
Upper limit for the modulation bandwidth of a quantum dot laser
Levon V. Asryan and Robert A. Suris 

 
Citation: Applied Physics Letters 96, 221112 (2010); doi: 10.1063/1.3446968 
View online: http://dx.doi.org/10.1063/1.3446968 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/96/22?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Effect of excited states on the ground-state modulation bandwidth in quantum dot lasers 
Appl. Phys. Lett. 102, 191102 (2013); 10.1063/1.4804994 
 
Effect of internal optical loss on the modulation bandwidth of a quantum dot laser 
Appl. Phys. Lett. 100, 131106 (2012); 10.1063/1.3697683 
 
Carrier capture delay and modulation bandwidth in an edge-emitting quantum dot laser 
Appl. Phys. Lett. 98, 131108 (2011); 10.1063/1.3571295 
 
Theoretical study on high-speed modulation of Fabry-Pérot and distributed-feedback quantum-dot lasers: K -
factor-limited bandwidth and 10 Gbit  s eye diagrams 
J. Appl. Phys. 101, 013108 (2007); 10.1063/1.2407259 
 
Single-mode submonolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation
bandwidth 
Appl. Phys. Lett. 89, 141106 (2006); 10.1063/1.2358114 

 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.173.125.76 On: Tue, 01 Apr 2014 19:41:42

http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1920415291/x01/AIP-PT/APL_ArticleDL_032614/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Levon+V.+Asryan&option1=author
http://scitation.aip.org/search?value1=Robert+A.+Suris&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.3446968
http://scitation.aip.org/content/aip/journal/apl/96/22?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/102/19/10.1063/1.4804994?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/100/13/10.1063/1.3697683?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/98/13/10.1063/1.3571295?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/101/1/10.1063/1.2407259?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/101/1/10.1063/1.2407259?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/89/14/10.1063/1.2358114?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/89/14/10.1063/1.2358114?ver=pdfcov
borrego
Typewritten Text
Copyright by the AIP Publishing. Asryan, Levon V.; Suris, Robert A., "Upper limit for the modulation bandwidth of a quantum dot laser," Appl. Phys. Lett. 96, 221112 (2010); http://dx.doi.org/10.1063/1.3446968



Upper limit for the modulation bandwidth of a quantum dot laser
Levon V. Asryan1,a� and Robert A. Suris2,b�

1Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
2Ioffe Physico-Technical Institute, Saint Petersburg 194021, Russia

�Received 25 April 2010; accepted 17 May 2010; published online 4 June 2010�

We derive a closed-form expression for the upper limit for the modulation bandwidth of a
semiconductor quantum dot �QD� laser. The highest possible bandwidth increases directly with
overlap integral of the electron and hole wave functions in a QD, number of QD-layers, and surface
density of QDs in a layer, and is inversely proportional to the inhomogeneous line broadening
caused by the QD-size dispersion. At 10% QD-size fluctuations and 100% overlap, the upper limit
for the modulation bandwidth in a single QD-layer laser can be as high as 60 GHz. © 2010
American Institute of Physics. �doi:10.1063/1.3446968�

Due to the capability of direct modulation of the optical
output by electric current, semiconductor lasers are exten-
sively used in high-speed fiber networks. In quantum dot
�QD� lasers, the stimulated emission is produced in nanosize
regions confining the charge carriers in all three spatial
dimensions.1 A discrete energy spectrum of carriers in QDs
enables lasing with low threshold current2–4 and high
temperature-stability.5 The modulation bandwidth of QD la-
sers, however, needs to be enhanced.

In this work, we study the modulation bandwidth of
semiconductor lasers with a quantum-confined active region.
Although our analysis and derivations are general and apply
also to quantum well and quantum wire lasers, our focus here
is on a QD laser. We estimate the highest possible intrinsic
bandwidth attainable in a coupled electron-photon system of
a laser. For this purpose, we do not consider a transport delay
across the optical confinement layer �OCL� and a capture
delay from the OCL to the active region. For the same pur-
pose, we do not also consider the gain compression with
increasing optical power.

We use the small-signal analysis of rate equations.6–12

While we assume instantaneous carrier injection into the ac-
tive region, our model includes the carrier population and
recombination in the OCL. In the simplest model, three
equations are used—for carriers outside the active region �in
the OCL�, those in the active region, and photons. The as-
sumptions of no transport and capture delay effectively re-
duce the number of equations to two. These equations are

�

�t
��n� =

�j

eb
− �Rnon-stim − �Rstim, �1�

�

�t
��N

V
� = �Rstim − �Rloss, �2�

where �� . . . � means a small variation of � . . . �, n=nact+nOCL

is the total carrier density �including the active region and
OCL�, j is the injection current density, N is the number of
photons in the lasing mode, and b and V are the OCL thick-
ness and volume, respectively, Rnon-stim is the total rate of
nonstimulated recombination processes �including the active

region and OCL�, Rstim is the stimulated recombination rate,
and Rloss is the photon loss rate.

Assuming a small time-harmonic ac injection current
density �j=�jm exp�i�t� and correspondingly looking for
the solutions of Eqs. �1� and �2� in the form of �n
=�nm���exp�i�t� and �N=�Nm���exp�i�t�, we obtain for
the modulation response function

H��� = ��Nm���
�Nm�0�

�2

=
�0

4

��2 − �0
2�2 + 4�dec

2 �2 . �3�

The shape of H��� depends strongly on the dc compo-
nent j0 of the injection current density. For a certain range of
values of j0 �see below�, H��� has a peak �Fig. 1� obtained at

�peak = 	�osc
2 − �dec

2 = 	�0
2 − 2�dec

2 , �4�

where �osc and �dec are the angular frequency and decay rate
of relaxation oscillations,

�osc = 	�0
2 − �dec

2 , �5�

�dec =
1

2
� 1

�non-stim
dif + vg

Gdif

V
N0� , �6�

and �0 is given as
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FIG. 1. Response function in the ideal case of no carriers outside QDs at
different values of the dc component of the injection current density. In Figs.
1–4, a GaInAsP structure of Ref. 13 lasing at T=300 K near 1.55 �m is
considered. ZL=1, ��	�inhom=7 meV �10% QD-size fluctuations�, NS

=6.11
1010 cm−2, and Ioverlap=1; gmax=29.52 cm−1 and Gact
dif =1.36


10−14 cm2. The cavity length L=1.139 mm. At these parameters,
�−3 dB

max /2�=20 GHz and jopt=601 A /cm2 �see also Fig. 2�.
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�0 =	vg
Gdif

V
N0

1

�ph
. �7�

In the above equations, vg is the group velocity of light,
N0 is the dc number of photons in the lasing mode, which is
related to j0 by the steady-state light-current characteristic,
�ph= �L /vg� / ln�1 /R� is the photon lifetime in the cavity, L is
the cavity length, and R is the mirror reflectivity.

The effective differential gain Gdif is calculated as the
derivative of the modal gain g with respect to the total car-
rier density n=nact+nOCL,

Gdif =
�g

�n
=

�nact

�n
Gact

dif � Gact
dif , �8�

where Gact
dif =�g /�nact. Due to the fact that �nact /�n�1, Gdif

�Gact
dif and, as discussed below, the practically achievable

modulation bandwidth of the laser can be significantly re-
duced.

In Eq. �6�, the effective differential non-stimulated re-
combination time �non-stim

dif = ��Rnon-stim /�n�−1 is expressed in
terms of such times in and outside the active region.

The most important dynamic characteristic is the 3 dB
bandwidth �referred to as the modulation bandwidth
�−3 dB /2� here�—the frequency at which the response func-
tion H��� has fallen to half its dc ��=0� value. The equation
for �−3 dB is

�−3 dB = 	�peak
2 + 	�peak

4 + �r − 1��0
4, �9�

where r=100.3
1.995.
The relaxation oscillations are only possible ��osc should

be real—see Eq. �5�� for a certain range of values of N0, i.e.,
of dc component j0 of the injection current density. For such
j0, �osc increases from zero, approaches its maximum value,
and then decreases to zero �Fig. 2�. The peak of the response
function also exists for its own range of j0 ��peak should be
real—see Eq. �4��; �peak behaves similarly to �osc with in-
creasing j0 �Fig. 2�—what this means is, at a certain j0, the
peak of H��� appears at �peak=0, then it moves to higher
frequencies with increasing j0, and then moves back to lower
frequencies and finally disappears at �peak=0 �Fig. 2�. At j0
value, at which the peak of H��� disappears, �osc is maxi-
mum �Fig. 2�.

As a function of j0, the modulation bandwidth also has a
maximum �Fig. 2�. The maximum of �−3 dB is obtained at
approximately the same value jopt of j0, at which the peak of
the response function disappears �Fig. 2�. At j0= jopt, H��� is

most flat �Fig. 1�; although �osc is maximum at j0= jopt, the
relaxation oscillations are strongly damped at this current
��dec=�osc

max
1 /�ph—see Fig. 2�. On further increase in j0
beyond jopt, �−3 dB decreases and asymptotically approaches
its saturation value �−3 dB � j0→�
1 /�ph. The maximum val-
ues of �peak, �osc, and �−3 dB are all controlled by the recip-
rocal photon lifetime in the cavity,

�−3 dB
max 
 	2�osc

max 
 	2�	2�peak
max� 


	2

�ph
= 	2

vg

L
ln

1

R
.

�10�

The shorter the cavity, the higher �−3 dB
max . The shortest

cavity length Lmin is controlled by the maximum modal gain
gmax through the lasing condition �equality of the loss to the
gain�,

1

Lminln
1

R
= gmax. �11�

Using Lmin for L in Eq. �10�, we find that the highest
possible bandwidth increases directly with gmax and is not
affected by the differential gain Gdif,

�−3 dB
highest = 	2vggmax. �12�

While �−3 dB
highest is controlled by merely gmax, and �−3 dB

max by
L, the optimum current densities jopt, at which they are ob-
tained, are controlled by Gdif as well. Indeed, the condition
for the maximum bandwidth ��peak=0� is obtained when
�0

2=2�dec
2 —see Eq. �4�. As seen from Eqs. �6� and �7�, both

�0 and �dec are controlled by the product of N0 and Gdif.
Hence, the lower Gdif, the higher will be the photon number
N0=N0

opt, at which �0
2=2�dec

2 , i.e., the higher will be jopt. As
a result, the practically achievable bandwidth will be reduced
compared to Eq. �12� and even Eq. �10�.

The above analysis and equations are general and apply
to semiconductor lasers with any type of a quantum-confined
active region assuming that the carrier transport to and ex-
change with the latter are instantaneous. In what follows, we
focus on QD lasers. Using the expression for gmax for a QD
laser,13,14 we obtain from Eq. �12�

1

2�
�−3 dB

highest =
2

3
	2�

�

	�g
�P

�
�2� �0

	�

1

L�

IoverlapZLNS

�

��	�inhom
, �13�

where �=1 /	2� or 1 /� for Gaussian or Lorentzian QD-size
distributions, respectively, �=e2 /�c is the fine structure con-
stant, 	�g and 	� are the group and refractive indices of the
dispersive OCL material, P is Kane’s parameter �P /� has the
dimension of a velocity—see Eq. �3� in Ref. 13�, �0 is the
lasing wavelength, L is the characteristic length of the light
confinement in the transverse direction in the waveguide �see
Eq. �9� in Ref. 15�, Ioverlap is the overlap integral of the elec-
tron and hole wave functions in a QD, ZL is the number of
QD-layers, NS is the surface density of QDs in one layer, and
��	�inhom is the inhomogeneous line broadening �measured
in units of energy� caused by the QD-size dispersion.

The absence of carriers in the OCL would be the best-
case scenario not only for the threshold and power charac-
teristics but for the modulation characteristics as well. For
such an ideal case, Figs. 1 and 2 show the response function
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FIG. 2. Modulation bandwidth �−3 dB /2�, peak frequency of the response
function �peak /2�, relaxation oscillation frequency �osc /2�, �dec /2�, and
�0 /2� vs dc component of the injection current density in the ideal case of
no carriers outside QDs. The vertical dashed line marks jopt.
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and the modulation bandwidth �−3 dB /2� versus dc current
density j0. The parameters of a specific structure used for an
illustration of the results are presented in the caption to Fig.
1. As seen from the figures, �−3 dB

max is attained at a fairly low
jopt �601 A /cm2�. This is because Gdif is high in this case:
Gdif=Gact

dif =1.36
10−14 cm2.
Figure 3 shows the upper limit for the modulation band-

width �−3 dB
highest /2� versus maximum modal gain gmax in a

single QD-layer laser. The top axis illustrates the situation
when gmax is varied through changing Ioverlap. At 10% QD-
size fluctuations ���	�inhom=7 meV�, NS=6.11
1010 cm−2,
and ideal overlap of the electron and hole wave functions in
a QD �Ioverlap=1�, the maximum gain is gmax=29.52 cm−1,
and the shortest cavity length is Lmin=386 �m. At these pa-
rameters, the highest possible modulation bandwidth in a
single QD-layer laser is

�−3 dB
highest/2� 
 60 GHz. �14�

If the overlap is poor or the QD-size dispersion is large,
gmax will be low and so will be �−3 dB

highest /2�. Thus, gmax

=4.4 cm−1 and �−3 dB
highest /2�
9 GHz if Ioverlap=0.15. One

way to increase Ioverlap is the use of more symmetrical �e.g.,
truncated or disk-shape� QDs.14

As seen from Eq. �13�, the use of multiple layers with
QDs can effectively enhance the modulation bandwidth thus
compensating for a poor overlap of the electron and hole
wave functions in a QD or for a large QD-size dispersion.
The use of submonolayer QDs was also reported to allow for
a higher surface density NS of QDs in a layer.16

In the presence of carriers in the OCL, all the above
expressions hold. At the same time, Gdif �see Eq. �8�� is con-
siderably reduced as compared to Gact

dif. Due to this, �−3 dB
max

�and the more so �−3 dB
highest� becomes unattainable at practical

values of the pump current density in a single QD-layer laser.
In such a specific laser structure considered here, �nact /�n
=0.009, i.e., Gdif is about two orders of magnitude lower
than Gact

dif �see Eq. �8��: Gdif=1.27
10−16 cm2. Hence, the
photon number N0=N0

opt, at which �−3 dB
max is obtained �see the

discussion following Eq. �12��, is two orders of magnitude
higher than in the ideal case of no carriers in the OCL, and so

is jopt �64 kA /cm2�. Figure 4 shows the optimum dc current
density j0= jopt maximizing �−3 dB versus number of QD-
layers. While jopt is very high even for ZL=2, the use of four
or five layers makes �−3 dB

max practically attainable thus com-
pensating for the adverse effect of carriers in the OCL.

In conclusion, we derived a closed-form expression for
the upper limit for the modulation bandwidth of a QD laser.
The highest possible bandwidth increases with increasing
overlap integral of the electron and hole wave functions in a
QD, number of QD-layers and surface density of QDs in a
layer, and with reducing QD-size dispersion. At 10% QD-
size fluctuations and 100% overlap, the upper limit for the
bandwidth in a single QD-layer laser can be as high as 60
GHz.
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