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UPPER SEMICONTINUOUS DIFFERENTIAL
INCLUSIONS WITHOUT CONVEXITY

A. BRESSAN, A. CELLINA AND G. COLOMBO

(Communicated by Kenneth R. Meyer)

Abstract. We prove existence of solutions to the Cauchy problem for the dif-

ferential inclusion x 6 A(x), when A is cyclically monotone and upper semi-

continuous.

Introduction

In this paper we deal with the problem of existence of absolutely continuous

solutions to differential inclusions with a right-hand side F upper semicontin-

uous. For this class of inclusions, it is well known that existence holds under

the additional assumption of convexity of the values of F (see for instance the

chapter 2 of [1]), while it is easy to give counterexamples to the existence of

solutions when the assumption of convexity is dropped.

The simplest example of a differential inclusion with upper semicontinuous

right-hand side such that the Cauchy problem

(1) x(t)£-F(x(t)),       x(0) = 0,t>0,

has no solutions is given by the monotonie map F defined as

{+1 x>0

{-1, + 1}       x = 0

- 1 x<0.

We remark that the above map F, although monotone, is not maximal, since

the values are not convex. For the same F, the problem

(2) x(t)eF(x(t)),       x(0) = 0, t>0,

has exactly two solutions, namely xx = t and x2 — -t. Hence this is an

example of a differential inclusion with an upper semicontinuous, nonconvex

valued right-hand side such that the corresponding Cauchy problem has a closed

nonempty set of solutions.
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From another point of view, consider any closed set K ç R" , and the pro-

jector of best approximation on K from x, %K(x),

(3) nK(x) = {yeK:d(x,y) = d(x,K)}.

In the special case of X = R and K = {— 1, + 1}, example (2) is the problem

x(t) enK(x(t)),x(0) = 0.

Purpose of the present note is to show that existence of solutions holds in

general for any Cauchy problem of the form

x(t)€A(x{t));       x(0)=CeR",

with A an upper semicontinuous, cyclically monotone map with closed non-

empty values.

The map x —► nK (x) affords an example of such an operator.

The argument used in the proof is based on showing that in the present

case the convergence of a sequence of approximate solutions implies the strong

convergence of their derivatives.

Main result

We recall the definition and some properties of a cyclically monotone map.

Definition. A multifunction A : R" —► R" is called cyclically monotone if for

every cyclical sequence

x0,xx, ... ,xN=x0   (N arbitrary)

and every sequence yi. € A(x¡), i = 1,..., N, we have

N

£>,-*,_,,>>,} >o.
;=1

Proposition 1. [2, Theorem 2.5, p. 38] A is cyclically monotone if and only if

there exists a proper convex lower semicontinuous function V : R" —► R such

that

A(x)CdV(x),

where d V is the subdifferential of V.

We denote by B the open unit ball of R" . A map A is called upper semi-

continuous if for every x and every e > 0 there exists ô > 0 such that x in

x + SB implies A(x') c A(x) + eB . Recall that an upper semicontinuous map

with closed values has closed graph.

The following is our main result.

Theorem. Let A be a map from R" into the compact nonempty subsets of Y&? ,

upper semicontinuous and cyclically monotone. Then there exists è > 0 such

that on [0, S] the Cauchy problem

(CP) x€A(x),       x(0) = f,

admits a nonempty closed set of solutions.
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Proof. By Proposition 1 there exists a proper lower semicontinuous convex

function V such that A(x) c dV(x). Since A is locally bounded

(see [1, Proposition 1.1.3]), the same holds for dV. In fact, suppose that for

every x in some open set U we have that sup{|y| : y e A(x)} is bounded by

M > 0 and assume, by contradiction, that there exist x* € U and y* Ed V(x*)

such that \y*\ > M. For a sufficiently small positive X, the point x = x* + Xy*

belongs to U. Choose y e A(x). Then

(y-y* ,x-x*) =X{y-y*,y*) <0,

which contradicts the monotonicity of the multifunction d V. Hence we can

assume that there exists an open ball about Ç, B[Ç, R] and a M < oo such that

V is Lipschitz continuous with constant M on B[Ç ,R], and A is bounded by

M on B[Ç, R]. By choosing ô less that Ä/Af we have that no Lipschitzian

function x with Lipschitz constant M and such that x(0) = £ can leave

B[Ç,R] on [0,(5].
Our purpose is to define on [0,(5] a family of polygonals and to show that

a subsequence converges to a solution to (CP). Define the nth polygonal by

setting

*„(0)=£,

*. ((<+i)^)=x«(4)+^'  '-0.....—1,

where y( belongs to A(xn(iô/n)), and linearly between the nodal points iô/n,

(i+l)ô/n. The xw are Lipschitzian with Lipschitz constant M. The sequence

of pairs ((xn,xn))n is precompact in CxL , the first space with the sup norm

and the second with the weak topology. Consider a subsequence (that we denote

with the same indexes) converging to (x, x).

We claim that ||x||2 = lim||xn||2, so that xn converges to x in L -norm

[3, p. 124].
Let us remark that, from known results (see [1, Theorem 1.4.1]), x is a

solution to

x(t)ecoA(x(t))cdV(x(t)),      x(0)=i.

Both the maps t —> x(t) and t —► V(x(t)) are Lipschitzian, hence differentiable

a.e. By Lemma 3.3 in [2, p. 73],

£-t(V(x(t))) = \x(t)\2a.e.on[0,o].

By integrating

(4) V(x(ô))-V(Q= f  \x(T)\2dx.
Jo

On the other hand, for each polygonal line on each interval (iô/n , (i + 1)6/n),

the convexity of V implies

v(xJii+i)i))>_vU(ii)) + U{l)l.y)
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for every y in dV(xn(iô/n)) ; hence in particular, for y = xn on each (iô/n,

(i+l)ô/n),

V(xn(S))-V(t)> f \x(x)\2dr:
Jo

By passing to the limit for n —> oo and using the continuity of V at the point

x(ô),

fÓ 2 ÍÓ 2
lim sup /   |jc (t)| dx < l   \x(x)\ dx.

¡o Jo

By the weak lower semicontinuity of the norm, we have that

fs 2 fâ 2
liminf /   |jc (t)| dx >       \x(x)\ dx,

Jo Jo

so that the claim is proved.

A subsequence of xn converges pointwise almost everywhere.

By our construction,

d((xn(t),xn(t)), graphe)) < ^71/;
.<<   ..*.—-        .S

n

since graph(^) is closed and, on the complement of a null set, (xn(t),xn(t))

converges to (x(t) ,x(t)),

x(t) eA(x(t)) a.e.

This proves that the set of solutions to (CP) is nonempty. Let (ym) be solutions

converging to y in C([0,<J]). By taking a subsequence, we can assume that

(ym) converges weakly in L2. We apply (4) directly to ym and to y to obtain

that ym converges to y in the norm topology of L . The same argument as

before shows that y is a solution to (CP). Hence, the set of solutions to (CP)

is closed in C([0,<5]).   D

AN APPLICATION

Proposition 2. Let K be a closed nonempty subset of R" with the Euclidean

norm and define the projection nK as in (3). Then there exists a convex function

V:R" ^R such that

7iK(x)cdV(x),       VxeR".

Proof. For every u e R", consider the functional

2

whose graph is the hyperplane tangent to the graph of x -* \x\ ¡2 at the point
i2v

<Pu(x) = j\u\  +(u,x-u),

plane tangent to the graph ol

(u, \\u\ ). Observe that, for every x ,u,v Eft", u ± v , one has

(5) \x-u\<\x-v\ifi(pu(x)>(pv(x).

Indeed, the set H = {x ; (pu(x) - q>v(x)} is the affine hyperplane

{xeR":(u-v,x) = ±(\u\2-\v\2)}
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which is orthogonal to u — v. Moreover, the midpoint (u + v)/2 of the segment

joining u and v lies on H. Therefore <pu(x) = <pv(x) iff |x - u\ = \x - v\.

Since <pu(u) > <pv(u), the linearity of <pu and <pv implies (5). After these

preliminaries, define

V(x) = sup{<pu(x):ueK}.

Clearly V is convex, everywhere defined and locally bounded. More precisely:

V(x)<j\x\   = s\ip{tpu(x):u G R"}.

In order to prove that nK(x) ç dV(x), for every u e nK(x) it suffices to show

that V(x) = <pu(x), i.e. <pv(x) < <pu(x) for every v g K . Since \u-x\ < \v-x\,

this is a consequence of (5).   D

Corollary. Let K ç R" be closed. Then the Cauchy problem

xenK(x),       x(0) = £,,

admits a closed nonempty set of solutions defined on [0, + oo).

Proof. Combining our main Theorem with Proposition 2, one obtains the local

existence of forward solutions. Since there exist constants a and b such that

|y| < a\x\ + b       for every y e nK(x),

every local solution admits an extension to [0, + oo).   G
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