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Uprooting defects to enable high-performance
III–V optoelectronic devices on silicon
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Mourad Jellite1, Dominique Drouin1 & Richard Arès1*

The monolithic integration of III-V compound semiconductor devices with silicon presents

physical and technological challenges, linked to the creation of defects during the deposition

process. Herein, a new defect elimination strategy in highly mismatched heteroepitaxy is

demonstrated to achieve a ultra-low dislocation density, epi-ready Ge/Si virtual substrate on a

wafer scale, using a highly scalable process. Dislocations are eliminated from the epilayer

through dislocation-selective electrochemical deep etching followed by thermal annealing, which

creates nanovoids that attract dislocations, facilitating their subsequent annihilation. The aver-

aged dislocation density is reduced by over three orders of magnitude, from ~108 cm−2 to a

lower-limit of ~104 cm−2 for 1.5 µm thick Ge layer. The optical properties indicate a strong

enhancement of luminescence efficiency in GaAs grown on this virtual substrate. Collectively,

this work demonstrates the promise for transfer of this technology to industrial-scale production

of integrated photonic and optoelectronic devices on Si platforms in a cost-effective way.
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D
eveloping inexpensive, high-performance epitaxial devices
with the hope of achieving widespread market adoption,
depends critically on production costs, and ultimate

material quality. Any process that meets these challenges suc-
cessfully provides an attractive solution for a wide range of
leading-edge applications, in different areas, including energy,
photonics, electronics, communications, and health care. The last
decade has witnessed considerable progress in many advanced
technologies based on mismatched hetero-epitaxial semi-
conductors, such as solar cells, LED, and laser sources1–6. As an
example, a GaInP/GaAs//GaInAsP/GaInAs four-junction solar
cell achieves a record efficiency of 46% exceeding those of other
technologies7. This structure must however, combine two tandem
cells grown on different lattice constant substrates that are sub-
sequently bonded together. This application demonstrates how
powerful heterogeneous material integration can be. However, the
monolithic integration of high-quality mismatched semi-
conductors remains difficult due to the large difference in the
lattice constant and thermal expansion coefficients between the
epitaxial materials and hetero-substrates8. During growth, the
strain, which is induced in the epitaxial layer will be either stored
as strain energy in the film or accommodated by a network of
misfit dislocations at the interface above a certain critical thick-
ness, depending on the lattice mismatch9,10. Misfit dislocation
segments are always accompanied by a high density of threading
dislocations (TD) extending to the surface11. TD are the most
undesirable, because they commonly penetrate active device
regions and generate a variety of detrimental effects, such as non-
radiative recombination centers for carriers, reducing their
mobility and lifetime12–14, optical birefringence15, or parasitic
current leakage paths16. Devices like photodetectors17,18, multi-
junction solar cells (MJSC)19, microprocessors20, modulators21,
based on Ge-on-Si (001) technology must tackle these issues in
order to achieve industry standards. To this end, several
approaches have been proposed for reducing the TD density, such
as compositional grading22, cyclic annealing23,24, epitaxial lateral
overgrowth25, selective area depositions26, 3D heteroepitaxy27,
virtual graded layers28, mesa structuring29, compliant sub-
strates30, and ion-implanted substrates31. Despite their feasibility
and originality, many of these techniques are limited to small-
scale processes and require the use of expensive and complex
processing technologies32. In addition, very thick graded buffers
are causing substantial wafer bow, which makes the epi wafers
unsuitable for further wafer scale devices fabrication using
lithography and other processes. Despite the implementation of
mitigation measures, in a number of these devices, the TD density
remains high (~106 cm−2)33. Alternatively, a new approach called
aspect ratio trapping (ART) has been proposed as one of the
strategies that has the potential to completely annihilate
dislocations17,34. Through the use of substrate patterning, the
ART method favors the termination of TD at free surfaces on the
side facets of the patterns, leading to a confinement of disloca-
tions in lateral sectors or their termination35. Although the ART
method shows good potential for reducing the TD density in
active device regions, nanoscale-patterning lithography, and the
discontinuous characteristics of the resulting Ge/Si films, can
limit their application.

This work aims at providing a reliable approach for achieving
very low dislocation density, by tuning the motion of dislocations
in relaxed Ge epilayers grown on Si substrates through self-
assembling nanovoids. The approach proposed herein involves
only a basic, industry standard two-step process (electrochemical
etching and thermal annealing); which we expect will likely have a
small impact on the overall processing costs of a device. This
process enables two things; the movement and rearrangement of
dislocations through the porosified material and the re-

solidification of the Ge epilayer. Advantages of this technique
include low cost, large surface area, and compatibility with
microfabrication facilities and other processing steps. The key
cost-reducing aspects of this process flow are the intrinsic com-
patibility of each process step with large area semiconductor mass
production. Both electrochemical porosification and thermal
annealing are standard, scalable techniques that are already well
integrated within an industrial fully automatic environment. Our
process requires no rare or special material or treatment, nor does
it take long processing times to perform. Current production
tools for this process are also readily available and well
established.

One area in which this approach can provide a significant
opportunity is the fabrication of virtual substrates for III–V MJSC
on Si36. As a result, significant cost savings would be made
possible if the bulk Ge substrates could be replaced with our
virtual analogs consisting of micron-thick, or even less, Ge buffers
grown on Si wafers37. The cost reduction per solar cell can be as
high as 75% when the much lower prices and larger areas of Si
wafers are considered38. Additionally, this approach would offer a
viable path towards the monolithic integration of mismatched
Ge/Si in CMOS circuits and overcome their imminent perfor-
mance limitation39,40.

This work shows that dislocation engineering using nanovoids
in the heteroepitaxy of Ge/Si can be a plausible path for mono-
lithic integration of high-quality GaAs on Si platform. The
innovation here is to use this strategy in a mismatched Ge/Si
structure to reveal new beneficial phenomena for reducing the TD
density. Possible mechanisms responsible for TD density reduc-
tion that lead to either annihilation or fusion through nanovoids
are discussed. The results show clear evidence that introducing
nanovoids increases recombination probabilities of TD, drasti-
cally reducing their presence within the Ge layer. As a result,
cathodoluminescence (CL) measurements shows an increased CL
signal from the GaAs layer on the engineered Ge/Si substrate, in
stark contrast to the CL signal from the GaAs layer on a con-
ventional Ge/Si substrate. Such an enhancement is attributed to
the role of nanovoids in reducing the TD density.

Results
Ge/Si virtual substrate: design and fabrication. In this work, a
Ge/Si substrate is treated with a post epitaxial process to create a
region with a high density of nanovoids within the Ge/Si struc-
ture, which acts as a free surface that attracts dislocations, facil-
itating the subsequent annihilation of their threading arms. The
process is illustrated schematically in Fig. 1. Nanovoids are
formed in the Ge layer as well as in the Si substrate by electro-
chemical porosification, followed by thermal annealing, creating a
new configuration referred to as nanovoid-based Ge/Si virtual
substrate (NVS).

As a first step, Ge/Si (001) samples with high TD density are
anodically porosified by the bipolar electrochemical etching
(BEE) technique previously that was described in refs. 41–43.
Contrary to bulk Ge porosification, in which, the layer structure
exhibits uniformly distributed mesopores with controllable
nanostructure and size44–46, dislocated Ge/Si substrates show
selectively distributed mesopores. Typical SEM views at low and
high magnifications of the mesoporous Ge/Si layer prepared
under 1.5 mA/cm2 are presented in Fig. 2a, b, respectively. Large
pores in the range of 50 nm are formed near the dislocation core
sites, which essentially reveal the emergent point of the
dislocations at the surface47. This is reflected in the cross-
sectional view of a thick porous Ge (PGe) layer with weakly
branched pores that tend to follow threading dislocation cores, as
shown in Fig. 2c. Calibration of porous layer parameters, such as
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the etching rate, has been done by varying the current density in
the electrochemical process of bulk and dislocated Ge in Fig. 2g.
The etch rate ratio between dislocated and bulk regions shows
very high values up to 6. Beyond 3.7 mA/cm2, porous Si layer was
obtained by hydrofluoric acid (HF) crossing dislocations.
Figure 2d shows a dark-field transmission electron microscopy
(TEM) image of PGe/Si formed using 4 mA/cm2 for the
electrochemical etching for a period of 30 min. The porosification
front has reached the Ge/Si heterointerface, by following
primarily threading segments. The high density of misfit
dislocations within the interface has also favored a significant
etching effect in that area. A porous Si layer of 200 nm is formed
after 35 min, even before the complete porosification of the Ge
layer (see Fig. 2e, f).

Figure 2h presents schematically the energy band diagrams of
p-doped Ge with the HF electrolyte, in the case of bulk and
dislocated substrates, showing the surface energy band bending in
each case. At thermodynamic equilibrium, the Fermi energy (Ef)
in Ge is aligned with the equilibrium energy (µ) of the electrolyte,
causing the formation of an electrical double layer from the
electrolyte side and the surface charge region (SCR) within the

electrode. As a result, there is bending of the energy bands close
to the Ge surface and a Schottky barrier (eΔФSCL) that inhibits
hole injection across the interface is created. When a positive bias
is applied to the Ge electrode, the SCR is reduced and valence
band holes begin to accumulate at the interface. The holes
participate in the electrochemical etching reactions according to:

Geþ 6HFþ 4hþ ! H2GeF6 þ 4Hþ ð1Þ

The preferential anodic etching through dislocations could
manifest itself as a local effect. In fact, the impurity gettering by
the dislocation core increases doping concentration locally, which
is reflected by the displacement of the Fermi level48. As a result, a
lower energy barrier eΔФSCL increases Ge dissolution during
anodization, thus accelerating pore formation around disloca-
tions, which act as selective nucleation sites. Another effect, which
could stimulate this localized dissolution, can be seen from a
structural viewpoint, in which the lattice is locally distorted for a
distance of a few atoms around the dislocations cores. As a result
of the stress field generated by the deformation, the lattice
elements dissolve more easily near the dislocation cores than in
stress-free, undeformed areas49. Such preferential porosification
significantly enhances the atomic mobility allowing preferential
diffusion paths for voids and dislocations during annealing.

The next step consists of thermally induced structural
reorganization of the porous nanostructure. The morphological
change of PGe/Si during annealing is based on thermally
activated diffusion of surface atoms to stable positions following
a surface diffusion mechanism, for which atoms seek to complete
a maximum of covalent bonds until their outer energy level is
full50–53. The driving force for the spherodization of pores results
from the system’s tendency to minimize its total surface energy.
Such a change has been previously observed following Rayleigh
instabilities54,55. Depending on the annealing temperature,
different void shapes in the Ge layer are obtained (Supplementary
Fig. 1), which are in a good agreement with the theory describing
the Oswald ripening phenomenon56,57, in which smaller voids
tends to merge together in order to create larger voids in a process
that is driven by reducing the total surface energy. The restoration
of the bulk order in the annealed PGe matrix is confirmed by µ-
Raman spectroscopy (Supplementary Fig. 1). The void formation
in the Ge layer occurs in an isotropic manner, thanks to the
dislocation-selective electrochemical etching, and in an aniso-
tropic manner in the Si substrate (Fig. 2a). Our observations show
that this architecture is effective in reducing the TD density.

Dislocation annihilation mechanisms and crystal quality. The
dislocation annihilation mechanism is a two-step process in
which multiple dislocations are attracted to the same nanovoid,
which then leads to enhanced probability of annihilation of their
threading arms. In order to investigate the presence of misfit and
TD (MDs and TDs) throughout the NVS and study their inter-
actions with nanovoids, detailed structural characterization was
performed by scanning transmission electron microscopy
(STEM) and TEM. High magnification STEM view in dark field
(DF) and bright field (BF) shows clearly the overlap dislocation-
voids as can be seen in Fig. 3b, c. Different processes may come
into play in the dislocation pinning mechanism including; glid-
ing58 and climbing processes59,60, which depend on temperature,
strain, obstacle specifications (type, diameter, and spacing)61–63

and other critical parameters64. For Ge/Si (001), dislocation arms
are located on the (111) and the (11−1) slip systems. An initially
perfect 60° edge dislocation dissociates into two separated
Shockley partials (e.g., 60° dislocations dissociate into 30° and 90°
partial dislocations), in which, the energy state of the sum of
the partials is less than the energy state of the original
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Fig. 1 Schematic illustration of the proposed approach. a Bulk Ge film

growth on (001) Si substrate. b Dislocation-selective electrochemical deep

etching to form porous nanostructures from the bulk-grown Ge film and the

Ge/Si interface. The dotted line shows weakly branched pores that follow

threading dislocation cores. c Thermal annealing of the nanoporous

structure to transform it into nanovoids that attract dislocations, facilitating

their subsequent annihilation. The resulting configuration is referred to as

nanovoid-based Ge/Si virtual substrate (NVS)
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dislocation65,66. The attraction and detachment process between
dislocations and voids depends on the void parameters and the
distance between the partials67. For the smaller voids, the partials
strength dominates the obstacle strength. Consequently, the dis-
locations cut through the small voids without being trapped. For

the larger voids, the obstacle strength dominates, causing the
dislocation to be pinned by the voids and to bow under the
internal shear stress. In addition, the void induces a stress field in
its surroundings, which strongly influences the dislocation pas-
sage depending on the geometry of the interaction68–70. A short
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Fig. 2 Dislocation-selective electrochemical deep etching. a Planar-view scanning electron microscopy (SEM) image of porous Ge/Si layer formed at

1.5 mA/cm2. The arrow shows large pores formed near the dislocation core sites, which essentially reveal the emergent point of the dislocations at the

surface as seen in the high-magnification SEM image (b). Scale bars 300 nm (a), 30 nm (b). c Cross-section SEM view showing preferential etching

through dislocations. Scale bar 200 nm. d Dark-field transmission electron microscopy (DFTEM) image of porous Ge/Si formed using a current density of

4mA/cm2 for 30min shows a thick porous Ge layer with weakly branched pores crossing threading dislocation cores up to full uprooting of misfit

dislocations, as indicated by the arrow. Scale bar 200 nm. Bright field BF-scanning transmission electron microscopy (e) and DF-scanning transmission

electron microscopy (STEM) (f) micrographs showing the formation of porous Si obtained by HF crossing dislocations at 4mA/cm2 during 35 min. Scale

bars: 100 nm. g Etching rate evolution versus the current density of bulk Ge and dislocated Ge/Si layer. Error bars represent standard deviation of the

average etching rate. The energy band diagrams of p-doped Ge with HF electrolyte under a positive bias, in the case of bulk and dislocated substrates,

showing the surface energy band bending in each case. h The displacement of the Fermi level in the dislocated Ge is due to a rise of the doping

concentration locally around dislocations cores. The illustration is not based on any calculations. Source data are provided in the Source Data file
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void spacing induces—high-stress concentration and the resolved
shear stress and consequently the obstacle strength71. Therefore,
for large voids that are widely spaced out, dislocation can bypass
the obstacle, as the stress concentration formed around the voids
is low. Indeed, voids with adequate dimensions and spacing create
a stable, energetically favorable configuration for the dislocations,
effectively pinning them.

For TDs annihilation, the arrow in Fig. 3b indicates the
location where a dislocation segment terminates on the nanovoid
with no propagation beyond. A reasonable explanation for the
TD termination is that two dislocations or more with opposite
Burgers vectors having the same magnitude have reached the
void. From Frank’s rule of conservation, the net Burgers vector
resulting from this overlap must be zero72. Possible reactions
between TD in heteroepitaxial cubic semiconductors have been
presented including fusions, complete, and half-annihilation
reactions. As demonstrated in Fig. 3d, e, threading segments
from either different dislocation sources on the same slip plane
(111) (e.g., a/2[1–10] and a/2[−110]), or on the parallel slip
system (e.g., a/2[01−1] and a/2[0−11]) can annihilate. In
addition, by thermally activating both glide and climb of the
threading segments, annihilation may be achieved from different
dislocation sources on intersecting slip systems as shown in
Fig. 3f (e.g., a/2[101] and a/2[−10−1])71. The fusion of threading
segments is also an energetically favorable reaction, in which two
dislocations merge to form a single one generating a Y-shaped
defect as highlighted by the arrow in Fig. 3c and schematized in

Fig. 3g. For example, fusion is favorable between two TDs with
Burgers vectors (e.g., a/2[10–1] and a/2[011]) leading to a single
TD with Burgers vectors a/2[110]73.

These different interactions between neighboring disloca-
tions are characterized by the physically prescribed character-
istic interaction distance, which corresponds to the distance at
which the interaction force between dislocations becomes larger
than the friction resistance of the lattice71. Due to the attractive
force created by the population of smaller voids, the approach
distance between two TDs with different Burgers vectors
becomes low enough, so that the TDs begin to glide together
and annihilate or fuse. Figure 4 proposes a descriptive sketch to
explain the phenomena of the annihilation of dislocations in Ge
epilayer grown on Si substrate by introducing nanovoids. For
the sake of clarity, only one {111} glide plane is drawn. The heat
treatment stimulates the propagation of dislocation loops along
glide planes (Fig. 4b). The dislocations with opposite Burger
vectors move easily and react with each other (Fig. 4c), since it
can occur in the same glide plane {111}, without the need of any
extra point defect supersaturation for climbing. Thus, the
threading components disappear (Fig. 4d). These mechanisms
give a reasonable explanation for the dislocations reduction
by introducing nanovoids in heteroepitaxial diamond films.
The characteristic interaction distance over which two disloca-
tions interact becomes higher than that in the conventional
structure without voids, which in turn increases their
recombination probability. However, the full process could be
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Fig. 3 Possible mechanisms responsible for dislocation annihilation. a Low magnification transmission electron microscopy (TEM) image close to the Ge/Si

interface showing the presence of the voids in the Ge layer as well as in the Si substrate. Scale bar 100 nm. Scanning transmission electron microscopy

(STEM) images present different interactions between dislocations and voids in dark field (b) and bright field (c). Scale bars 50 nm. The gliding dislocations

in the Ge layer shows slight curvature to join the void area until its complete annihilation. Possible processes for annihilation of threading dislocations at the

void surface by interaction of several threading segments from: the same slip system (d), the parallel slip system (e), by a combination of glide and slip

motion (f), and by fusion (g). Source data are provided in the Source Data file
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confirmed and better understood using in situ real-time
observations with TEM.

In order to study the effect of nanovoids formed in the Si
substrate on reducing the TD density, low-magnification TEM
micrographs from the Ge/Si reference, and the NVS are presented
for comparison in Fig. 5a, b, respectively. In Fig. 5a, a high defect
density region, extending from the heterointerface towards the
surface may be observed for the Ge/Si reference. In Fig. 5b, we
observe a dense dislocation network confined in a region of about
50 nm near the Ge/Si interface for the NVS sample and almost no
observable defects within the Ge layer are shown. Fourier analysis
from the Ge/Si interface has been performed (Supplementary
Fig. 2), indicating that the epitaxial reconstruction of the Ge layer
over the voided Si substrate has the same crystallographic
orientation as the parent Si wafer. Figure 5c, d present enlarged
images near to the Ge/Si interface for both substrates. For the Ge/
Si reference (Fig. 5c), it is seen that the only defects present in the
Ge/Si heterostructure are misfit dislocations located at the Ge/Si
interface. Several misfit dislocation cores marked by white arrows
at the Ge/Si interface can be identified clearly. The type of these
misfit dislocations was determined to be 60° dislocation and 90°
full-edge dislocation from the high-resolution transmission
electron microscopy (HRTEM) images by drawing a Burgers
circuit around the dislocations. For the NVS (Fig. 5d), voids are

observed as lighter areas. The amorphous zone appears in the
void zone, probably due to the amorphisation of the void wall
during the TEM sample milling or due the superposition of
diffraction from the different crystalline material separated by
voids. A rough interface at the atomic scale is observed. This
indicates that the Ge/Si interface has undergone a strong
perturbation during the electrochemical etching and annealing.
If additional stress is applied, the interface becomes morpholo-
gically unstable and the roughness features could serve as
nucleation sites for additional TD. To analyze the local strain
distribution at the interface, we have used the geometric phase
analysis (GPA) on the HRTEM images. Figure 5e, f present the
εxx component of the strain field (x-axis along the [100]) derived
from Fig. 5c and the square from Fig. 5d, respectively. In the
upper region (Ge), the strains are positive and tensile, while the
lattice is compressed in the lower region (Si). On these images,
the dislocation cores are easily located, as they correspond to the
blue areas at the interface. To quantify the strain relaxation state,
we calculate the average εxx in the upper region (Ge) for both
cases. The average value of εxx in Ge/Si reference (3.9 ± 0.5%) is
larger than the NVS (3.2 ± 0.5%) indicative of a better strain
relaxation of the Ge layer in the NVS. These values are confirmed
by calculating the distances from the transmitted beam spot to the
paired separate spots in the selected area diffraction pattern
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(SADP), for both paired spots of (020) and (002) as shown in
Fig. 5g. The lattice mismatch strain of the Ge film in the Ge/Si
reference remains a little high, despite the plastic relaxation,
which generates misfit dislocations. However, the Ge film in the
NVS is almost fully relaxed, the strain relaxation is engineered
elastically thanks to the voided Si substrate. Due to its porosity,
the elastic modulus of Si is reduced and the substrate can be
stretched, compressed, and deformed74–76. It is therefore
expected to accommodate the mismatch of heterogeneous layers
and to serve as a mechanically stretchable compliant substrate. In
addition to this property, the nanovoids formed in the silicon
substrate act as a free surface for inhibiting dislocation
propagation. In fact, an enlarged image of the region near the
Ge/Si interface by HRTEM, shown in Fig. 5h, clearly demon-
strates two dislocation loops located within the heterointerface
and annihilating at the voids located in the Si substrate, instead of
emerging towards the Ge surface. The analog is also present in Si,
where TDs originating from the interface bend downwards and
move along the glide plane towards the voids in Si in order to
minimize their length. Their elimination in pairs is also possible
within these voids. A descriptive scheme of this phenomenon
leading to the reduction of TD density when using a voided Si
template is given in Fig. 4e, f. The attraction force is increased by

the fact that the presence of the nanovoids decreases the Si Young
modulus, which might play a role in the apparent bending of TDs
toward the porous Si layer. This is in good agreement with the
analytical model proposed by Myers and Follstaedt77.

In summary, for the NVS configuration, the voids located in
the Si substrate offer elastic properties to accommodate the lattice
mismatch. While, the voids located at the Ge film favor the
recombination of TDs and their annihilation far from the surface.
TD reduction is likely due to TD annihilation facilitated by
nanovoids via the process shown in Fig. 4. Additionally, it was
found that the existence of voids in a strained layer results in a
considerable reduction in the stresses in the mid-region of the
structure near the voids and consequently the dislocation density
above the region78. This process was successfully used to produce
wafer scale NVS on 4 in., as seen in Fig. 6a.

To quantify the reduction in TD density with lower
magnification images, etch-pit density (EPD) analyses were
carried out. The NVS was immersed in a solution of two
volumetric parts 49 wt% HF and 1 part 0.1 M K2Cr2O7, to
selectively etch the mixed and screw dislocations in the Ge layer.
The Supplementary Fig. 3 shows the top view microscope images
revealing a number of dark pits at the center. Figure 6b–d show
SEM images of the EPD taken from the edge of the NVS with an
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xx
at the Ge/Si heterostructure interface for both substrates exhibit a better strain relaxation of the Ge layer in the case of the NVS.

Scale bars 10 nm. g Selected area electron diffraction (SAED) patterns from the NVS show a monocrystalline quality of the Ge layer. h Atomic-resolution

TEM image shows the annihilation of dislocation segments coming from the Ge/Si interface at the void located in the Si substrate. The arrows in h shows

two dislocations bend towards the voided area, instead of emerging at the Ge surface. Scale bar 5 nm
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untreated area, and from different regions of the sample. From
the pit counts, the EPD is clearly lower in the voided area
compared with the untreated area, which confirms that the
dislocations were effectively annihilated in the case of the NVS
sample.

The TD density can also be determined from the plan-view
TEM images by estimating the dislocations in a given area at a
number of zones across the entire samples79. Figure 6e, f shows
two-TEM plane-view images for an untreated Ge/Si substrate and
a NVS, respectively. The contrast in the images is dominated by
thickness fringes and bend contours, which are inevitable in plan-
view crystalline samples80,81. The dark spots show dislocation
strain-induced bending of the thinned film. The estimated TD
density from Fig. 6e is 8.5 ± 0.5 × 108 cm−2, while no threading
dislocation is found in most of the areas of the NVS as shown in
Fig. 6f (within statistical limits). While the fact that TEM images
on an area of 15 μm2 do not show any dislocation does not
constitute a quantitative measurement, it does imply that the
actual TD density must be at least an order of magnitude below a

value of ~106 cm−2, which would correspond to an average
distance of about 10 μm between dislocations. Considering the
high correlation between the TD density measured by plan-view
TEM and EPD79, we argue that the ~104 cm−2 figure for the TD
density as measured by EPD is reasonably representative and
should be comparable with other results from the literature
measured in the same manner. By combining different interac-
tions between dislocations and voids, located either in the Ge
layer or in the Si substrate, the averaged TD density is reduced
significantly from ~108 cm−2 to a lower limit of ~104 cm−2 for
1.5 µm-thick Ge layers, which is considered very low for such a
thin epitaxial layer32,33,82.

Room temperature optical emission. As the TD density is sig-
nificantly reduced, one would expect that the NVS could be an
ideal starting point for the growth of high-quality III–V alloys
and devices. To demonstrate this, an epitaxial growth of 300 nm-
thick GaAs layers was carried out on three substrates for

e f

20 µm

b

20 µm

d

20 µm

c

a

Fig. 6 Evaluation of threading dislocation densities. a Picture of the nanovoid-based Ge/Si virtual substrate (NVS) produced on a 4 in. wafer. Etch-pits

densities taken from different regions of the NVS providing a lower limit for the TD density of ~104 cm−2 for 1.5 µm-thick Ge layer (b), from the edge of the

NVS with an untreated area (c) and from an untreated area with a TD density of ~107 cm−2 (d). Plan-view TEM micrographs marking the emergence sites

of dislocations on Ge films on Si taking from e untreated Ge/Si sample and f the NVS sample. Scale bars 500 nm. These observations confirm the TD

density reduction by introducing nanovoids inside the Ge/Si substrate
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comparison: bulk Ge, commercial Ge/Si with a TD density of
~108 cm−2 and the NVS with a TD density of ~104 cm−2. Light
emission efficiency and optical emission spectra from these sub-
strates were measured by CL.

First, the use of surface preparation before the growth always
led to a noticeable reduction of the surface roughness. The
calibrations of the RMS for various chemical–mechanical
planarization (CMP) durations were carried out on a rough Ge/
Si substrate using a mixture of commercial CMP slurries, DI
water dilution, and 1 wt% H2O2 (Supplementary Fig. 4). Using
this process, the initial RMS of the NVS (2 nm for a large window
size of 20 × 20 µm2) was reduced to 0.5 nm, to fulfill the
requirements for the epitaxy of III–V alloys. The polished
thickness of the NVS is around 40 nm.

Optical emission properties of the GaAs films were investigated
under electron irradiation using CL measurements. The energy-
loss and CL generation profiles simulated for a 300 nm-thick
epilayer of GaAs (density 5.32 g/cm2) on Ge (density 5.32 g/cm2),
for monoenergetic beams of 5, 10, and 20 keV are given in
Supplementary Fig. 5. These parameters were calculated using the
Monte Carlo simulation CASINO83 package in order to optimize
the CL emission depth profile of GaAs films and compare the
recombination behavior at the surface and in the bulk for each
substrate.

CASINO simulation of the electron interaction volume of a
300 nm-thick GaAs film grown on Ge substrate is presented in
Fig. 7a, e. The color scale indicates the irradiated electron energy
concentration. The thickness of GaAs used in this work has been
overlaid in the diagram to facilitate comparison. Simulations
show that interactions occurring near the surface could be

revealed using 5 keV e-beam and across the entire layer of GaAs
using 20 keV e-beam.

CL spectra from all samples exhibit luminescence in the near-
infrared region with a maximum intensity at 870 nm as shown in
Fig. 7i–k. The peak is correlated to the interband recombination
process of excited charge carriers across the direct bandgap of
GaAs (1.43 eV) at room temperature84. At the surface (5 keV e-
beam), the recombination process is less radiative for all samples
due to a high density of surface states (Fig. 7b–d).

For GaAs grown on bulk Ge (Fig. 7i), the detected CL radiation
is higher than that of GaAs grown on Ge/Si (Fig. 7j) and NVS
substrates (Fig. 7k). This is to be expected, since GaAs and Ge
have similar lattice constants and a good quality growth is easily
achievable in these conditions. GaAs layers were deposited using
a recipe and surface preparation that are optimized to minimize
antiphase boundary (APB) formation, which can affect the
luminescence. Our material does not show any such APB under
SEM observation. CL maps demonstrate the uniformity of the
grown GaAs top layer, reflecting the absence of nonradiative
recombination centers and charged defects. No additional peaks
associated with Ge acceptor or donor levels have been observed in
our CL spectra, indicating that any diffusion of the Ge atoms
from the template into the GaAs epilayer is negligible85,86. The
CL intensity of GaAs on Ge/Si substrate is very low to compare
with GaAs on bulk Ge. The correlation between CL spectra and
CL micrographs shows that this attenuation is due to the
electrical activity of defects, which reveals dark regions, where the
recombination is non-radiative. These defects are mainly the TD
present in the GaAs layer, which propagate from the mismatched
Ge layer on Si. For the NVS, we observe a significant recovery of
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Fig. 7 Effect of reducing dislocations on optical properties. Monte-Carlo simulations using CASINO software of the electron interaction volume, and planar

cathodoluminescence (CL) micrographs of a 300 nm-thick GaAs layer grown on bulk Ge substrate, Ge/Si substrate, and the NVS at 5 keV (a–d) and

20 keV (e–h), respectively. The color scale bar in a, e shows the electron concentration. The CL micrographs in b–h show the emission and the

recombination behavior at the surface (5 keV) and in the bulk (20 keV) of GaAs on each substrate. Scale bars 3 µm. Room temperature

cathodoluminescence spectra recorded from i GaAs/Ge, j GaAs/Ge/Si with a TD density of ~107 cm−2 and k GaAs/NVS with a TD density of ~104 cm−2,

at 5 and 20 keV. CL measurements confirm that the dislocations were effectively blocked from propagating using nanovoids, which is reflected by an

enhancement of the emission efficiency of GaAs grown upon the NVS
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the CL intensity, when compared with the GaAs/Ge/Si sample.
The comparison of CL micrographs between the two samples
shows the disappearance of dark regions, which corresponds to a
low threading dislocation density inside the GaAs layer, as shown
in Fig. 7h. These results confirm that the dislocations were
effectively annihilated from the epilayer surface, which is reflected
by an enhancement of the emission efficiency for GaAs grown
upon the NVS.

Discussion
Low TD density in mismatched Ge-on-Si substrate is produced by
an innovative approach, which consists in trapping and annihilating
dislocations by self-assembling nanovoids close to the Ge/Si inter-
face. The nanovoids are formed in the Ge layer as well as in the Si
substrate by electrochemical porosification followed by thermal
annealing. The results show that PGe is selectively formed through
etching of the threading dislocation cores with higher etch rate than
for the defect-free regions, up to full etching of misfit dislocations.
We have demonstrated by TEM analysis different effects of either of
the free wedge surfaces on dislocation, particularly, threading arm
pinning by nanovoids. Possible mechanisms responsible for TD
reduction that lead to either annihilation or fusion have been dis-
cussed. The results suggest that introducing nanovoids favors
recombination of TDs by increasing the characteristic interaction
distance between neighboring dislocations. In fact, the creation of
voids could facilitate interactions between dislocations, enabling the
dislocation network to change its connectivity in a way, which
facilitates the subsequent annihilation of TD segments. In addition,
the voids formed in the silicon substrate could potentially capture
and thereby combine many more TDs. The TDs bend towards the
voids in Si in order to minimize their length, causing their recom-
bination and elimination at the nearest free surface thus leading to
the creation of an almost defect-free Ge layer on Si. CL measure-
ments indicate a strong enhancement of emission efficiency in GaAs
grown on this Ge/Si virtual substrate (with a lower limit for a TD
density of ~104 cm−2) to compare with a commercial Ge/Si (with a
TD density of ~108 cm−2) confirming that TDs were effectively
blocked from propagating, thanks to the nanovoids. The use of such
a simple, inexpensive process through electrochemical etching and
thermal annealing could be crucial in cutting manufacturing costs
and enabling market penetration of III–V on Si-based devices.

Methods
Ge/Si porosification. A p+-type Ge layer of 1.5 µm was grown on nominal B-
doped Si (001) wafers (4 in. diameter) using ultrahigh vacuum chemical vapor
deposition (UHV-CVD), with an initial TD density of ~107 cm−2. Mesoporous Ge
structures were fabricated by BEE in a two-electrode electrochemical cell with a
platinum wire counter electrode using an electrolyte consisting of 5:1 HF (49%)
and anhydrous ethanol. Anodic and cathodic currents with densities of ±4 mA/cm2

were applied alternately with pulse durations of 1 s during 35 min to fabricate PGe/
Si sample.

Thermal annealing. Annealing of mesoporous Ge/Si structures was performed in a
forming gas (N2:H2 90:10) ambient using a J.I.P. ELEC JetFirst rapid thermal
annealing (RTA) system with a ramp rate of 25 °C/s. The duration was fixed at
10 min and the annealing was performed between 300 and 600 °C to obtain the
voids in the Ge layer as well as the Si substrate.

Epitaxial growth. GaAs growth was carried out in a VG Semicon VG90H CBE
reactor. A 300 nm layer of GaAs was deposited using triethylgallium (TEGa) and
cracked arsine (AsH3) as the Groups III and V sources, respectively. Prior to
growth, the Ge substrates were heated at a temperature of 650 °C in the growth
chamber (under vacuum) for 10 min in order to allow for complete oxide deso-
rption. The growth run was carried out at 550 °C.

Structural characterization via TEM. The samples were observed in a scanning/
transmission electron microscope (S/TEM) in the high-angle annular dark field
(HAADF) mode using a Titan Themis microscope operated at 200 kV and
equipped with a CEOS probe corrector and a Ceta 16M camera from FEI. The

sample was prepared for S/TEM using focused ion beam (FIB) thinning and ion
milling. 100 nm-thick carbon was deposited before the FIB step in order to protect
the surface. Elemental distribution analysis was carried out using the Gatan digital
micrograph (DM) and energy dispersive X-ray spectroscopy (EDX) combined with
STEM. For EPD, the etchant was a mixture of two volumetric parts 49 wt% HF and
1 part 0.1 M K2Cr2O7. Etch pits were counted on the top surface by examining
SEM images and averaged over several samples. Additional nanoscale structural
information has been obtained by means of µ-Raman spectroscopy at room tem-
perature using an excitation wavelength of 532 nm and an excitation power of
1 mW/cm2.

Cathodoluminescence. The CL spectra and images are acquired at room tem-
perature, in the same SEM setup as the one used for imaging the layers. Our CL
system, in association with a spectrometer, which allows for monochromatic CL
(GATAN MonoCL2) imaging, as well as the acquisition of CL spectra on localized
spots of a sample with a spectral resolution of 0.5 nm. The accelerating voltages
used in the CL characterization are 5 and 20 keV.

Data availability
All relevant data are available from the authors upon request.
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