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Abstract

Background: Long non-coding RNA (IncRNA) actin filament associate
oriented in an antisense direction to the protein-coding gene AFAPT in
showed that IncRNA AFAPT-AST was upregulated and acted_a

antisense RNAT1 (AFAPT-AST) is
posite strand. Previous studies
e in a variety of tumors. However, the

ling assay and transwell assay. Furthermore, the effect of
-catenin signaling pathway was investigated. Finally, CAL-27
cells with AFAP1-AST knockdown waffe subcutanedusly injected into nude mice to evaluate the effect of AFAPT-AST
on tumor growth in vivo.

Results: In this study, we fou
AFAPT-AST expression had a s
significantly decreased

AFAPT1-AST was increased in TSCC tissues and that patients with high
rall survival. Short hairpin RNA (shRNA)-mediated AFAPT-AST knockdown
of TSCC cells. Furthermore, AFAPT-AST silencing partly inhibited cell migration
ST decreased the activity of the Wnt/fB-catenin pathway and suppressed the
(SLUG, SNAILT, VIM, CADN, ZEB1, ZEB2, SMAD2 and TWISTT) in TSCC cells. In addition,
knockdown were injected into nude mice to investigate the effect of AFAPT-AST on

expression of E
CAL-27 cells

tumorigen i 0. Downregulation of AFAP1-AST suppressed tumor growth and inhibited the expression of
EMT-rel G, SNIALT, VIM, ZEB1, NANOG, SMAD2, NESTIN and SOX2) in vivo.

Con en together, our findings present a road map for targeting the newly identified INCRNA AFAPT-AST to
S rogression, and these results elucidate a novel potential therapeutic strategy for TSCC.
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Background
Head and neck cancer is the sixth most common malig-
nant cancer worldwide [1-3], and epithelial tumors ari-
sing in the oral cavity are the most frequent tumors in
the head and neck region. Tongue squamous cell carcin-
oma (TSCC) is the most common epithelial cancer iden-
tified in the oral cavity and accounts for approximately
25 to 40% of cases [1, 3]. TSCC is characterized by its
high metastatic and proliferative ability and is a consi-
derable threat to human health worldwide [3]. Over the
past decades, although recent developments have been
achieved in the therapeutic management of TSCC, such
as surgery, chemotherapy and radiotherapy, the overall
survival among TSCC patients with locally advanced dis-
ease and cervical lymph node metastasis remains dismal
[4]. The five-year survival rate of TSCC remains lower
than 50%, and the patient quality of life is poor [3, 4].
Therefore, it is necessary to clarify the underlying molecu-
lar mechanisms involved in TSCC invasion and metastasis
and to develop novel therapeutic strategies for TSCC.
Long non-coding RNAs (IncRNAs) are a type of en-
dogenous RNA over 200 nucleotides in length that com-
pletely lack or possess limited protein-coding capacity
[5—8]. Several studies have demonstrated that IncRNAs
played a vital regulatory role in cellular and developmenta
processes [6, 7]. Aberrant expression of IncRNAs i
volved in cancer biology through a variety of mec

TSCC [6, 13-21]. For example,
IncRNAs LINC00152 and LINC006

uppressing epithelial-
[22]. LncRNA MALATI

Ln¢RNA actin filament associated protein 1 antisense
RNA1 (AFAPI-ASI) is upregulated and acts as an on-
cogene in a variety of cancers, such as hepatocellular
carcinoma, esophageal carcinoma, pancreatic ductal
adenocarcinoma, colorectal cancer, cholangiocarci-
noma, gallbladder cancer, and nasopharyngeal carcin-
oma [27-36]. However, the expression and detailed
function of AFAPI-ASI in TSCC remains largely
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unknown and must be investigated. In this study, we
sought to determine the expression of AFAPI-ASI in
TSCC tissues and paired noncancerous tissues and the
relationship between the expression of AFAPI-ASI and
clinical characteristics. Further functional studies re-
vealed that knockdown of AFAPI-ASI could re

and tumor growth in vivo.

Methods

Human tissue samples
Patients with TSCC who were
followed up at the Departme

rotocols were reviewed by
of the Central South Univer-
nd performed following national
ples were collected at surgery, im-
mediately
RNA or pr

ssue sample was grinded in pre-chilled mortars
liquid nitrogen. TRIzol reagent (1 ml per 50-
00 mg) was added when homogenizing. Then, the pow-
ders were transferred to 2-ml or 1.5-ml microcentrifuge
tubes. The cultured cells were lysed directly in the dish
with 0.3-0.4 ml of TRIzol reagent per 1 x 10°-10" cells.
Then, RNA was isolated from harvested cells, xenograft
tumors, or human tissues with TRIzol reagent according
to the manufacturer’s instructions (Invitrogen, CA,
USA). Real-time PCR reactions were performed using
SYBR Premix DimerEraser (Takara, Dalian, China), and
human GAPDH was used as an endogenous control for
mRNA detection. The expression of each gene was
quantified by measuring Ct values and normalized using
the 224" method relative to GAPDH. The gene-specific
primers are shown in Table 1.

Cells culture

Human TSCC cell lines SCC-15, Tca8113, SCC-4, SCC-
9 and CAL-27 cells were maintained in RPMI 1640
medium (Gibco, Waltham, MA, USA), supplemented
with 10% fetal bovine serum and antibiotics (100 units/
ml penicillin and 100 mg/ml streptomycin). Cells were
incubated at 37 °C in a humidified atmosphere of 5%
CO2 in air.

Vector construction and cell transfection
The pLKO.1-puro vector used for the stable expression
of shRNA against AFAP1-AS1 contained a puromycin
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Table 1 The primers of the genes

Gene name Forward / Reverse primer(5'- 3')

AFAPI-AST F: 5~ AATGGTGGTAGGAGGGAGGA -3
R: 5"~ CACACAGGGGAATGAAGAGG -3

NANOG F: 5~ GAACTCTCCAACATCCTGAA —3'
R: 5" TATTCTTCGGCCAGTTGTTT =3

CADN F: 5'- ATGGCTACTCAA GCTGATT -3
R: 5 TCGAGTCATTGCATACTGT =3

NESTIN F: 5- CGGGCTACTGAAAAGTTCC -3
R: 5~ CTGAAAGCTGAGGGAAGTC -3'

SMAD22 F: 5- GAGGTTCGATACAAGAGGC -3'
R: 5= CAGCAGTCTCTTCACAACT =3

SLUG F: 5- AGATCTGCCAGACGCGAACT -3’
R: 5'- GCATGCGCCAGGAATGTTCA -3

SNAILT F: 5- TCAAGATGCACATCCGAAGCC -3'
R: 5 TTGTGGAGCAGGGACATTCG -3’

SOX2 F: 5~ TGGAAAC GTCGGAGAC -3'

R: 5 CAGCGTGTACTTATCCTTCT -3

TWISTI1 F: 5'- CAGCGCACCCAGTCGCTGAA -3
R: 5= CCAGGCCCCCTCCATCCTCC -3

ZEB1 F: 5- GCACAACCAAGTGCAGAAGA -3
R: 5~ GCCTGGTTCAGGAGAAGATG -3’

ZEB2 F: 5 GATGAAATAAGGGAGGGTGG -3’
: 5~ CCTCAAAATCTGATGTGCAA =3

R
GAPDH F: 5'- ATCAAGATCATTGCTCCTCCTGAG-3'
R: 5 CTGCTTGCTGATCCACATCTG -3’

resistance gene. The scrambled control shRN

medium with 10% EBS for 24 h bef
transfection was performed using

transfection. The
2-3 weeks. CAL-

TCTCAGCCGAATGACTCTCGAGAGTCA
@CTGAGACCGC T-3'; scrambled control
shRNA, forward 5-CCGGTTTCTCCGAACGTGTCAC
GTCTCGAGA CGTGACACGTTCGGAGAATTTTTG-
3" and reverse, 5° - AATTCAAAGTTCTCGAACGTGT
CACGTCTCGAGACGTGACACGTTCGGAGAA- 3.

CCK-8 assay
Cell viability was determined using the CCK-8 assay.
Briefly, 2000 cells/well were seeded into 96-well plates,
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and the absorptions of the cells were measured using a
CCK-8 kit (Beyotime Institute of Biotechnology, Jiangsu,
China) according to the manufacturer’s instructions at
different indicated time points. Data were from three
separate experiments with four replications each time.

Clone formation assay
From each group, nearly 1x 104 cells

for 14 days with growth medi
third day. Then, the cells were
and stained with 0.5% cry

as ted under a micro-
scope [plate clone ion efficiency = (number of

colonies/number o

Cell cycle

Cell cycle s were performed using the Cell Cycle

and Apopt Analysis Kit (Beyotime Institute of Bio-

logy, Jiangsu, China) as per the manufacturer’s in-

ns. Cells were harvested and fixed in 70%

1 overnight at 4 °C. Then, the cells were stained

with 25 pg/ml propidium iodide containing 1 pg/ml

Nase at 37 °C for 30 min. The cells were analyzed for

their distribution in different phases of the cell cycle on

FACScalibur flow cytometer using CellQuestPro soft-
ware (Becton Dickinson, USA).

Cell migration/invasion assay

Cell migration was evaluated using a transwell assay. A
total of 2x 10* cells in 200 pl of serum-free medium
were added to the top chamber of the transwell (8 pm
pore size, BD Biosciences, New Jersey, USA) at 24 h
after siRNA transfection. The bottom well contained
growth medium with 20% FBS. Cells were incubated at
37 °C for 24 h. After 24 h, the cells that had migrated to
the lower face of the filters were fixed with 100% metha-
nol and stained with 0.5% crystal violet and counted.
Matrigel invasion assays were performed as follows. Fil-
ters coated with Matrigel in the upper compartment
were loaded with 200 pl serum-free medium containing
5x10* transfected cells, and the lower compartment
was filled with 20% FBS. After 24 h, the migrated cells
on the bottom surface were fixed with 100% methanol
and counted after staining with 0.5% crystal violet. Num-
bers of invaded cells were counted in six randomly se-
lected fields under a microscope, and the average value
was calculated. Each experiment was conducted in
triplicate.
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Wound-healing assay

Cells were cultured until they reached 90% confluence
in 6-well plates. Cell layers were scratched using a 10-
uL tip to form wounded gaps, washed with PBS twice
and cultured. The wounded gaps were photographed at
different time points and analyzed by measuring the
distance of migrating cells from five different areas for
each wound.

Western blotting
For total cell lysates, cells were lysed in lysis buffer that
contained 25 mM Tris (pH 7.4), 2 mM NavO4, 10 mM
NaF, 10 mM Na4P207, 1 mM EGTA, 1 mM EDTA, and
1% NP-40. Protease inhibitor cocktail and PhosSTOP
were added fresh to the lysis buffer before each experi-
ment. The proteins were separated on SDS-PAGE and
then transferred to PVDF membrane (Merck Millipore).
The membrane was blocked in Tris-buffered saline
(TBS; pH 7.4) with 5% skim milk for 2 h, and then, the
membranes were incubated overnight at 4 °C with di-
luted primary antibodies overnight. Antibodies against
[B-catenin (#8480), AKT (#9272), phospho-AKT (#9271),
GSK3B (#12456) and phospho-GSK3p (#5558) were
purchased from Cell Signaling Technology (Beverly,
MA, USA). Antibodies against AFAP1 (sc-374,655) an
GAPDH (sc-32,233) were from Santa Cruz Biotec
ogy (Santa Cruz, CA, USA). After incubation, t

branes were washed three times in TBST, f

for 1 h, and washed again in TBST (
Immunoblots were developed usi
XRS+ (Bio-Rad, Berkeley, CA, USA
the protein fragments was quaiitifi

ymic nude mice. Tumor volumes were calcu-

ng hand calipers every week after the injection
the following formula: tumor volume (mm?®)
= (length x width?)/2. At 35 days, mice were sacrificed
and tumor volumes and weights were recorded.

Statistical analysis

All experiments were performed three times, and the
data were analyzed with GraphPad Prism 5 (La Jolla,
CA, USA). Results are presented as mean = SD. The
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differences between TSCC tissues group and the adja-
cent normal tissues groups group were was tested using
paired Student’s t-test. Differences between groups were
tested using paired and unpaired Student’s t-test, a one-
way ANOVA and x> tests where appropriate with the

SPSS 17.0 program. A p-value of <0.05 was congidered
statistically significant.

Results

LncRNA AFAP1-AST was upregulate s and

associated with TSCC progression
To explore the role of IncRNA A
examined the relative expr

1-AST in TSCC, we

tissues (7 = 103). Qu,
assays showed tha

ime PCR (qRT-PCR)
ion AFAPI-ASI was sig-
samples compared with the
(Student’s t-test, P <0.001,

analyzing the expression of AFAP1-AS1 in SCC-
8113, SCC-4, SCC-9 and CAL-27. As shown in
, the expression level of AFAP1-AS1 was upregu-
d in TSCC cell lines compared to normal tissues.

Relationship between AFAP1-AS1 expression and the
clinicopathological features of patients with TSCC

We further assessed the association between the expres-
sion of AFAPI-ASI and clinicopathologic characteristics
of TSCC patients. For this analysis, we classified the
TSCC tissues into two groups according to the relative
AFAPI1-AS1 expression: the low AFAPI-AS1 expression
group (n=42) in which the expression was lower than
the median value and the high AFAPI-AS1 expression
group (n =61) in which the expression was higher than
or equal to the median value. Patient characteristics and
correlations with AFAPI-ASI overexpression are sum-
marized in Table 2. AFAPI-ASI was significantly corre-
lated with tumor differentiation (P < 0.05), T classification
(P <0.05), clinical stage (TNM, P < 0.05), depth of invasion
(P <0.05) and relapse (P < 0.01). No statistically significant
correlations were obtained between AFAP1-ASI and other
clinicopathological characteristics, such as age, gender
or betel-quid (BQ) chewing habit (P> 0.05, Table 2). A
Kaplan-Meier analysis was used to evaluate the rela-
tionship between AFAPI-AS1 expression in TSCC and
patient survival, and the results showed that high
AFAPI-ASI1 expression was also associated with poor
survival. The survival time of patients with low AFAPI-
ASI expression (n=42) was longer than in patients
with high AFAPI-AS1 expression (n=61) (P<0.05,
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Fig. 1 LncRNA AFAPI-AST is significantly upregulated in TSCC tissues
compared with that of adjacent normal tissues (n = 103). AFAPI-AST e
(P < 0.001). b Expression levels of AFAPT-AST were determined by
were measured in human normal tissue (n =103) and differ
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a Relative expression of AFAPT-AST in TSCC tissues (n=103)
ermined using gRT-PCR and normalized to GAPDH expression

I (n=30) was longer than in pati
stage lesions (n =73) (P < 0.05, Fig.

in vitro
To examine the rol
eration. We kn

changes induced by AFAP1-AS1 knockdown
cell lines. As shown in Fig. 3, AFAPI-ASI
knockdown inhibited cell growth of SCC-9 and CAL-27
cell lines (Fig. 3b). Moreover, the number of colonies
formed was markedly decreased in the AFAP1-AS1
knockdown cells (Fig. 3c). Further, the downregulation
of AFAPI-ASI induced GO-G1 cell cycle arrest, resulting
in a considerable decrease of cell percentage in S phase
and an increase of cell percentage in GO/G1-phase com-
pared with the control group (Fig. 3d).

Silencing AFAP1-AS1 inhibited the migration and invasion
of TSCC cells in vitro

Next, we studied whether AFAPI-AS1 could affect the
migration and invasion of TSCC cells. A directional in-
vasion was examined using a transwell assay with Matri-
gel coated in the upper compartment. The results
showed that the invasion of SCC-9 (upper) and CAL-27
(lower) cells was notably decreased with AFAPI-ASI
knockdown (Fig. 4a). Furthermore, we investigated the
effect of AFAPI-ASI on cell migration by performing a
transwell assay without Matrigel coating in the upper
compartment and a wound-healing assay. Compared
with the cells treated with control shRNA, we observed
that knockdown of AFAPI-ASI could attenuate the mi-
gratory ability of both TSCC cells (Fig. 4b and c).

Inhibition of AFAP1-AS1 decreased the activity of the
Wnt/B-catenin pathway and suppressed the expression of
EMT-related genes

AFAPI-AS1 is the antisense RNA of AFAPI. We demon-
strated that AFAPI-ASI knockdown increased AFAP1
protein levels (Fig. 5a and b). The Wnt/B-catenin path-
way and EMT play important role in tumor cell migra-
tion and invasion. We investigated the consequences of
AFAPI-ASI knockdown on the activation of the Wnt/p-
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Table 2 Association of INCRNA AFAPT-AST expression with clinicopathologic features in TSCC patients

Parameter Total LncRNA AFAP1-AST X2 P
N =103 Low n = 420%) High n =610%)

Age (years)
<50 36 17(47.2) 19(52.7) 0.952 0.329
>50 67 25(37.3) 42(62.7)

Gender
Female 31 13(41.9) 18(58.1) 0.025
Male 72 29(40.3) 43(59.7)

Betel-quid (BQ)? chewing habit
No 38 20(52.6) 18(47.4) 3.504 0.061
Yes 65 22(338) 43(66.2)

Tumor differentiation
Well/moderate 69 33(47.8) 36(52.2) 4.301 0.038
Poor 34 9(26.5) 25(735

T classifcation
T1-T2 61 30(49.2) 31(503 4.375 0.036
T3-T4 Clinical stage 42 12(28.6) 71.4)

(TNM)
-1l 55 28(50.9) 9.1) 5017 0.025
-1V 48 14(29.2) 34(70.8)

Depth of invasion
<1cm 46 25(50.0) 21(50.0) 6.339 0.012
21 cm 57 /( 40(66.7)

Relapse
No 63 0.8) 31(49.2) 6.740 0.009
Yes 40 10(25.0) 30(75.0)

Status
Alive 32(48.5) 34(51.5) 4.52 0.033
Dead 37 10(27.0) 27(73.0)

“Betel quid (BQ, also called betel areca nUp is orfe of the most commonly consumed psychoactive substances [62]. Long-term BQ chewing is strongly associated

with oral precancerous conditio
International Agency for Resed
of BQ worldwide, predomifantly e countries of South and Southeast Asia [67]. In Mainland China, BQ chewing is mainly practiced in Hunan and Hainan provinces

e N
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Fig. 2 Kaplan-Meier curves for overall survival in TSCC patients according to AFAPT-AST expression. a The survival time of patients with low
AFAPT-AST expression (n=42) was longer than that in patients with high AFAPT-AST expression (n=61). b The survival time of patients with

clinical stage I (n = 30) was longer than that in patients with clinical stage II-IV (n=73)
. J
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Fig. 3 AFAP1-AST knockdown markedly suppressed the py,

lines transfected with siR- AFAPT-AST. d Flow gftometry analysis of cell cycles showed that the knockdown of AFAPT-AST in SCC-9 and CAL-27 cell
lines elevated the percentage of cells in G1 phase, and lowgred the percentage of cells in S phase. The data represent the mean + SDs of 3 replicates.
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and the shR-AFAPI-AST group. * P < 0.0832* P < 0.0% <0001; # P<005; ## P< 001 ### P <0001

Downregulation of AFAP1-AS1 suppressed tumor growth

and inhibited the expression of EMT-related genes in vivo
Downregulation of AFAPI-AS1 decreased Wnt/p-ca-
tenin signaling and blocks TSCC cell proliferation, inva-
sion and migration, as verified in SCC-9 and CAL-27
cell lines. We next studied the effect of AFAPI-ASI on
el of B-catenin in both SCC-9 (Fig. 5a) tumor growth in vivo. Thus, we developed a nude mouse
ig. 5b). Total levels of AKT and GSK3-B  model with TSCC xenografts. CAL-27 cells infected with
ow obvious differences. Additionally, to dem-  sh-AFAPI-ASI or nonspecific ShARNA control were sub-
ons the mechanism of AFAPI-ASI acting as an  cutaneously injected into each flank of nude mice. After
oncogene in TSCC cells, the expression of EMT-related 35 days, xenografted tumors were visible, and all the
genes was determined by qRT-PCR. Downregulation of mice were sacrificed to harvest the xenografts (Fig. 6a).
AFAPI-AS1 significantly downregulated EMT-related  As shown in Fig. 6a and b, AFAPI-ASI knockdown can
genes SLUG, SNAILI, VIM, CADN, ZEBI, ZEB2, and significantly suppress the growth of TSCC xenografts in
TWIST1 in SCC-9 cells (Fig. 5c). The expression of nude mice after CAL-27 cell subcutaneous inoculation.
SLUG, VIM, CADN, ZEB1, SMAD2, and TWISTI were Tumor size was measured, and a smaller size was ob-
downregulated in CAL-27 cells after inhibiting the ex- served in the AFAPI-ASI silencing group (Fig. 6¢). The
pression of AFAP1-AS1 (Fig. 5d). average tumor weight in the AFAPI-AS]I silencing group
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Discussion

In recent years, aberrant expression or dysfunctional activ-
ities of IncRNAs has been discovered in multiple tumor
types, and substantial evidence indicates that IncRNAs
participate in all steps of tumor initiation and develop-
ment [6, 13, 17, 37]. Many studies have shown that
IncRNAs are of great importance in the diagnosis and
treatment of tumors, and that IncRNAs are useful as novel

prognostic tumor biomarkers [22, 38-42]. LncRNA
AFAPI-ASI is oriented in an antisense direction to
the protein-coding gene AFAPI in the opposite strand
[36, 43, 44]. High expression of AFAPI-AS1 is associ-
ated with malignancy, metastasis and poor prognosis in
various cancers, such as hepatocellular carcinoma, naso-
pharyngeal carcinoma, esophageal carcinoma, colorec-
tal cancer, cholangiocarcinoma, and gallbladder cancer
[27-35]. AFAPI-AS1 is upregulated in hepatocellular
carcinoma, and its higher expression is associated with
tumor size, TNM stage, vascular invasion, and poor prog-
nosis [45]. Furthermore, silencing AFAP1-AS] significantly
reduce cell proliferation, clonal growth, cell migration, and
invasion and increase apoptosis through RhoA/Rac2 sig-
naling [31, 45]. LncRNA AFAPI-ASI also promote tumor
growth and invasion in cholangiocarcinoma [29, 32],
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AFAPI-ASI was associated with clinical characteristics
and poor overall survival. We also determined the effects
of AFAPI-ASI on TSCC cells. Inhibition of AFAPI-ASI
inhibited the proliferation, migration and invasion of
TSCC cells in vitro and in vivo. Collectively, our results
demonstrated that AFAPI-ASI, acting as an oncogene,
may be a potential diagnostic and prognostic biomarker as
well as a therapeutic target in TSCC.

Cell migration and invasion are significant aspects of
cancer progression, and the EMT is a critical biological
process in tumor cell migration and invasion [5-7, 46, 47].
The Wnt/B-catenin pathway plays a critical role in cel-
lular proliferation, survival, differentiation and EMT in
cancer cells [48-50]. When Wnt ligands bind to trans-
membrane receptors, Wnt signaling can be initiated
[49]. B-catenin accumulates in the nucleus and forms
the p-catenin/TCF/LEF transcriptional complex [48].
As a result, Wnt target genes are activated and promote
EMT [49]. Accumulating evidence supports that many
important oncogenes or tumor suppressor genes regu-
late the Wnt/B-catenin signaling pathway, and thus
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so participate in this
. LncRNA UCAI en-
hances the
mote the

athway [24]. Moreover, overexpression of
CTD903 inhibits colorectal cancer invasion
and migration by repressing Wnt/p-catenin signaling
and predicts a favorable prognosis [57]. In the present
study, we tested the effect of AFAPI-ASI knockdown
on the Wnt/p-catenin signaling pathway. Compared
with the control group, silencing AFAPI-ASI decreased
the phosphorylation of AKT and GSK3p and the total
level of B-catenin in both SCC-9 and CAL-27. Total
levels of AKT and GSK3B did not show obvious

differences. Additionally, the expression of EMT-related
genes was determined by qRT-PCR. Downregulation of
AFAPI-ASI significantly downregulated EMT-related
genes SLUG, SNAIL1, VIM, CADN, ZEB1, ZEB2, and
TWISTI in SCC-9 cells. The expression levels of SLUG,
VIM, CADN, ZEBI1, SMAD2, and TWIST1 were down-
regulated in CAL-27 cells after inhibiting the expres-
sion of AFAPI-ASI. Additionally, we obtained similar
results in the xenograft tumor model. SLUG, SNAILI,
VIM, ZEBI, NANOG, SMAD2, NESTIN and SOX2 were
down-regulated when the expression of AFAPI-ASI
was silenced in xenograft tumors. The above data indi-
cated that AFAPI-ASI could regulate the activity of the
Wnt/p-catenin signaling pathway and affect the expres-
sion of several EMT-related genes in TSCC cells.
Previous studies have demonstrated that IncRNA ac-
tivity was partly dependent on its genomic location.
Antisense IncRNAs such as AFAPI-ASI are oriented in
an antisense direction with respect to a protein-coding
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gene in the opposite strand and usually act as a regulator
of this gene [58—60]. AFAP1-AS1 is localized in the anti-
sense DNA strand of the AFAPI gene [61]. We demon-
strated that AFAPI-AS1 expression increased AFAP1
protein levels. However, it remains unknown whether
the effects of AFAP1-ASI on the regulation of tumor cell
metastasis potential are mediated by the changed AFAPI
protein levels.

Conclusions
In conclusion, our study provided the first evidence that
AFAPI-ASI was highly expressed in TSCC tumor tissues
and cell lines. The increased expression of IncRNA
AFAPI-AS1 was associated with malignant behavior and
poor prognosis in TSCC. Furthermore, the knockdown
of AFAPI-ASI by shRNA significantly inhibited prolifer-
ation, invasion, migration and clone formation and
arrested the cell cycle in vitro. Silencing AFAP1-AS1 par-
tially intended tumor growth in vivo. AFAPI-ASI acted
as an oncogene in TSCC through a mechanism of acti-
vating the Wnt/(B-catenin signaling pathway and inhibit-
ing the expression of EMT-related genes. Collectively,
IncRNA AFAPI-AS1 is a promising biomarker and
therapeutic target for human TSCC treatment.
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