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ABSTRACT

The recent discovery of an earth-like planet around Proxima Centauri has drawn much attention

to this star and its environment. We performed a series of observations of Proxima Centauri

using Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), the planet-finder

instrument installed at the European Southern Observatory (ESO) Very Large Telescope (VLT)

UT3, using its near-infrared modules, InfraRed Dual-band Imager and Spectrograph (IRDIS)

and IFS. No planet was detected directly, but we set upper limits on the mass up to 7 au

by exploiting the AMES-COND models. Our IFS observations reveal that no planet more

massive than ∼6–7 MJup can be present within 1 au. The dual-band imaging camera IRDIS

also enables us to probe larger separations than other techniques such as radial velocity or

astrometry. We obtained mass limits of the order of 4 MJup at separations of 2 au or larger,

representing the most stringent mass limits at separations larger than 5 au available at the

moment. We also made an attempt to estimate the radius of possible planets around Proxima

using the reflected light. Since the residual noise for the observations is dominated by photon

noise and thermal background, longer exposures in good observing conditions could improve

the achievable contrast limit further.

Key words: instrumentation: spectrographs – methods: data analysis – techniques: imaging

spectroscopy – stars: individual: Proxima Centauri – planetary systems.

1 IN T RO D U C T I O N

After the recent discovery of a terrestrial planet around the star

Proxima Centauri (Anglada-Escudé et al. 2016), new interest arose

in the nearest star system to the Sun. While this planet, which has

a separation of just 0.05 au with a period of 11.2 d and a minimum

mass of 1.3 M⊕, cannot be imaged with the current instrumentation

aimed at detecting the emitted light from extrasolar planets, e.g.

Gemini Planet Imager (GPI) (Macintosh et al. 2006) and Spectro-

Polarimetric High-contrast Exoplanet REsearch (SPHERE) (Beuzit

et al. 2008), it would, however, be interesting to have information

about further possible objects at larger separations to character-

ize the system fully. Exploiting direct imaging observations, it is

⋆ E-mail: dino.mesa@oapd.inaf.it

possible to put some constraints on the mass and radius of other

objects in the Proxima system. Similar work has been done

in the past, exploiting both the radial velocity (RV) technique

(Endl & Kürster 2008; Zechmeister, Kürster & Endl 2009; Barnes

et al. 2014) and astrometric measurements (Lurie et al. 2014), but

never exploiting direct imaging techniques. We have observed Prox-

ima repeatedly with SPHERE in the past months, with the aim of

obtaining precise astrometry of a background star that is undergo-

ing a microlensing event caused by the approach of Proxima (Sahu

et al. 2014). This star is clearly visible even when it is not undergo-

ing the microlensing effect. This will give us a unique opportunity to

measure the star mass directly (Zurlo et al., in preparation). How-

ever, the same data can be exploited to put some constraints on

the mass of possible objects around Proxima, after calculating the

contrast obtained from these observations.
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Published by Oxford University Press on behalf of the Royal Astronomical Society
Downloaded from https://academic.oup.com/mnrasl/article-abstract/466/1/L118/2842650/Upper-limits-for-mass-and-radius-of-objects-around
by California Institute of Technology user
on 28 September 2017

mailto:dino.mesa@oapd.inaf.it


Upper limits for objects around Proxima Cen L119

Table 1. SPHERE observations of Proxima Cen. DIT represents the time of each exposure expressed in seconds, while nDIT represents the

number of frames for each data cube of the data set.

Date Obs. mode Coronagraph nDIT;DIT(s) IRDIS nDIT;DIT(s) IFS Rot.Ang. (◦) Seeing (arcsec)

2015-03-30 IRDIFS N_ALC_YJH_S 3 × 12;16 3 × 12;16 3.12 0.93

2016-01-18 IRDIFS N_ALC_YJH_S 7 × 40;16 7 × 20;32 25.74 2.20

2016-02-17 IRDIFS N_ALC_YJH_S 11 × 10;16 11 × 5;32 13.52 1.86

2016-02-29 IRDIFS N_ALC_YJH_S 7 × 30;16 7 × 15;32 22.56 0.78

2016-03-27 IRDIFS N_ALC_YJH_S 5 × 40;16 5 × 25;32 25.69 2.08

2016-04-15 IRDIFS N_ALC_YJH_S 6 × 40;16 6 × 20;32 28.72 0.62

2 DATA A N D DATA R E D U C T I O N

Proxima Cen was observed during six different nights as part of the

Guaranteed Time Observations (GTO) programme of the SPHERE

consortium. The observations are listed in Table 1. All the observa-

tions were performed in the IRDIFS mode, with the Integral Field

Spectrograph (IFS) (Claudi et al. 2008) operating at a spectral res-

olution R = 50 in the wavelength range between 0.95 and 1.35 µm,

with a field of view (FOV) of 1.7 × 1.7 arcsec2 corresponding to a

maximum projected separation from the star of ∼1 au and InfraRed

Dual-band Imager and Spectrograph (IRDIS) (Dohlen et al. 2008)

operating in the H band with the H23 filter pair (wavelength H2 =

1.587 µm; wavelength H3 = 1.667 µm: Vigan et al. 2010) with a cir-

cular FOV with a radius of ∼5 arcsec, corresponding to a maximum

projected separation of ∼7 au.

For both IFS and IRDIS, the data reduction was partly performed

using the pipeline of the SPHERE data centre hosted at OSUG/IPAG

in Grenoble. IFS data reduction was performed using the procedure

described by Zurlo et al. (2014) and Mesa et al. (2015) to create cal-

ibrated data cubes composed of 39 frames at different wavelengths,

to which we applied the principal components analysis (PCA: e.g.

Soummer, Pueyo & Larkin 2012; Amara, Quanz & Akeret 2015)

to reduce the speckle noise. The self-subtraction was taken into

account appropriately by injecting fake planets at different sepa-

rations into the data. An alternative data reduction was performed

using the approach described in Vigan et al. (2015), leading to con-

sistent results. IRDIS data were reduced following the procedure

described by Zurlo et al. (2016) and applying the PCA algorithm

for the reduction of speckle noise. An alternative reduction was

performed following the procedure by Gomez Gonzalez et al. (sub-

mitted), leading to a comparable contrast. For the entire data set,

the contrast was calculated following the procedure described by

Mesa et al. (2015), corrected by taking into account the small-

sample statistics as devised in Mawet et al. (2014).

3 R ESULTS

Given the very low Galactic latitude of Proxima, several sources

were visible in the IRDIS FOV. One example of the reduced images

is shown in the left panel of Fig. 1. Background stars move rapidly

in these images, due to the large parallax and proper motion of

Proxima, so that they can be identified very easily. One single

background source (the star undergoing the microlensing event)

was visible in the IFS FOV for three observing nights and it is

shown in the right panel of Fig. 1. However, all the detected sources

are background stars not bound to Proxima, so that no reliable

companion candidate is detected in the SPHERE images.

Given the quality of the atmospheric conditions with respect to

the other nights (see Table 1), the data from the night of 2016

April 15 give the best contrast, as shown in Table 2. Exploiting the

very good conditions of this night, we were able to obtain a very

deep 5σ contrast. As listed in Table 2, the contrast is better than 10−6

at a separation of 0.4 arcsec using IFS and just above 10−6 at the

same separation using IRDIS. These values are in good agreement

with what is expected when SPHERE is observing a very bright

target (see e.g. Zurlo et al. 2014; Mesa et al. 2015) and similar to

those obtained until now during SPHERE observations for targets

with a similar magnitude (see e.g. Vigan et al. 2015). In Fig. 2, we

display the contrast in magnitude versus the separation expressed

in au for both instruments. We can obtain a contrast better than 15

magnitudes at projected separations larger than 0.5 au with IFS,

while with IRDIS we obtain a contrast better than 14 magnitudes at

the same separation as IFS and we obtain a contrast better than 17

magnitudes at separations larger than 2.5 au.

Figure 1. Final images obtained for IRDIS (left) and IFS (right). The IRDIS image is from the 2016 April 15 observation, while the IFS image is from the

2016 February 29 observation, to be able to show the background star that was no longer in the IFS FOV in April.
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Table 2. SPHERE IFS and IRDIS contrasts at a sepa-

ration of 0.4 arcsec for the different observing nights.

Date IFS contrast IRDIS contrast

@0.4 arcsec @0.4 arcsec

2015-03-30 8.01 × 10−6 8.98 × 10−5

2016-01-18 5.55 × 10−6 1.03 × 10−5

2016-02-17 3.82 × 10−6 2.30 × 10−5

2016-02-29 1.79 × 10−6 5.84 × 10−6

2016-03-27 3.83 × 10−6 7.22 × 10−6

2016-04-15 8.58 × 10−7 1.84 × 10−6

Figure 2. Magnitude contrast plot obtained for Proxima using SPHERE.

The orange line represents the contrast using IFS, while the green line

represents the contrast obtained using IRDIS.

Using the theorical model AMES-COND (Allard et al. 2003),

we were able to set an upper limit on the mass of possible objects

around Proxima. To this aim, we assumed a distance for Proxima of

1.295 pc (van Leeuwen 2007) and an age of 4.8 ± 1 Gyr (Thévenin

et al. 2002; Bazot et al. 2016). Moreover, we assumed J and H

magnitudes of 5.357 and 4.835 (Cutri et al. 2003), respectively,

for the star. The upper mass-limit plots obtained in this way are

displayed in Fig. 3 as solid lines. We found a mass limit of ∼7.5 MJup

at a separation of 0.2 au and ∼6 MJup at separations larger than 0.6 au

with IFS. On the other hand, using IRDIS we were able to obtain a

limit of 8 MJup at ∼0.4 au and lower than 5 MJup at separations larger

than 2 au. Given the large uncertainties in the age of Proxima, we

also calculated the mass limits considering ages of 3.8 and 5.8 Gyr,

with the aim of showing how the mass limits change according

to the stellar age and setting a more reliable range of mass limits.

These results are shown as dashed lines in Fig. 3. In the same

figure we included, as a comparison with our results, the mass limit

obtained by Endl & Kürster (2008) using the RV method (shown

as red circles) and the limits obtained by Lurie et al. (2014) using

astrometric measurements (blue squares).

While the April 2016 data clearly constitute the best data set

that we obtained, we also combined the data from all observing

epochs, attempting to increase the detection capability. This was

performed using the procedure described in Vigan et al. (2015) and

based on the MESS program (Bonavita et al. 2012), which is able

to determine the probability of at least one detection during our

observing dates calculated on a grid of values for the semi-major

axis and companion mass. The results are shown in the left panel

of Fig. 4. They are in good agreement with the results obtained

in Fig. 3, but at shorter separations we are able to obtain better

Figure 3. Mass limits for planets around Proxima calculated from the

SPHERE contrast using the AMES-COND model. The orange lines rep-

resent limits from IFS, the green ones limits from IRDIS. The dashed lines

are drawn to take into account the uncertainties in the stellar age. The limits

from astrometry (blue squares) and from RV (red circles) are also shown,

for comparison with our results.

sensitivity, as demonstrated by a comparison with the results of the

same procedure performed using only the best epoch data displayed

in the right panel of Fig. 4. This demonstrates, for example, that

in this second case the 95 per cent probability of detection is cut

at 0.4 au, while using all the observations combined we arrive at

0.2 au.

It is also possible to make an estimation of the limit in radius

around Proxima, assuming planets are shining in reflected light.

However, the contribution to the luminosity of the planet in the

regime around Proxima should be dominated mainly by intrinsic

luminosity, while the contribution from reflected light should be less

important. For this reason, the limits obtained through the reflected

light are not very meaningful, with values ranging from ∼1.5 RJup

at 0.2 au to ∼3 RJup at ∼1 au and ∼10 RJup at ∼7 au. Values of the

radius of the order of ∼1 RJup, as foreseen from theoretical models,

are then much more probable for substellar objects around Proxima.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We presented the results of an analysis of the SPHERE data for

Proxima Centauri. While it was not possible, as expected, to retrieve

any signal from the planet recently discovered with the RV technique

by Anglada-Escudé et al. (2016), we were able to set constraints on

the mass and on the radius of other possible planets around this star.

Previous works put constraints on the minimum mass through

the RV technique. One example is the value of ∼15 M⊕ at a sep-

aration of 1 au for the minimum mass (M sin i) given by Endl &

Kürster (2008). Other authors found similar results. The compar-

ison of these limits with those obtained by direct imaging allows

us to exclude face-on orbits for possible substellar objects. Extrap-

olating the results reported by Zechmeister et al. (2009)1 at larger

separations, we can conclude that our results are consistent with

those from RV at a separation of ∼7 au, i.e. just at the limit of the

IRDIS FOV.

Different results were obtained with astrometric measurements.

For example, Lurie et al. (2014) set a mass limit of ∼1.5 MJup at

1 The time span for these observations was around 7 years; for comparison,

the foreseen orbital period for a planet orbiting at 7 au is ∼41 years.
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Figure 4. Left: mean probability of at least one detection of a substellar companion around Proxima Cen, using the combination of all the observations as a

function of the companion mass and the semimajor axis. Right: the same, but using just best epoch data.

1.2 au, ∼1 MJup at 2 au and ∼0.5 MJup at 2.6 au. These constraints

are more sensitive to smaller planets than those we can obtain with

SPHERE. Indeed, we obtain mass limits of ∼7.5 MJup at a sepa-

ration of 0.2 au and of the order of 6 MJup at separations between

0.6 and 1 au. However, the wider IRDIS FOV allowed us to obtain

mass limits at even larger separations, where RV and astrometry are

less sensitive. We obtained mass limits better than ∼4 MJup at sep-

arations larger than 2 au. It is important to stress that these limits at

separations larger than ∼5 au concern a region unconstrained so far.

Moreover, as pointed out by Dupuy, Liu & Ireland (2011), model-

based substellar mass determinations could be overestimated. For

this reason, the mass limits from direct imaging could be even lower

than those determined with our measures.

We also attempted to obtain a limit for the radius using the re-

flected light. However, the limits that we obtained are not very strin-

gent, probably because the intrinsic luminosity is more important

than reflected light for objects around Proxima. Limits of ∼1 RJup

foreseen through the theoretical models are probably more reliable

for these substellar objects around Proxima.

We obtained these results with a total exposure time of ∼1 h.

Given that the residual noise from our observations is mainly dom-

inated by photon noise at separations larger than 0.3 arcsec for IFS

and 1.5 arcsec for IRDIS, we should be able to improve our contrast

further with longer exposures taken in sky conditions comparable to

those of 2016 April or better. Under these assumptions, we should

be able to improve our contrast as the square root of the exposure

time ratio. However, this improvement will not be comparable with

the sensitivity reached by the other methods reported above. For

example, a long exposure of 20 h taken during more than one night

will enable us to reach a contrast of 1.89 × 10−7 with IFS, corre-

sponding to a mass limit of 4.9 MJup at a separation of 0.5 arcsec,

still far from the limits obtained with RV and astrometry. To be

able to improve the mass limit obtained with direct imaging further,

we will have to wait for the availability of future instruments both

in space (e.g. the James Webb Space Telescope: JWST) and from

the ground, using future giant segmented mirror telescopes like the

Giant Magellan Telescope (GMT: Johns 2008), Thirty Metre Tele-

scope (TMT: Nelson & Sanders 2008) and European Extremely

Large Telescope (E-ELT: Gilmozzi & Spyromilio 2007).

Using the online ETC for JWST,2 we have calculated the con-

trast at different separations in the L′ band for a 1 h observation

and transformed it into mass limits, again using the AMES-COND

models. We synthesized these results in Table 3, from which one can

2 https://devjwstetc.stsci.edu/

Table 3. Contrast and mass limit for the L′ band with

JWST.

Separation Magnitude Mass limits

(arcsec) limits (MJup)

0.5 20.2 5.3

1.0 21.7 3.5

1.5 22.6 2.5

2.0 23.6 1.7

2.5 23.8 1.5

see that we can have quite a good gain, especially at larger separa-

tions, where we can obtain a limit similar to those obtained through

the RV.
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