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Abstract

Posing objects in their upright orientations is
the very first step of 3D shape analysis. How-
ever, 3D models in existing repositories may be
far from their right orientations due to various
reasons. In this paper, we present a data-driven
method for 3D object upright orientation esti-
mation using 3D Convolutional Networks (Con-
vNets), and the method is designed in the style
of divide-and-conquer due to the interference

effect. Thanks to the public big 3D datasets and
the feature learning ability of ConvNets, our
method can handle not only man-made objects
but also natural ones. Besides, without any reg-
ularity assumptions, our method can deal with
asymmetric and several other failure cases of
existing approaches. Furthermore, a distance
based clustering technique is proposed to re-
duce the memory cost and a test-time augmen-
tation procedure is used to improve the accu-
racy. Its efficiency and effectiveness are demon-
strated in the experimental results.
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1. Introduction

Most objects are usually posed in their upright
orientations, which makes them easily recognizable.
Also, it is the very first step to pose the given 3D
shapes in their upright orientations (Figure 1) in many
graphics and robotics tasks, such as matching [2], re-
trieval [13, 28], shape analysis [34] and placement plan-
ning [17]. Moreover, it can be used to generate recog-
nizable object thumbnails, helping the management of
3D shape repositories. Due to various reasons such as
modeling platforms or scanning systems, many models
in existing databases are not in their upright orien-
tation. Therefore, a number of approaches have been
proposed to handle this problem. However, these meth-

Figure 1. Upright Orientation Estimation

ods are usually limited to shapes with some regularity
and take several seconds to process each shape. Thus
more efficient and effective methods are needed.

In this paper, we present a learning based method to
predict the upright orientation using 3D Convolutional
Networks (ConvNets). Given voxel representations of
3D shapes and corresponding orientation vectors, this
prediction task can be formulated as a regression prob-
lem. Leveraging the learning ability of deep neural
networks, general categories of 3D shapes can be han-
dled without making any assumptions such as symme-
try or parallelism. Besides mesh models, the proposed
method can deal with shapes represented in other types
that can be voxelized, such as implicit surfaces and
point clouds, without surface reconstruction [7].

Compared with the ConvNets based approach, ex-
isting methods are limited by their predefined rules.
For example, the method proposed by Fu et al . [8] is
based on the observation that man-made object should
have a supporting base on which it can be steadily posi-
tioned. Nevertheless, this observation is not applicable
to all shapes, especially natural ones. Thus learning
based methods are appreciated to deal with general
objects. Although the idea of data-driven is adopted
in Fu et al . [8], the learning procedure is based on the
hand-crafted features such as stability, visibility and
parallelism, which fall into the field of feature engi-
neering. In one word, it is hard to define a universal
rule to upright general 3D shapes effectively. By con-
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trast, neural networks work in the style of end-to-end
learning. High-level knowledges can be captured from
raw data, without relying on object’s regularity such
as explicit symmetry.

However, a single ConvNet does not work well for
all types of shapes. The key challenge is that each
shape category exhibits particular characteristic on the
upright orientation, for example, cars tend to be hor-
izontal while bicycles are likely to be vertical. This
is referred to as interference effect [14] which will lead
to poor generalization. In other words, different strate-
gies should be taken to handle diverse categories. Thus
a divide-and-conquer scheme is used in our system.
Each shape is first classified by a network and then
fed into one of the orientation regression networks that
are trained on each of the categories. Furthermore, a
distance based clustering method is proposed to reduce
the number of networks and a novel test-time augmen-
tation procedure is used to improve the accuracy.

The efficiency and effectiveness of this approach are
demonstrated by extensive experiments. Our system
achieved the accuracy of more than 90% on the test
data and showed the generalization capability of in-
ferring upright orientations for shapes not belonging
to the training categories. Also experimental results
showed that our system is able to handle several cases
that other methods fail. Moreover, estimation for each
shape took no more than 0.15 s on average, which is
much faster than existing approaches, thus applicable
to robotics tasks in which immediate feedback is re-
quired.

The main contributions of our approach are summa-
rized in the following.
• General objects can be handled by this approach
thanks to the learning ability of ConvNets, includ-
ing asymmetric shapes.

• The proposed method is at least 30 times faster
than existing methods.

The remainder of this paper is structured as follows.
Section 2 briefly reviews several related works. In Sec-
tion 3 our network system is specified. The experi-
mental results and comparisons with related works are
demonstrated in Section 4. Finally, Section 5 presents
our conclusions and directions of future work to im-
prove our method.

2. Related Work

Orientation of images. Images may differ from
their correct orientations by 0◦, 90◦, 180◦, or 270◦ [3,
23, 24, 32]. Therefore, the image orientation detection
problem can be formulated as a four-class classifica-
tion problem. Most of the existing approaches extract
high dimensional feature vector in each possible orien-

tation and then train Support Vector Machines (SVM)
[23, 32] or other classifiers [3] on feature vectors to de-
tect correct orientation. However, it is difficult to re-
duce the two-dimensional orientation space to a few
candidates for general 3D objects. Thus we formulate
the upright orientation estimation of 3D models as a
regression problem.

Upright orientation of 3D models. In computer
graphics, several methods have been proposed to es-
timate upright orientation or align the given models.
One commonly used method is the Principal Compo-
nent Analysis (PCA) [19] which is inaccurate and not
robust for many models, especially asymmetric ones.
In Fu et al . [8] and Lin & Tai [22], upright orientation
is estimated using supporting base candidates on which
a 3D model can stand upright. These methods work
well for most of the man-made models while not appli-
cable to natural objects whose supporting bases are not
well defined. Another type of method is based on the
observation that the coordinate matrix of the 3D ob-
ject with upright orientation should have reduced rank.
Inspired by [37], Jin et al . [18] present an algorithm in
which a 3D shape is aligned with axes by iterative recti-
fication of axis-aligned projections as low-rank matrices
independently. In Wang et al . [31], a method is pro-
posed by minimizing the tensor rank of the 3D shape’s
voxel representation. Both methods can handle shapes
that have some kinds of symmetries. We can see that
none of the above methods is able to deal with general
objects.

Viewpoint selection. Representative viewpoint
provides the most informative and intuitive view of
a 3D shape, which benefits many geometry process-
ing applications like shape retrieval. Most approaches
select representative viewpoints using geometric infor-
mation of the 3D models, such as number of visible
polygons [25] and silhouette contours [1]. Some works
are based on information theory, such as viewpoint en-
tropy [29], multi-scale entropy [30], and viewpoint mu-
tual information [6]. It will be much easier to select the
representative views for 3D models if they are posed at
the upright orientation by our method.

3D shape matching, retrieval and registra-
tion. 3D shape retrieval [13, 28] and matching [2]
techniques attempt to find the similar shapes from
databases with queries. 3D shape registration tech-
niques [36] make efforts to find corresponding parts of
multiple models. These methods are trying to design
a robust and efficient method for measuring the sim-
ilarity between two shapes or parts over the space of
all transformations [19]. To address this issue, most
techniques pre-align the models into a common coordi-
nate frame, typically using PCA alignment. Since our



orientation estimation approach predicts a consistent
upright orientation for models, it is able to reduce the
orientation alignment problem from two to one degree
of freedom.

Deep neural networks. For computer vision
tasks, deep neural networks, especially convolutional
networks, have demonstrated excellent performance,
by taking 2D images (RGB or RGBD) as input [9, 20].
It is only very recent that a few works attempt to tackle
3D shapes related problems via deep learning meth-
ods, such as classification, recognition and retrieval.
However, most of the works treat 3D shape as a se-
ries of multi-view color/depth images [5, 27, 38], dis-
carding the 3D relationship between different frames.
To the best of our knowledge, Wu et al . [33] is the
first paper that take volumetric data as input of neural
networks, which propose to represent a geometric 3D
shape as a probability distribution of binary variables
on a 3D voxel grid, using a Convolutional Deep Be-
lief Network (CDBN), obtaining good results on shape
classification. Another type of 3D Convolutional Net-
work is proposed by [15] for human action recognition
in videos, treating time as the third dimension.

3. Approach

3.1. System Overview

Taking n classes of 3D shapes Ci (i = 1, . . . , n) into
account, the problem of upright orientation estimation
is formulated as a regression task. Given a quantity of
voxel representations V of 3D shapes and correspond-
ing unit vectors u of upright orientation, a function
u ≈ fβ(V) with unknown parameters β should be es-
timated to fit the data.

3D ConvNets can be straightforwardly applied onto
this problem. However, due to different shape cate-
gories exhibit particular characteristics on their upright
orientations, strong interference effects occur that lead
to poor generalization [14]. It is difficult to train a uni-
versal network which works well for all the n shape cat-
egories. Therefore, this task should be accomplished in
the style of divide-and-conquer, namely, training differ-
ent networks on different shape categories. Naturally,
n regression networks can be trained separately. More-
over, a classification network should be trained to work
as a gate by predicting which regression network should
be applied onto the input shape. Figure 2 shows the
test stage of the system.

3.2. 3D Convolutional Networks

We use the standard architecture of ConvNets for
regression and classification.

The regression network takes voxel representations

Regression 

Network #2

Regression 

Network #

...
Classification 

Network

Regression 

Network #1

Input Output

n

Figure 2. System overview. Input data is propagated
through the classification network (blue part) and a class
label prediction i ∈ {1, . . . , n} is obtained. After that, the
input data is fed into the ith regression networks. The 3D
output vector of the regression network is the predicted up-
right orientation. Each of the n+1 networks can be trained
independently.
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Figure 3. Architecture of the regression network.

of 3D shapes as input, and the 3D vectors of predicted
upright orientation as the output. As illustrated in Fig-
ure 3, the regression network consists of a number of
3D convolution layers and fully-connected layers, each
of them is followed by a layer of activation units. The
hyperbolic tangent tanh(·) is chosen as the activation
function in the output layer. To avoid slow learning
when output values are close to 1 and −1, the orienta-
tion vectors u are rescaled by 0.5. In the other layers,
we choose rectifier [21]

ReLU(x) = max(0, x)

as the activation function. In the end, this network is
trained to minimize the Euclidean loss function, using
mini-batch gradient descent with batch size N .

Loss =
1

2N

N∑

i=1

‖ûi − ui‖
2

2
,

where ûi is the ground-truth three dimensional orien-
tation vector and ui is the corresponding regression
value.



The classification network shares a similar architec-
ture with the regression networks. The differences are
that the output of the last fully-connected layer is fed
to a n-way softmax which produces a distribution over
the n class labels, and a multinomial logistic loss layer
is used,

3.3. Clustering of Shape Categories

Although different shape categories exhibit particu-
lar characteristics, some categories, such as chair and
table, may be handled by similar strategy to find their
upright orientations. Those categories can be clustered
together and processed with the same regression net-
work. As a result, redundant networks can be removed
and then the memory cost can be reduced.

However, it is nontrivial to determine which cate-
gories are consistent and which are not. If a network
is trained on inconsistent categories, the sacrifice of
accuracy would be dramatic compared to the networks
trained on each category separately. We propose a clus-
tering strategy based on the distance measure defined
by the error rate of each regression network on the
other shape categories.

To define the distance measure, we first evaluate the
n regression networks on all of the n categories to get
a square matrix E in which E(i, j) is the error (i.e.,
∠(u, û) is larger than some threshold) rate of regression
network Ri on shape category Cj . Then we get the
symmetric matrix D = (E + ET )/2 in which D(i, j)
measures the distance between shape categories Ci and
Cj . The shorter between two object categories, the
more likely their upright orientations can be estimated
with the same network.

Once we obtain the distance matrix, a hierarchical
agglomerative clustering algorithm [11] is performed,
after which a cluster tree is constructed. Then, we
should determine where to cut the hierarchical tree into
a number of clusters. At last, new regression networks
should be trained on agglomerated shape category clus-
ters while those nets for categories left in their own
cluster can be kept. Also, the classification network do
not need to be retrained.

3.4. Test-Time Augmentation

For classification tasks, test-time augmentation
(TTA) has been proposed to improve the accuracy by
taking average of the output from many virtual samples
in [4]. From the points of prediction error in Figure 5,
we find some outliers from the results of shape’s dif-
ferent input poses. Therefore it would be helpful to
take test-time augmentation and average the results in
someway robust to outliers, such as taking their me-
dian, i.e., 1-norm average.
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Figure 4. Shape category clustering based on the distance
measure defined by error rate. Left: original distance ma-
trix. Right: agglomerated categories are collected in blue
squares after clustering.

Given a test shape S, we augment it by trans-
forming with randomly generated rotation matrices
Ri (i = 1, . . . ,m). Then m correspondence voxel rep-
resentations Vi are fed into the network system. We
classify them into the same class by majority voting of
m predicted labels and put them into the same regres-
sion network. After getting m regression predictions
ũi, we map them back into the coordinate frame of S
as ui = R−1

i ũi. By minimizing the objective function
defined below,

u∗ = argmin
‖u‖=1

m∑

i

∠(u,ui),

a better prediction u∗ is expected to be obtained. In
existing works, Weiszfeld algorithm [10] was proposed
to solve this optimization problem in an iterative man-
ner. However, we replace it with the following reduced
version, which is much simpler to solve and works well.

u∗ = argmin
uj , j=1,...,m

m∑

i

∠(uj ,ui).

4. Experiments

4.1. Implementation

We chose 10 common object categories with un-
ambiguous upright orientation from Princeton Mod-
elNet [33]. Each category contained 100 shapes and
was split into training set and test set randomly. The
training shapes were rotated 100 times for data aug-
mentation. The test data was also rotated 20 times to
study the robustness of this approach to the pose of
input shape. Figure 6 displays some objects sampled
from our test set. All experimental results presented
in this paper have been tested on a desktop with an



Airplane Bathtub Chair CupBicycle TableDog Fruit PersonCar

Figure 6. Example shapes from the test set posed in their correct upright orientations found by our method (using 5
regression networks, without test-time augmentation).
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Figure 5. Angle error (in degrees) distribution when using
10 regression networks. Blue curve shows the cumulative
distribution function of errors. Small circles represent the
error of different shapes with varying poses. We sampled 10
shapes from the test set. Circles in the same color represent
the results of the same shape’s different poses.

Intel(R) Core(TM) i5-4570 CPU @ 3.20 GHz, 8 GB
RAM and an NVIDIA GeForce GTX 760 GPU.

A 3D shape is represented as a 24×24×24 voxel grid.
The architecture of our regression network is briefly il-
lustrated in Figure 3. First we place three convolu-
tional layers, and each of them is followed by a layer
of rectified linear units (ReLU). Then two more fully-
connected layers are appended. Dropout [26] is applied
on the first fully-connected layer. The last layer has 3
output units corresponding to the 3-dimensional ori-
entation label. Such a networks contains 10.6 million

Ind Type Filter Size Num Stride Pad
1 Conv 6× 6× 6 64 2 3
2 ReLU - - - -
3 Conv 5× 5× 5 160 2 0
4 ReLU - - - -
5 Conv 4× 4× 4 512 1 0
6 ReLU - - - -
7 FC - 1000 - -
8 ReLU - - - -
9 Dropout (rate 0.5) - - -
10 FC - 3 - -
11 TanH - - - -

Table 1. Architecture of regression network. FC is for fully-
connected layer.

floating point parameters, costing 42.6 MB memory.
The classification network shares a similar architecture.
The details of the designed networks are listed in Ta-
ble 1 and 2. We select the network architectures ex-
perimentally. Results in different architectures are pre-
sented in the supplementary material. The networks
were implemented with the deep learning framework
Caffe [16].

After training the networks for classification and re-
gression, the distance matrix on the shape categories
was computed. Based on the distance measurement,
we performed the agglomerative clustering algorithm.
As a result, 10 shape categories were partitioned into
5 clusters. (We cut the cluster tree into 5 clusters em-
pirically. Intuitively, the fewer clusters are left, the
stronger interference effect would arise.) Then new re-



Ind Type Filter Size Num Stride Pad
1 Conv 6× 6× 6 64 2 3
2 ReLU - - - -
3 Conv 5× 5× 5 256 2 0
4 ReLU - - - -
5 FC - 512 - -
6 ReLU - - - -
7 Dropout (rate 0.5) - - -
8 FC - 10 - -

Table 2. Architecture of classification network.

gression networks were trained with the same archi-
tecture and half of the parameters for regression were
saved. The four-legged/wheeled object categories (i.e.,
car, chair, dog and table) were collected into the same
cluster, while the cup-shaped shape categories (i.e.,
bathtub and cup) were collected into another cluster
(this cluster also contains airplane). As each regression
network costs 42.6 MB memory and 5 networks were
used instead of 10, about 213 MB memory was reduced.
The threshold used for distance measurement was 15◦,
which should be enough for most graphics and robotics
tasks. The distance matrix and result of clustering are
shown in Figure 4.

The classification network was trained 8 epochs and
achieved the accuracy of 95.6%. Each regression net-
work was trained around 30 epochs. The final accuracy
tested on each category of the entire system, which
was combined with the classification network and the
regression networks, is listed in Table 3. Error distri-
bution in degrees is presented in Figure 5. The results
of test-time augmentation are also shown in Table 3.
We rotated each input shape 10 times and the accuracy
was improved about 6%. Moreover, TTA would help
to give a reasonable result if the regression network’s
output of some pose degenerates, i.e., producing zero
vector (although it had never arisen through our ex-
periments).

4.2. Performance Analysis

Interference effects. To demonstrate the effect
of interference, we compared the training of regression
networks on two groups of shape categories using the
same architecture as before (Table 1). The first group
(group A) contains two shape categories: airplane and
person. The second group (group B) contains four cat-
egories: car, chair, dog and table, which were clus-
tered together by our method. The learning process
is plotted in Figure 7. The final training loss of the
two groups are similar while the testing loss of group
A is apparently higher than that of group B. From the
perspective of accuracy, we got 0.713 from the test set
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Figure 7. Interference effect. Learning curves are plotted
to display the values of loss function in different iterations.
Left: trained on inconsistent categories (airplane and per-
son). Right: trained on automatically clustered categories
(car, chair, dog and table). Testing loss on consistent cate-
gories is apparently lower than that on inconsistent ones.

of group A and 0.861 from group B, while they were
expected to be comparable based on the first row (Nets-
10) in Table 3. As a consequence, strong interference
effects made the network for group A hard to generalize
while its impact on the group clustered by our method
is significantly lower. In other words, it is nontrivial to
determine the clustering criterion.

Network visualization. Inspired by [35], we visu-
alize the network’s response to different portions of the
voxel grid. We hollowed out a 7 × 7 × 7 cube around
each voxel, and computed the angle error between the
prediction for the disturbed data and the ground truth
to measure the network’s sensitivity to the hollowed
region. As shown in Figure 8, the regression network
for the person category always responds strongly to the
torsos of the human models while shows insensitivity to
arms, legs and objects held in hands. These examples
demonstrate that this ConvNet has strong ability to
learn orientation covariant and posture invariant high-
level features. Although upright orientation is the only
supervision information, our system is able to locate
shape parts with semantic meanings. If more specific
labels are available, more semantic and representative
features could be learned. A similar example is shown
in Figure 9.

Generalization capability. Finally, we present an
illustration on how the data-driven method can be used
to predict upright orientation for shapes not shown in
the training dataset, thus illustrating the generaliza-
tion ability of the proposed method. As for the exam-
ples in Figure 10, our system classified bird as airplane,
piano as table, bed as bathtub and house as cup. The
first three cases are predicted correctly while the last
one is failed. Our system has generalization ability to



Airplane Bathtub Bicycle Car Chair Cup Dog Fruit Person Table Overall

Nets-10 0.960 0.925 0.793 0.908 0.898 0.930 0.845 0.528 0.855 0.990 0.863
Nets-10 (TTA) 0.993 0.965 0.830 0.920 0.943 0.993 0.923 0.755 0.893 1.000 0.921

Nets-5 0.930 0.893 0.793 0.810 0.880 0.905 0.778 0.528 0.858 0.975 0.835
Nets-5 (TTA) 0.983 0.950 0.830 0.823 0.925 0.973 0.875 0.755 0.893 1.000 0.901

Table 3. Accuracy of the entire system in a variety of settings. The test cases in which ∠(u, û) < 15◦ are accounted as
correct. Nets-10 is for the system with 10 regression networks for every shape categories. Nets-5 is for the system with 5
regression networks for every category clusters. TTA is for systems with test-time augmentation.
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Figure 8. The prediction results will be different if some
voxels are hollowed out at different positions. The pre-
diction error (in degrees) after hollowing is illustrated by
color mapping. The hotter a voxel is, the more sensitive
the network is to the region around it. In these examples,
the network always responds strongly to the torsos of hu-
man models as the posture and orientation vary, indicating
the features extracted by the regression network for person
category are orientation- and structure-aware.

some degree, while it would be much better to train
new networks for unseen shape categories.

4.3. Comparison

Compared with existing approaches, our system can
handle more general object categories. The method
proposed in Fu et al . [8] is based on the observation
that a man-made object should have a supporting base
on which it can be steadily positioned and the support-
ing polygons correspond to faces of the object’s convex

0
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Figure 9. As same as Figure 8, the prediction error (in de-
grees) after hollowing is illustrated by color mapping. In
these examples, the network is sensitive to the top of table
while invariant to the shape of legs.

hull. Nevertheless, this observation would fail on some
objects, especially natural ones. Several such examples
handled by our method are presented in Figure 11,
demonstrating the advantage of feature learning over
feature engineering. The tensor rank minimization ap-
proach Wang et al . [31] is not able to deal with shapes
with large part not aligned with its upright orientation,
as illustrated in Figure 12. Thanks to the learning abil-
ity of ConvNets, these objects can be handled by our
method correctly.

Our approach also has an advantage of efficiency
over other techniques. The method proposed by Fu et

al . [8] contains two main steps: convex hull computa-
tion for candidate supporting bases selection and fea-
ture extraction for candidates evaluation. These two
steps took 5 seconds on average for each object. In
Wang et al . [31], the tensor rank minimization prob-



Figure 10. Demonstration of the generalization capability
of our method, where we predict upright orientation for
shapes not belong to the training categories. The first row
shows the models with random orientations. The second
row displays the results obtained by our system Nets-5. The
first three cases are predicted correctly while the last one
is failed.

Figure 11. Our method is able to handle shapes whose sup-
porting base is not well defined or do not lie on its convex
hull. In each pair, the left one is posed in the random orien-
tation while the right one is posed in the correct orientation
predicted by Nets-5. The boat not belonging to our dataset
is classified as bathtub.

57 5370 58

Figure 12. Comparison with Wang et al . [31]. In each pair,
the left one, which is posed in its upright orientation pre-
dicted by Nets-5, has a higher tensor rank, while the right
one posed in incorrect orientation has a lower rank. The
rank values are shown below.

lem is highly nonlinear and hard to optimize. There-
fore a genetic algorithm is adopted which took about
1–2 minutes for each shape. In contrast, our method
reached a much more fast speed due to the parallel na-

TTA Voxelization Classification Regression Total
No 0.008 0.014 0.012 0.034

Yes 0.078 0.033 0.039 0.150

Table 4. Timing (in seconds) of our system Nets-5 for each
test shape. In the last row, each test shape was augmented
10 times and the 10 voxel representations were computed
simultaneously in the same mini-batch.

ture of ConvNets which is match for GPU acceleration.
Further more, a batch of data can be processed simul-
taneously. The detailed timing results are listed in Ta-
ble 4, from which we can conclude that our method is
at least 30 times faster than existing approaches.

5. Conclusions and Future Work

We proposed a data-driven method for 3D object
upright orientation estimation using 3D Convolutional
Networks. Thanks to the feature learning ability of
ConvNets, not only man-made objects but also natu-
ral ones can be handled. In addition, a distance based
clustering technique was proposed to reduce the mem-
ory costs and a test-time augmentation procedure was
proposed to further improve the accuracy. The experi-
mental results demonstrate the efficiency and effective-
ness of our approach. Besides this, the visualization re-
sults indicate that ConvNets are able to capture more
semantic features if more informative labels are pro-
vided. At last, our method is extremely efficient, so it
can be used as preprocessing to speed up several ge-
ometry processing tasks, such as 3D shape retrieval,
matching and registration.

On the other hand, our method can still be improved
in several directions. First, this approach is not as
accurate as geometric methods. We consider improv-
ing the performance by geometric technique such as
finding supporting bases (if available) around our re-
sult. Secondly, techniques of committee machines [12]
should be considered to optimize the entire system all
together, other than training the networks for classifi-
cation and regression independently. Thirdly, further
visualization [35] works should be done to gain more
insights from the trained networks and to answer sev-
eral mysterious questions, such as: Why and how do
the networks work? Why does the network trained on
airplane work well on bathtub and vice versa? Last
and not least, we would like to adopt our system to
take range image as input for robotics tasks.
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