-Sierra 

Nevada region may record accretion of the southern 
AWP terrane [Saleeby and Busby-Spera, 1992]. 
Following Butler et al. [1989], we favor Middle Jurassic 
accretion of the AWP and Stikine terrane within 1000 

km of their present position with respect to North 
America rather than >_2400 km to the south as implied 
by the Baja British Columbia model of Umhoefer [1987]. 

Closely following accretion of the AWP, arc 
magmatism in all but the westernmost portion of the 
Stikine terrane ceased [Armstrong, 1988] and Late 
Jurassic arc magmatism apparently shifted westward to 
the AWP (Figure 3a). This westward shift likely reflects 
initiation or resumption of east directed subduction 
outboard of the AWP that is recorded by the oldest 
accretionary complex fragments preserved in the Chugach 
terrane. The Late Jurassic arc constructed on the AWP 

and Stikine terranes mark the northern continuation of 

the Late Jurassic Klamath-Sierra Nevada arc. Along the 
southern segment of the arc, Callovian to early 
Oxfordian interarc to forearc ophiolite complexes evolved 
within a dextral transtensional regime during or 
immediately following AWP accretion (Figure 3a) 
[Saleeby, 1992]. The ophiolites and their overlying 
pelagic and volcanic cover moved rapidly northward in 
early Late Jurassic time [Hopson et al., 1991; Pessagno 
and Blome, 1990] within the margin-parallel transform 
system. The dextral fault system is inferred to have 
extended northward along the AWP-Cordilleran margin 
suture zone utilizing the pre-Late Jurassic accretion- 
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related structures. Clastic basins along the inboard 
margin of the AWP likely evolved in this early Late 
Jurassic dextral regime. Regions east of the AWP were 
apparently affected as well: the Bowser basin is inferred 
to have evolved during a period of dextral transtension 
within the Stikine terrane [Greig et al., 1991] and Late 
Jurassic plutons east of the Omenica belt were emplaced 
in a dextral regime [Vogl and Simony, 1991]. 

Marine clastic sedimentation beginning in Oxfordian 
time reflects the evolution of transtensional basins along 
the Cordilleran margin (Figure 3a). Deposition in 
ophiolite-floored basins south of the AWP is recorded by 
Oxfordian to Kimmeridgian turbiditic strata that typically 
interfinger with or overlie arc-related volcanic rocks or 
contain a significant component of arc-derived detritus. 
The Constitution and similar assemblages were likely 
deposited in forearc basins that evolved within the 
ophiolite basin framework south of the AWP. 
Concurrent with establishment of a Late Jurassic arc on 

the AWP, Upper Jurassic strata were deposited along the 
inboard AWP margin in the Kahiltna and Gravina- 
Nutzotin basins. Upper Jurassic volcaniclastic rocks in 
the Harrison Lake region (Gambler assemblage) and San 
Juan region (Spieden Group) were deposited in proximity 
to the southern extension of the AWP arc complex. The 
Tyaughton-Methow and Bowset basins continued to 
evolve east of the Late Jurassic arc. Depositional 
continuity between the northern basins (e.g., Gravina- 
Nutzotin-Bowser-Tyaughton-Methow basin of Eisbacher 
[1985]) was likely but is not demonstrable. Establishing 
original basin widths is not possible due disruption 
resulting from mid-Cretaceous and younger deformation 
inboard of the AWP. 

Arguments for left-lateral shear within and along the 
margin of the Cordillera during Late Jurassic to Early 
Cretaceous time are presented by Engebretson et al. 
[1985], Av6 Lallemant and Oldow [1988], and May et al. 
[1989]. Saleeby and Busby-Spera [1992] and Plafker et 
al. [1989] discussed geologic evidence for latest Jurassic 
to earliest Cretaceous sinistral displacement along the 
southern Cordilleran margin and within Wrangellia, 
respectively. A return to northward translation of 
outboard terranes along the Cordilleran margin is 
recorded by Hauterivian to Aptian northward dispersal of 
the Decatur terrane from the Coast Range ophiolite- 
Great Valley sequence [Garver, 1988b] and Shuksan 
metamorphic suite from the Franciscan Complex [Brown 
and Blake, 1987]. Early Cretaceous (post-150 Ma and 
pre-110 Ma) dextral displacement along the Mojave- 
Snow Lake fault in eastern California [Lahren et al., 
1990] may have accommodated the northward translation 
of these fragments [Burchfiel et al., 1992]. 

Arc magmatism shifted eastward in Early Cretaceous 
time such that, with the exception of the Kahiltna 
terrane, Lower Cretaceous volcanic rocks are common to 

all of the assemblages along the eastern margin of the 
AWP and interfinger with clastic strata in the western 
exposures of the Tyaughton and Methow basins (Figure 
3b). Aptian-Cenomanian (•125-90 Ma) plutonic and 
volcanic rocks east of the Tyaughton-Methow basin 
[Greig, 1989; Thorkelson and Smith, 1989; Hurlow and 
Nelson, 1991] and Early Cretaceous blueschists in the 
Shuksan metamorphic suite in the northern Cascades 
[Armstrong and Misch, 1987] have been cited by 
numerous workers as evidence for Early Cretaceous arc 
magmatism (Spences Bridge arc) associated with east 
directed subduction and closure of a marginal basin east 
of the AWP [e.g., Monger, 1986; Thorkelson and Smith, 

1989]. Fundamental problems with this interpretation 
include evidence reviewed above supporting pre-Late 
Jurassic accretion of the AWP and the distinct lack of 

any structural evidence for an Early Cretaceous 
subduction zone within or adjacent to the Tyaughton- 
Methow basin. Early Cretaceous (130-120 Ma) Rb-Sr 
and K-Ar metamorphic ages for the Shuksan suite are 
alternatively interpreted to record variable mid- 
Cretaceous resetting of late Middle Jurassic (170-160 
Ma) blueschist metamorphic assemblages. We 
accordingly interpret the Spences Bridge arc to reflect 
eastward migration Gambler arc magmatism associated 
with a single subduction zone outboard of the AWP. 

East directed underthrusting of the AWP, Gravina- 
Nutzotin belt, and Kahiltna basin beneath the Yukon- 
Tanana and Stikine terranes and northwest directed 

imbrication in the northwest Cascades-San Juan thrust 

system in mid-Cretaceous time resulted in a regionally 
extensive thrust belt extending from southern Alaska to 
northwestern Washington [Rubin et al., 1990; Gehrels et 
al., 1992; McClelland et al., 1992b; Rubin and Saleeby, 
1992] (Figure 3b). Kinematic relations suggest that 
thrusting in the northwest Cascades-San Juan system may 
have occurred in a right-lateral transpressional setting 
[Brown, 1987; Brown and Talbot, 1989]. A similar 
setting is envisioned for the mid-Cretaceous 
underthrusting of the AWP in southeastern Alaska 
[Coney, 1989; McClelland et al., 1992b], although a 
sinistral component of underthrusting is locally recorded 
[Saleeby and Busby-Spera, 1992]. The thrust belt is 
coincident with a belt of high pressure mid-Cretaceous 
arc-type plutons that extends southward into the Blue 
Mountains region [Zen, 1988] which also experienced 
mid-Cretaceous crustal thickening possibly in a dextral 
regime [Lund and Snee, 1988]. 

Mid-Cretaceous deformation along the entire 
Cordilleran margin either terminated deposition in the 
marginal basins or is generally marked by a si,qmlficant 
unconformity beneath Albian or younger coarse clastic 
strata. Deformation along the inboard margin of the 
AWP was broadly synchronous with contraction in the 
Stikine terrane (Skeena fold belt of Evenchick [1991]) 
and Omenica belt [Archibald et al., 1983] (Figure 3b). 
In the southern Cordillera, west directed thrusts involving 
the Great Valley-Coast Range ophiolite and Franciscan 
Complex were broadly synchronous with contractional 
deformation in the Sevier orogenic belt [Lawton, 1985; 
Heller et al., 1986] and its hinterland [e.g., Miller and 
Gans, 1989] (Figure 3b). Thus deformation along the 
inboard margin of the AWP reflects involvement in a 
Cordilleran-wide contractional event related to a change 
in subduction zone parameters outboard of the AWP 
(e.g., increased coupling with the downgoing oceanic 
slab) rather than the collision of the AWP. 

CONCLUSIONS 

Discrepancies between models for the accretionary 
history of the AWP have for the most part centered on 
arguments favoring pre-Late Jurassic or mid-Cretaceous 
accretion or collision. Uncertainty concerning the AWP 
accretionary history largely results from extensive mid- 
Cretaceous and younger disruption, overprinting, and 
modification of possible pre-mid-Cretaceous accretion- 
related structures. On the basis of evidence outlined 

above, we conclude that the AWP was accreted to the 
Cordilleran margin during Middle Jurassic time. 
Regional similarities in the character and age of Late 
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Jurassic-Early Cretaceous marginal basins common to the 
AWP and Cordilleran margin reflect the Middle Jurassic 
accretion of the AWP. The basins are inferred to have 

evolved within or proximal to transtensional basinal arc 
complexes that record east directed subduction along the 
Klamath-Sierra Nevada margin and outboard margin of 
the AWP. Variations in stratigraphy and provenance 
observed between basins along the margin resulted from 
differences in basement composition and proximity to 
coeval arc volcanism as well as local variation in 

transtensional and transpressional displacement along the 
margin. A first-order difference between the northern 
and southern Cordillera resulted from the kinematic 

history of the AWP outlined herein. Post-Middle 
Jurassic evolution of the northern Cordillera was 

dominated by the presence of the AWP in a forearc 
position whereas to the south, a thinner belt of Middle 
to Late Jurassic interarc ophiolite-floored basins evolved 
and served as basement for the younger Great Valley 
forearc basin. 

Evidence for Middle Jurassic AWP accretion, 

involvement of the AWP in Late Jurassic-Early 
Cretaceous basinal evolution along the Cordilleran 
margin, and similarity in timing of mid-Cretaceous 
deformation throughout the Cordillera suggest that mid- 
Cretaceous deformation along the inboard margin of the 

AWP was related to a change in subduction zone 
parameters outboard of the AWP rather than its collision 
with the Cordilleran margin. In our view, accretion of 
the AWP was a protracted process of juxtaposition, 
translation, and imbrication that occurred from Middle 
Jurassic to mid-Cretaceous time. Although there are still 
many uncertainties regarding the proposed accretionary 
history of the AWP, the available evidence demands that 
the AWP was intimately involved in the Late Jurassic- 
Early Cretaceous evolution of the Cordilleran margin. 
This involvement must be incorporated into models 
concerning Mesozoic evolution of the Cordilleran margin. 
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