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Dwarf spheroidal galaxies (dSphs) are among the best candidates to perform indirect searches
for DM, having the highest known mass-to-light ratio and being free of astrophysical gamma-ray
emitting sources. The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes,
located on the Canary Island of La Palma, have observed a fair amount of optimal dSphs in the
recent years. This is the outcome of diversifying the observation strategy in order to avoid possible
biases in target selection and to improve previous results. In this contribution we will report on
new MAGIC results obtained from 52.1 hours of observation of the Draco dSph in 2018 and 49.5
hours of the Coma Berenices dSph in 2019. We will also present the results of a joint analysis
of Draco and Coma Berenices dSphs with other dSphs observed by MAGIC so far. The selected
dataset accounts for 354.4 hours of good quality data, resulting in one of the largest dSphs samples
ever collected by an array of Cherenkov telescopes. This allows us to derive the most constraining
limits from dSphs, among Cherenkov telescopes, on the WIMP annihilation cross section for
different annihilation channels in the WIMP mass range 70 GeV to 100 TeV.
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1. Introduction

Dark Matter (DM) is assumed to be present in all the Universe and to be gravitationally bound
in overdensity structures, the so-called DM halos. Following the hierarchical bottom-up structure
formation scenario [1], these halos usually host astrophysical objects, such as galaxies or clusters
of galaxies. The dwarf spheroidal galaxies (dSphs) satellite of the Milky Way are one of the best
targets to perform indirect DM searches. These objects are almost free of conventional astrophysical
background and are relatively close to us, orbiting our Galaxy.
Indirect DMsearcheswith ImagingAtmospheric CherenkovTelescopes (IACTs), such as the Florian
Göebel Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes [2], select the objects
to study on the basis of their DM content and vicinity to the Earth. These criteria make dSphs one
of the targets most investigated, in particular in the case of searches for DM annihilation.
The Weakly Interacting Massive Particle (WIMP) [3] is the DM particle candidate preferred for
IACTs searches, having a mass in the range 10 GeV to 100 TeV[4] and emitting gamma rays among
the products of annihilation/decay. Thus, models of WIMP DM annihilation/decay and the DM
distribution are the main ingredients taken into account when performing DM searches with IACTs.
The MAGIC telescopes are a system of two IACTs operating simultaneously, in the so-called stereo
mode, placed in the Observatorio del Roque de los Muchachos, on the Canary Island of La Palma
(Spain). Since their first light, they observed dSphs in search for a gamma-ray signal of WIMP DM
annihilation, but no hint of DM has been found yet. In this proceeding, we present the data samples
of the new targets observed by MAGIC in the multi-year dSphs diversification program and the
results of the analysis of the single dSphs, followed by the results of the analysis of a combined data
sample, in which dSphs previously observed by MAGIC are also included.

2. Dwarf spheroidal galaxies data samples

The new MAGIC multi-year dSphs observation diversification program aims to detect hints of
DM signals from promising dSphs targets in the Northern Hemisphere, or, in case of no detection,
to improve the current limits on the velocity-averaged cross-section of WIMPs. This is done by
differentiating the targets and accumulating data, in order to have a larger data sample that permits
to reduce the systematic uncertainties and improve the results.
For this purpose, the two dSphs Draco and Coma Berenices were observed in 2018 and 2019 for a
total effective time of 52.1 h and 49.5 h respectively. The dSphs were selected after a ranking of
the dSphs presented in [5], taking into account the DM content, its uncertainty, and their distance
from us, excluding the dSphs previously observed by MAGIC.
The DM analysis has been performed independently for each data sample acquired, as described in
Section 3. In addition, previously observed Segue 1 and Ursa Major II dSphs data samples have
been combined to the new data, resulting in a total amount of 354.4 h of good quality data. The
results of the analysis on this overall data sample, together with the other results, are presented in
Section 4. In Table 1, the effective observation time of the dSphs included in the combined data
sample is presented. The order in which the dSphs are listed follows the year of observation, from
the oldest observation to the newest one.
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Table 1: dSphs effective observation times (after data quality selection).

Target Tobs [h]
Segue 1 157.9

Ursa Major II 94.8
Draco 52.1

Coma Berenices 49.5

3. DM likelihood analysis

When searching for a DM annihilation signal with IACTs, the measured quantity is the flux of
gamma rays emitted by the target of interest. This flux can be written as the product of two terms,
a particle physics (PP-) factor, containing the particle physics properties of the considered DM
particle candidate, and an astrophysical (or J-) factor, containing information of the DM spatial
distribution of the target:

dΦ(∆Ω)
dE

=
1

4π
〈σannv〉

2m2
DM

dN
dE
×

∫
∆Ω

dΩ′
∫

l.o.s.
dl ρ2(l,Ω′). (1)

On the right-hand-side of the equation, one can find the geometrical factor
1

4π
, the PP-factor,

described by the velocity-averaged cross-section 〈σannv〉, the DM mass mDM and the gamma-ray
spectrum

dN
dE
=

n∑
i=1

Bri
dNi

dE
of n possible annihilation channels weighted by the corresponding

branching ratios Bri, and the J-factor, written as the integral over the solid angle ∆Ω and the
line-of-sight of the squared DM density ρ of the target.
In order to compute the velocity-averaged cross-section of a WIMP particle, after the standard data
reduction achieved by the MAGIC analysis software MARS [6], a binned likelihood analysis is
performed on the data. The likelihood function, per target t and pointing direction i, as a function
of the datasetD, is expressed as:

Lti (〈σannv〉; ν |D) = L(〈σannv〉; Jt, {bti j }j=1,...,Nbins, τti |(NON,ti j, NOFF,ti j )j=1,...,Nbins )

=

Nbins∏
j=1

[
(gti j (〈σannv〉, Jt ) + bti j )NON, t i j

NON,ti j!
e−(gt i j (〈σannv〉,Jt )+bt i j ) ×

(τtibti j )NOFF, t i j

NOFF,ti j!
e−τt ibt i j

]

× T (τti |τobs,ti, στ,ti) × J (Jt | log10 Jobs,t, σlog10 J,t ),

(2)

where ν is the set of nuisance parameters, J is the J-factor value, b is the expected number of
background events, τ is the OFF/ON acceptance ratio, NON and NOFF are the number of observed
events in the ON region and the OFF region, respectively, and g the expected number of signal
events.
The likelihood function is written as the product of a Poisson function for NON, one for NOFF,
a Gaussian function for the τ parameter (with mean value τobs and variance σ2

τ) and a Gaussian
function for the J parameter (with mean log10 Jobs and variance σ2

log10 J
). All these functions are

expressed in terms of j, that runs over the number of energy bins Nbins.
The flux of gamma rays, that is described as a function of the parameter of interest for the study
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〈σannv〉, is included in the expression of g as follows:

gj (〈σannv〉, J) = Tobs

∫ E′max, j

E′min, j

dE ′
∫ ∞

0
dE

dφ(〈σannv〉, J)
dE

Aeff (E)G(E ′ |E) (3)

where Tobs is the effective observation time (as reported in Table 1), Aeff the collection area and
G(E ′ |E) the probability density function for an event to migrate from the true energy E to the
estimated energy E ′.
The likelihood analysis is implemented in the gLike tool [7] and cross-checked using the independent
software package LklCom [8]. It has to be noticed that the entire analysis considers the spatial
distribution of DM of each target and, thus, the respective gamma-ray emission distribution with
respect to the center of the target. This has been done thanks to the use of the Donut Monte Carlo
tool [9].

4. Results and discussion

The DM analyses performed on Draco and Coma Berenices dSphs did not show any evidence
for gamma rays emitted from the targets. Consequently, we computed upper limits (UL) at the 95%
CL on the velocity-averaged annihilation cross-section. The case of Segue 1 and Ursa Major II is
similar, as presented in [9, 10].
A DM analysis was then performed on the combined data sample of 354.4 h. UL at the 95% CL
have been set also in this case. Figure 1 shows the individual limits for the four dSphs and the limit
obtained for the combined data set.
Even if the limits derived with the combined data sample are driven by the Segue 1 contribution,
we stress that the weight of the systematic uncertainties related to the latter is reduced due to the
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Figure 1: 95% CL ULs on the WIMP velocity-averaged annihilation cross-sections for the bb̄ (left) and
τ+τ− (right) channels, for the single dSphs (Segue 1-orange, Ursa Major II-violet, Draco dSph- light green,
Coma Berenices dSph-blue) and for the data combination (solid black line).
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data combination.
TheULs presented are themost stringent oneswithin theMAGIC collaboration and very competitive
with respect to other experiments, in particular in the TeV regime, such as Fermi-LAT, H.E.S.S.,
VERITAS and HAWC.

5. Conclusions

The MAGIC collaboration performed a multi-year observational diversification program to
search for DM signals in dSphs, which are among the most promising targets for indirect DM
searches. The program had the scope to diversify the dSph targets, in order to avoid possible biases
in target selection, and accumulate dSphs data, allowing the improvement of previous results. For
this reason, Draco dSph and Coma Berenices dSph were observed in 2018 and 2019, respectively.
After the data analysis of both targets, no hint of DM signals were found and ULs at the 95% CL on
the velocity-averaged annihilation cross-section of WIMPs were set. In a second step, the data of
these two dSphs were combined to the data of previously observed Segue 1 and UrsaMajor II dSphs.
This has been done in order to mitigate the effects from target related systematic uncertainties and
improve the UL values obtained per each DM mass. The limits computed by the combination
of 354.4 h of good quality data are about a factor 2 more stringent than the previously published
MAGIC results and are the most constraining among current Cherenkov telescopes in the WIMP
mass range from 70 GeV to 100 TeV.
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