
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Numerical Terradynamic Simulation Group 
Publications Numerical Terradynamic Simulation Group 

9-2011 

Upscaling key ecosystem functions across the conterminous Upscaling key ecosystem functions across the conterminous 

United States by a water-centric ecosystem model United States by a water-centric ecosystem model 

G. Sun 

Peter Caldwell 

Asko Noormets 

S. G. McNulty 

Erika Cohen 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.umt.edu/ntsg_pubs 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 

Sun, G., et al. (2011), Upscaling key ecosystem functions across the conterminous United States by a 

water-centric ecosystem model, J. Geophys. Res., 116, G00J05, doi:10.1029/2010JG001573 

This Article is brought to you for free and open access by the Numerical Terradynamic Simulation Group at 
ScholarWorks at University of Montana. It has been accepted for inclusion in Numerical Terradynamic Simulation 
Group Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, 
please contact scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/ntsg_pubs
https://scholarworks.umt.edu/ntsg_pubs
https://scholarworks.umt.edu/ntsg
https://scholarworks.umt.edu/ntsg_pubs?utm_source=scholarworks.umt.edu%2Fntsg_pubs%2F231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
mailto:scholarworks@mso.umt.edu


Authors Authors 
G. Sun, Peter Caldwell, Asko Noormets, S. G. McNulty, Erika Cohen, Jennifer Moore Myers, Jean-
Christophe Domec, Emrys Treasure, Qiaozhen Mu, Jingfeng Xiao, Ranjeet John, and Jiquan Chen 

This article is available at ScholarWorks at University of Montana: https://scholarworks.umt.edu/ntsg_pubs/231 

https://scholarworks.umt.edu/ntsg_pubs/231


JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, G00J05, doi:10.1029/2010JG001573, 2011

UpscaKng key ecosystem functions across the conterminous 
United States by a water-centric ecosystem model
Ge Sun/ Peter Caldwell/ Asko N oorm ets/ Steven G. M cNulty/ Erika Cohen/
Jennifer Moore M yers/ Jean-Christophe D om ec/’̂  Emrys Treasure/ Qiaozhen M u /
Jingfeng X iao / Ranjeet Jo h n / and Jiquan Chen®
Received 1 October 2010; revised 19 February 2011; accepted 7 March 2011; published 21 May 2011.

[i] We developed a water-centric monthly scale simulation model (WaSSI-C) by 
integrating empirical water and carbon flux measurements from the FEUXNET network 
and an existing water supply and demand accounting model (WaSSI). The WaSSI-C 
model was evaluated with basin-scale evapotranspiration (ET), gross ecosystem 
productivity (CEP), and net ecosystem exchange (NEE) estimates by multiple independent 
methods across 2103 eight-digit Hydrologic Unit Code watersheds in the conterminous 
United States from 2001 to 2006. Our results indicate that WaSSI-C captured the spatial 
and temporal variability and the effects of large droughts on key ecosystem fluxes. Our 
modeled mean (±standard deviation in space) ET (556 ± 228 mm yr^ j compared well to 
Moderate Resolution Imaging Spectroradiometer (MODIS) based (527 ±251 mm y r^ /  
and watershed water balance based ET (571 ± 242 mm y r^ /. Our mean annual CEP 
estimates (1362 ± 688 g C m^^ yr /  compared well (R^ = 0.83) to estimates (1194 ± 649 g 
C m ^  yr /  by eddy flux-based EC-MOD model, but both methods led significantly 
higher (25-30%) values than the standard MODIS product (904 ± 467 g C m^^ yr /■
Among the 18 water resource regions, the southeast ranked the highest in terms of its 
water yield and carbon sequestration capacity. When all ecosystems were considered, the 
mean NEE (-353 ± 298 g C m^^ y r^ /  predicted by this study was 60% higher than 
EC-MOD’s estimate (-220 ± 225 g C m^^ yr /  in absolute magnitude, suggesting overall 
high uncertainty in quantifying NEE at a large scale. Our water-centric model offers a 
new tool for examining the trade-offs between regional water and carbon resources under a 
changing environment.

Citation: Sun, G., et al. (2011), Upscaling key ecosystem functions across the conterminous United States by a water-centric 
ecosystem model, J. Geophys. Res., 116, G00J05, doi:10.1029/2010JG001573.

1. Introduction vices, including providing stable and high quahty water,
moderating ehmate, sequestering atmospheric carbon dioxide,[2] Evapotranspiration (ET), water yield, gross ecosystem and protecting biodiversity. Understanding the tightly coupled

produ ctiv ity  (GEP), n et prim ary produ ctiv ity  (NPP), eeo - * j  u 1 • 1 * 1 • 1 j^  ̂ %  , , ,  ,  , w ater and carbon c y c le s  is en tiea l to  evaluating regional and
system g ™  f.ogeochem.cal cycles under a changmg eUmate [U ,,
(I.e., INLL NLR, w n ere in l r  is n e t e co sy stem  proauc 2 0 02; Nemani et al, 2003; Beer et al, 2 0 0 7 , 20 1 0 ].
tiv ity ) are the k e y  e co sy stem  n in etion s \Xiao et a l, 2 0 0 8 ,  ̂ ■ a. j  i i 1 a. • 1 j.nasaX r. r Aaaaaa r 7 -naaiaa c- 7 -naaiaa Q uantifying w a tc t and carbon balanccs at rcgional and con-
2 0 1 0 ;  S e e r  e t f l / . ,  2 0 1 0 ;  j M n p - e t f l / . ,  2 0 1 0 ;  A u n  e t f l / . ,  2 0 1 0 ;  A  * i i ^i a r
. . .  ’ 7 .nasaJa al a 1 - al a-a- a a tm cntal sca lcs IS csscntial tor land m anagers and p o licyXiao et at., 2 0 1 0  that d n ee tly  a ttee t m an y  e co sy stem  ser- , a j  a j  a- a- j  j  a a- a..7 •’  ̂ ^  ^  ^  m akers to d evelop  sound m itigation  and adaptation strategies
__________  in  response to g lob a l change.

‘Eastern Forest Environmental Threat Assessment Center, Forest [s] Although it is Wcll kuowu in CCology that water is a
Service, U.S. Department o f  Agriculture, Raleigh, North Carolina, USA. major control to plant growth and productivity [Chapin

"Department o f  Forestry and Environmental Resources, North Carolina 2 0 0 4 ; NoormetS et a l, 20 0 8 ; Domec et a l, 2 0 0 9 ],
State University at Raleigh, Raleigh, North Carolina, USA. . j i i  i i  x j

A n it a  de Bordeaux UM R fcEM , Gradignan, F ran ce ,. ^atcr and carbon have long bccn treated as two separated
N um erica l Terradynamic Simulation Group, University o f M ontana, entities. M an y  ex istin g  CCOSystcm m o d c ls  ha v e  SOmc form s

Missoula, Montana, USA. o f  Coupling b e tw een  carbon and w ater, m o stly  related to the
^Complex Systems Research Center, University o f  New  Flampshire, effects o f  Soil m oisturc On p h o to sy n th esis proCCSS. HoWCVCr,

I „ . . . .  CT. I . T. I . th ese  m o d els  have  rarely b een  va lid ated  w ith  both  carbon andDepartment of Environmental Sciences, University of loledo, loledo,
Ohio USA w ater  t lu x  m ea su rem en ts [Hanson et at., 2 0 0 4 ;  Noormets

et a l, 2006; Domec et al, 2010; Tian et al, 2010]. Similarly, 
Copyright 2011 by the American Geophysical Union. the hydrologie community has long ignored the feedbacks
0148-0227/11/2010JG001573
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between plants and the water eyeles, and hydrologieal modeling 
results are often assessed only with streamflow measurements 
at the watershed outlets, rarely with direet ET or soil moisture 
measurements [Vorosmarty et al., 1998; Hay and McCabe, 
2002]. Part of the reasons is that ET remains the least quanti
fiable water balanee eomponents at all seales [Zhang et al., 
2001; Mu et al., 2007; Allen, 2008; Zhou et al., 2008; Sun 
et al, 2010]. The seienee of eeohydrology, that speeifieally 
addresses the interaetions of hydrologie (i.e., ET) and eeolog- 
ieal proeesses, is rapidly developing to offer the basis to address 
trade-offs between earbon sequestration and water use [Jackson 
et al, 2005, 2009; Vose et al, 2011] and between erop pro- 
duetion and water resourees [Liu et al, 2009].

[4] Carbon and water exehange are inherently eoupled by 
several meehanisms. The photosynthesis proeesses are mainly 
eontrolled by radiation and soil water availability, stomatal 
eonduetanee, and leaf biomass and ehemistry [Chapin et al, 
2004], all of them being the key factors regulating ecosys
tem ET [Sun et al, 2010]. Seasonal pattems of ET rates 
together with precipitation regulate soil moisture storage, a 
key factor that determines ecosystem productivity [Noormets 
et al, 2008, 2010]. This eonneetion between ET and GEP 
has been used in continental and global GEP modeling [Beer 
et al, 2007, 2010]. Similarly, Re is constrained by soil tem
perature and moisture [Wen et al, 2006] as well as the quality 
and quantity of the carbohydrate substrates, which in turn 
depend on GEP [Davidson et al, 2006]. Understanding the 
coupling of carbon, water and other biogeoehemieal elements 
across ecosystems at a large scale is eritieal to address modem 
environmental problems [Finzi et al, 2011].

[5] Several methods have been proposed in recent years to 
quantify water and earbon fluxes and their interaetions at a 
large scale. These include (1) empirical maehine-leaming 
techniques [Xiao et a l, 2008, 2010, 2011; Jung et a l, 2009; 
Zhang et a l, 2011] that involve developing regression 
models using large amounts of empirical measurements 
from the eddy flux networks and satellite remote sensing 
data; (2) process-based models driven by remote sensing 
data of landeover and biophysical parameters. Models such 
as CASA, PnET, Biome-BGC, TEM, DEEM, simulate 
partial or the full biogeoehemieal eyeles of earbon, water, 
and nutrients [Field et a l, 1995; Aher et a l, 1996; Running 
et a l, 2004; Zhao et a l, 2005, 2006; Mu et a l, 2007; Xiao 
et a l ,  2009; Tian et a l ,  2010]. Schwalm et al. [2010] 
conducted a comprehensive evaluation of the performance 
of 22 popular earbon cycle models using 220 site-years of 
CO2 flux data; (3) atmospheric inverse modeling [Deng 
et a l, 2007] method that infers NEE from a network of 
CO2 concentration measurements; and (4) inventory meth
ods that estimate ecosystem productivity (i.e., NPP) from 
long-term forest inventory data [Pacala et a l, 2001] and 
do not aeeount for annual elimatie variability and are not 
designed to examine interaetions between earbon and water.

[e] The objectives of this study included (1) developing 
and validating a new integrated model (WaSSI-C), to aeeount 
for large-scale monthly water and earbon balances using 
limited input parameters and variables; and (2) applying the 
model to 2,103 large basins in the conterminous United 
States to examine spatial and temporal pattems of water and 
earbon exehange. We adopted an approach eharaeteristie of 
data-model fusion methods with a focus on the interaetions 
of water and earbon eyeles at the monthly scale.

[7] We hypothesized that if ecosystem water and earbon 
fluxes are strongly eoupled at the monthly scale [Law et a l, 
2002; Beer et a l, 2007], a water-eentrie approach can be 
used to quantify earbon fluxes with a reasonable aeeuraey. 
The WaSSI-C model presented in this study is eomprosed of 
an existing water balanee model (WaSSI) and a set of 
biome-speeifie apparent water use effieieney relationships 
as estimated from 968 site-years of eddy covariance data. 
The ET, GEP, Re, and NEE prediction models were first 
developed using site level data of the eddy flux network and 
other hydrological experimental stations. Next, these algo
rithms were incorporated into the existing WaSSI model and 
applied to the eonterminous United States for the period of 
2001-2006 corresponding to the time period when Moder
ate Resolution Imaging Spectroradiometer (MODIS) pro
ducts of ET, GPP, and NEE are available. The simulated 
spatial and temporal distributions of continental ET, GEP, 
and NEE were compared to estimates by several indepen
dent sources including national historical watershed ranoff 
databases, improved MODIS-based ET and GPP products, 
and gridded GPP and NEE databases developed by inte
grating eddy flux measurements and remote sensing data.

2. M odel Development, Validation, and Databases

[s] We explicitly examined spatial and temporal pattems 
of water and earbon interaetions at the monthly and annual 
seales for 2001-2006, a period over which remote sensing 
data are available for model validation. Ecosystem ET is 
modeled as a function of with a monthly hydrologie model 
Water Supply Stress Index Model (WaSSI) [Sun et a l ,  
2008], and the earbon fluxes are estimated from the 
derived ET using eddy eovarianee-based biome mean water 
use effieieney (WUE = GEP/ET). The latter represents an 
update to the models reported by Law et al. [2002].

[9] The new WaSSI-C model operates at a monthly 
temporal scale and a variable spatial scale depending on the 
area of each land cover within a watershed. The model sim
ulates the full monthly water and earbon balances, including 
ET, soil moisture content, water yield, GEP, Re, and NEE for 
each of the eight land cover categories within a watershed, 
and then aggregates the fluxes to the entire basin using a area- 
weighted average approach (Figiue 1). The basins are the 
eight-digit Hydrologie Unit Code (HUG) watersheds desig
nated by the Watershed Boundary Dataset [Natural Resources 
Conservation Service, 2009]. Hydrologie units are a widely 
used geographic framework for the eonterminous United 
States in water resoiuee management and natural resoiuee 
conservation. Each unit defines a geographic area represent
ing part or all of a surface drainage basin or a combination of 
drainage basins. We used a total of 2,103 basins across the 
eonterminous United States with a size ranging from 11 to 
22,965 km^ with a median value of 3,207 km^.

2.1. Water Supply Stress Index Model
[10] The original WaSSI model was developed to examine 

impacts of multiple stresses, ineluding climate change, land 
eover/land use change and water demand, on watershed 
hydrology and water stresses [Sun et a l, 2008]. The model 
simulates the full monthly water fluxes for each of the eight 
land cover categories within a watershed, and then aggre
gates each fluxes to the entire basin using area-weighted
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WaSSI-C Modeling Framework W ater balance Carbon balance

AS = P -Q -E T NEE = - (G E P -R e)

GEP= f(ET)
ET= f(PET, P.LAI, S)

8-digit Hue
□ □  2-D igit HUC (W ater Resource Region) “  so o  1 ,000  K ilo m e te rs

Shrublands 

Grasslands

Deciduous 
forests

03020201
(WRR)

Re= f(Ta, or ET, or GEP)

Q=f(P,ET,S)

Figure 1. Sketch of conceptual framework of WaSSI-C model for an eight-digit Hydrologie Unit Code 
watershed with mixed land covers.

averaging (Figure 1). The hydrologie fluxes include ET, 
infiltration, soil storage, snow aeeumulation and melt, sur
face runoff, and base flow, and discharge was routed 
through the stream network from upstream to downstream 
watersheds (Figirre 1). Estimation of infiltration, soil stor
age, and runoff proeesses was accomplished through the 
integration of algorithms from the Sacramento Soil Moisture 
Aeeounting Model and STATSGO-based soil parameters. 
The model was driven by watershed-averaged monthly 
precipitation and mean air temperature that were sealed from 
gridded historical PRISM climate data (Table 1).

[ii] The core of the WaSSI model is an empirical ET 
model derived from a data set of eeosystem-Ievel ET mea
surements based on eddy eovarianee or sapflow techniques 
at thirteen sites [Sun et a l, 2011]. These sites represented a 
range of biomes that span a large elimatie gradient, ranging 
from subtropical rain forests in the humid Appalachians in 
the southeastern United States to the hot dry woodlands in 
eastem Australia, and from forested wetlands on the Atlantic 
coastal plain in the southeastem United States to the grass
lands and shrub lands and cultivated croplands in the semi- 
arid Inner Mongolian region of northem China. Management 
practices also varied widely across sites. The geographic 
range of the sites varied in latitude from 43.5°N to 33.7°S and 
in longitude from 83.8°W to 150.8°E. The annual mean air 
temperature ranged from 0.6 to 17.6°C and mean annual 
precipitation from 300 to > 1800 mm yr \  Monthly total ET 
rates from each site were sealed from half-hoirr measirre-

ments using either the standard eddy eovarianee methods or 
sapflow + canopy intereeption methods. Aneillary data, such 
as monthly averaged leave area index (LAI), P, and elimatie 
variables were assembled from field measurements to 
develop a regression model for predicting ET. In developing 
and applying the ET regression model across the United 
States, it became clear that a single equation could not capture 
the spatial variability in ET as predicted by MODIS estimates 
and water balanee approaches. In particular, we observed that 
ET in forested regions (i.e., forest cover percentage >20%) in 
northem latitudes (e.g., >40°N) required a unique form of the 
ET regression model to aeeurately replicate measured data. 
For forested regions at high latitudes (>40°N) dominated by 
winter precipitation in the northeastem United States, the 
following ET equation was applied:

ET =  0.4*PET +  7.87*LAI +  0.00169*PET*P

=  0.85 R M SE= 14.5(mm m onth^'),« =  147,p <  0.0001

For other regions,

ET =  0.174*P +  0.502*PET +  5.3ULAI +  0.0222*PET*LAI

=  0.86RM SE= 14.0(mmmonth^'),« =  147,;? <  0.0001

where LAI was monthly averaged leaf area index measured 
on site or derived from continental MODIS products [Myneni

3 of 16



G00J05 SUN ET AL.: UPSCALING ECOSYSTEM FUNCTIONS G00J05

Table 1. Databases for WaSSI-C Model Development, Parameterization, and Validation

Data Set References Source Usage
Original

Resolution Time Period

Eddy flux data FLUXNLT (http://www.fluxnet.oml.gov/) model development >240 sites Vary
Climate (monthly P 

and air T)
PRISM Climate Group (http://prism.oregonstate.edu/) parameterization 4*4 km^ 1960-2007

Streamflow U.S. Geological Survey (USGS)
(http://waterwatch.usgs.gov/index.php/ 
?m = romap3&w = download)

for regional ET 
validation

eight-digit
HUC

1901-2006

Land cover Moderate Resolution Imaging Spectroradiometer 
(MODIS) (http://modis.gsfc.nasa.gov/)

parameterization 1*1 km^ 2001

Leaf area index Moderate Resolution Imaging Spectroradiometer 
(MODIS) http://modis.gsfc.nasa.gov/

parameterization 1*1 km^ 2001-2006

Soil properties STATSGO-based Sacramento Soil Moisture
Accounting Model Soil Parameters and NOAA-NW S 
Hydrology Laboratory, Office o f Hydrologie 
Development

parameterization 1*1 km^ N/A

GLP w all-to-wall maps published by Xiao et al. [2010] validation 1*1 km^ 2000-2006
NLL w all-to-wall maps published by Xiao et al. [2008] validation 1*1 km^ 2000-2006

et al., 2002]. Potential ET (PET) was calculated with 
Hamon’s method that used air temperature and potential 
daytime length and was widely used due to its simplicity and 
reliabihty comparing to more complex methods [ Vorosmarty 
et al., 1998; Lu et al., 2005].

[12] The above two equations do not aeeount for soil 
water availability’s effect on ET and thus may cause over
estimation errors under extreme dry conditions. To correctly 
close the water balanee, the ET predicted by the regression 
models was further constrained. Using the two-soil-layer 
SAC-SMA model algorithm, the WaSSI model compares 
ET demand to soil water storage, and limits ET if soil water is 
insufficient to meet the demand. Soil moisture for ET is 
withdrawn sequentially from the upper soil layer tension 
water storage (i.e., soil water tension between field capacity 
and the wilting point), upper layer free water storage (i.e., soil 
water tension between saturation and field capacity), and 
from the lower layer tension water storage until the demand is 
met or until available soil water has been depleted.

2.2. The Carbon Models
[13] It has been shown that ecosystem ET and GEP are 

closely eoupled at a monthly scale \Law et al., 2002]. The 
original relationships for forest ecosystems have been sue- 
eessfully used in a number of modeling studies, but the 
availability of data has increased by orders of magnitude, and 
we reevaluated these relationships, as well as developed them 
for nonforest ecosystems that were not covered by Law et al. 
[2002]. The relationships between GEP and ET were evalu
ated using level 4 data of FEUXNET LaThuile data set (http:// 
www.fluxdata.org) which were integrated to a daily scale. 
These values were further integrated to a monthly scale for the 
analyses presented here. Of the 968 site-years of data 935 and 
905 site-years were available for analyzing GEP-ET and Re- 
Ta relationships, respectively. The data covered 244 and 233 
separate sites, respectively and spanned 11 IGBP land cover 
classes. The relationships of monthly GEP with ET, and Re 
versus GEP were estimated using linear regression procedures 
(SAS V9.1.3, Cary, NC). For GEP-ET relationship, the 
intercept was forced through the origin (Table 2), and the 
eoeffieients of determination increased over those with non
zero intercept. Thus, the slope of GEP-ET regression model 
represented an integrated GEP-based water use effieieney.

[14] Ideally, ecosystem earbon fluxes should be indepen
dently derived from one another. However, sealing Re solely 
from temperature (Ta) led to very high estimates over hot and 
dry desert ecosystems that are grouped together with shrub 
lands in the IGBP elassilieation scheme. To obtain more 
realistic estimates at the continental scale, Re must be con
strained by moisture availability and vegetation activity that 
are both controlling factors of Re [Davidson et a l, 2006]. 
GEP provided such an integrative constraint, and while 
future development calls for independent Re estimates, cur
rent data availability limits global application of unbounded 
Re-Ta relationships. While the correlation between Re and 
GEP was strong in the enrrent data set (Table 3), recent 
analyses suggest it may have been exaggerated by the 
assumptions implicit in the gap-filling protocols [Vickers 
et al., 2009, 2010; Lasslop et al., 2010]. Although there 
are strong reasons for the correlation to exist between pro
ductivity and respiration [Lasslop et a l, 2010], the strength 
of the relationship in monthly data is strongest in comparison 
to the strength in shorter and longer time domains, and 
unrelated to the possible artificial correlations introduced in 
the gap-filling process. Finally, monthly NEE was modeled 
as the difference between GEP and Re (NEE = Re -  GEP). 
A model comparison study by Schwalm et al. [2010] sug
gests models that estimate NEE as the difference between 
GEP and Re perform better than others. Nevertheless, future

Table 2. Regression Model Parameters for Estimating Monthly 
GEP as a Function of ET, GEP = a*ET

Land Cover
Number o f Flux 

Tower Sites a ±  SD

Croplands 29 3.13 ±  1.69 0.78
Closed Shrublands 6 1.37 ±  0.62 0.77
Deciduous Broadleaf Forest 32 3.20 ±  1.26 0.93
Evergreen Broadleaf 16 2.59 ±  0.54 0.92
Evergreen Needleleaf 69 2.46 ±  0.96 0.89
Grasslands 44 2.12 ±  1.66 0.84
Mixed Forests 12 2.74 ±  1.05 0.89
Open Shrublands 11 1.33 ±  0.47 0.85
Savannas 4 1.26 ±  0.77 0.80
Wetlands 15 1.66 ±  1.33 0.78
W et Savannas 6 1.49 ±  0.36 0.90
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Table 3. Regression Model Parameters for Estimating Monthly 
Ecosystem Respiration as a Function of GEP, Re = m + n GEP

Ecosystems

Number 
o f  Eddy 

Flux Sites m ±  SD n ± SD R^

Cropland (CRO) 29 40.6 ±  3.84 0.43 ±  0.02 0.77
Closed Shrublands 3 11.4 ±  15.62 0.69 ±  0.15 0.74
Deciduous Broadleaf 32 30.8 ±  2.93 0.45 ±  0.03 0.83

Forest (DBF)
Evergreen Broadleaf 11 19.6 ±  8.74 0.61 ±  0.06 0.63

Forest (EBF)
Evergreen Needleleaf 70 9.9 ± 2.24 0.68 ±  0.03 0.8

Forest (ENF)
Grasslands (GRA) 44 18.9 ±  2.31 0.64 ±  0.02 0.82
Mixed Forests (MF) 12 24.4 ±  4.24 0.62 ±  0.05 0.88
Open Shrublands (OS) 8 9.7 ± 3.03 0.56 ±  0.08 0.81
Savannas (SAV) 3 25.2 ±  3.23 0.53 ±  0.07 0.65
Wetlands (WET) 15 7.8 ± 3.04 0.56 ±  0.03 0.8
W et Savanna (WSA) 6 14.7 ±  2.75 0.63 ±  0.04 0.74

efforts in WaSSI-C development will foeus on independent 
estimation of GEP and Re as outlined above.

2.3. WaSSI-C Model Validation
2.3.1. Model Validation Methods

[15] The WaSSI-C model was developed from site-level 
data and applied to eight-digit HCU watersheds. We vali
dated the model against remote-sensing based GEP and 
NEE estimates with a spatial resolution of the watershed. 
For ET validation, two data sets were used: (1) derived from 
the watershed water balanee method published by the U.S. 
Geologieal Survey (USGS), and (2) aequired from the 
MODIS ET produets [Mu et al., 2010]. For earbon flux, 
modeled GEP and NEE fluxes were eompared to the stan
dard MODIS-GPP produet [Zhao et al., 2005] and gridded 
GPP and NEE data derived from eddy eovarianee (EC) and 
MODIS data (EC-MOD) [Xiao et a l, 2008, 2010, 2011]. 
To be eonsistent with terminology, we referred to the GPP 
data sets of both sourees as GEP hereafter in this paper. The 
performanee of the model in predieting ET, GEP, and NEE 
was evaluated qualitatively using seatterplots and differenee 
maps, quantitatively using Root Mean Square Error (RMSE) 
and Coeffieients of Determination (R^) and the slopes of 
the linear regression models. We validated the model against 
various referenee produets of annual ET, GEP, NEE, and 
monthly ET.
2.3.2. Databases for Model Validation
2.3.2.I. MODIS-ET

[16] Remote sensing-based ET models have been devel
oped in reeent years to estimate regional-seale ET and water 
balanees [Cleugh et al., 2007; Mu et a l, 2007; Fisher et a l, 
2008; Zhang et a l, 2010]. Mu et al. [2010] further improved 
the MODIS ET algorithms by (1) simplifying the ealeula- 
tion of vegetation eover fraetion; (2) ealeulating ET as the 
sum of daytime and nighttime eomponents; (3) adding soil 
heat flux ealeulation; (4) improving estimates of stomatal 
eonduetanee, aerodynamie resistanee and boundary layer 
resistanee; (5) separating dry eanopy surfaee from the wet; 
and (6) dividing ground moisture eonditions into saturated and 
moist surfaees. The MODIS ET algorithm employs reanalysis 
surfaee meteorologieal data (0.05° resolution) from NASA’s 
Global Modeling and Assimilation Office [2004] with MODIS 
land eover, albedo, LAI and the Fraetion of Absorbed Pho-

tosynthetieally Aetive Radiation (FPAR) inputs for regional 
and global ET mapping and monitoring. The global ET 
produet has been evaluated using AmeriFlux flux data sets 
with variable sueeess [Mu et al, 2007]. We aggregated the 
new 1 km^ ET data set [Mu et al, 2010] to the eight-digit 
HUC level by averaging monthly ET (sum of 8 day values) 
of all eells for each watershed.
2.3.2.2. ET Data Derived From Waters Balance 
of Gauged Watersheds

[17] In addition to the MODIS-ET for WaSSI-C model 
validation, we also aequired historic runoff (Q) data (Table 1) 
from the U.S. Geologieal Survey (USGS) to estimate annual 
ET as the differenee between precipitation (P), nmoff, and 
change in siufaee and groundwater storage, ET = P -  Q ± 
AS. This method (hereafter USGS-ET) represented an 
independent approach for estimating regional ET flux at an 
annual seale. The change in water storage is negligible for a 
normal year or over a long-term period, and the water bal
anced equation can be simphfied as ET = P -  Q. However, 
ET may be greatly overestimated or imderestimated at the 
annual seale during extreme wet or dry years due to a positive 
or negative change in soil water storage, respectively 
[Donohue et a l, 2007]. In addition, natural streamflow 
eharaeteristies of many watersheds have been altered by 
water management practices such as interbasin transfer, 
groundwater pumping, and large-scale irrigation, resulting in 
measurement errors in Q, and thus estimated ET. These 
potential soiuees of error were not accounted for in the eiu- 
rent version of WaSSI-C.

[18] Not all the watersheds within the large basins mod
eled in this study were gauged for streamflow measure
ments. Continental-seale eight-digit HUC watershed-level 
runoff databases were consequently estimated by combin
ing historical daily flow data collected at approximately 
6000 USGS stream gauges. The drainage basin areas of 
these gauged streams ranged from 10 to 180,000 km^. We 
identified 2103 valid eight-digit HUC watersheds for this 
study to use.
2.3.2.3. MODIS-GEP (MOD17A3)

[19] We sealed the 8 day, 1 km^ resolution MODIS GEP 
(MOD17A3) data (Table 1) to the eight-digit HUC water
shed level to compare to oiu model results. The original 
GEP data were developed using Monteith’s logic that cal
culated GEP as a function of light use effieieney (e), min
imum air temperature, vapor pressure deficit, absorbed 
photo synthetically aetive radiation (APAR), and shortwave 
radiation [Running et a l, 2004]. MODIS GEP has been used 
in many applications ineluding the evaluation of water stress 
by integrating with the BIOME-BGC model [Mu et a l,
2007] and long-term ecosystem productivity trend analysis 
at the global seale [Nemani et a l, 2003]. MODIS GPP 
products have been evaluated by eddy flux measurements 
across many biomes [Turner et a l ,  2006; Zhang et a l ,
2008] and used to predict plant diversity in semiarid Inner 
Mongolia [John et a l, 2008], estimate wheat yield, and 
seale up site level GEP into estuarine wetlands of the 
Yangtze delta [Yan et a l, 2008].
2.3.2.4. Gridded GPP and NEE Data Sets

[20] To provide an independent estimate of earbon flux, 
we also aequired continental 1 km^ GEP and NEE data 
developed hy Xiao et al. [2008, 2010, 2011]. The data sets 
were eonstrueted by a data-driven approach that combined
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Figure 2. Spatial distributions of (a) mean annual evapotranspiration (ET) (mm yr )̂, (b) ET:P ratios, 
(e) ET:PET ratios, and (d) P/PET ratios aeross the eonterminous United States over the period of 
2001-2006 as simulated by the WaSSI-C model.

eddy eovarianee data and MODIS data to develop predietive 
GEP and NEE models. The explanatory variables in the 
models ineluded vegetation type, surfaee refleetanee, daytime 
and nighttime land surfaee temperature, enhaneed vegetation 
index, and normalized differenee water index. These vari
ables eould partly aeeount for a variety of physieal, physio- 
logieal, atmospherie, hydrologie, and edaphie variables that 
affeet eeosystem earbon exehange. The models, referred to as 
EC-MOD, were used to ereate gridded flux fields for tem
perate North Ameriea over the period of 2001-2006 \Xiao 
et al., 2011]. We sealed the data set to the watershed seale 
for eomparison purposes.

3. Results and Discussion

3.1. Spatial and Temporal Dynamics of ET
[21] Spatially, WaSSI-C predieted ET ranged from approx

imately 200 to 1200 mm yr \  and elosely followed preeipita- 
tion and temperature distribution pattems aeross the United 
States (Figure 2a). The 6 year spatial average (±spatial SD) 
was 556 ± 228 mm yr \  Due to both a warm (i.e., high PET) 
and wet ehmate (i.e., high preeipitation), the water resouree

regions in the southeastem Untied States (e.g., WRR 03) had 
high annual ET, ET:PET and P:PET ratios, and a moderate ET: 
P ratios overall (Figure 2). WRR 01,02, 5, and westem parts of 
WRR 17 and 18 had the lowest ET:P ratios (<0.6), while the 
highest ET:P ratios (>0.8) were found in the arid westem 
WRR (14, 15, 16) where ET was low (Figure 2b). Addition
ally, a few watersheds on the lower eoastal plain in the 
southeastem United States also had high ET:P ratios. These 
watersheds were dominated by forests that eonsumed more 
water than other eeosystems [Sun et al, 2010]. For the 
northeastem and the Paeifie Northwest regions, ET was lim
ited by energy in the winter months when preeipitation (i.e., 
snow and rainfall) exeeeded atmospherie demand. In eonfrast, 
in the arid westem United States, preeipitation generally 
limited ET in most of the seasons, thus ET was similar to P, 
and rarely equaled PET (Figure 2d).

[22] We eompared modeled annual and monthly mean ET 
for 2001-2006 with MODIS-ET aeross the 2103 water
sheds. We eliminated outliers in the MODIS-ET and the 
USGS-ET databases if the annual ET values were found to 
be unrealistieally higher than preeipitation, or if ET values 
substantially exeeeded ealeulated PET. The data for those
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Figure 3. A comparison between mean (2001-2006) annual ET (mm yr ) by WaSSI-C and MODIS for 
(a) scatterplot and (b) spatial display of differences, across 2103 HUCs for the period of 2001-2006.

watersheds were not appropriate for model validation pur
poses and were considered to contain errors in the data. The 
USGS-ET water balance method only provided annual ET 
estimates. However, these annual estimates were still 
affected by annual changes in soil water storage, so we only 
evaluated model performance against average annual ET. As 
mentioned earlier, water resources management activities 
such as inter basin transfer and groundwater over with
drawal likely impacted the accuracy of ET estimates based 
on the water balance equation. The errors were more pro
nounced in the westem United States where groundwater 
had been widely used for irrigation of agricultural crops.

[23] The comparison of our modeled annual ET against 
MODIS-ET and USGS-ET showed that the WaSSI-C 
model performed reasonably well (Figures 3 and 4). Mod
eled ET was highly correlated with MODIS-ET (R^ = 0.90, 
RMSE = 70 mm yx^\ p < 0.001) and USGS-ET (R^ = 0.85, 
RMSE = 78 mm yr^\ p < 0.001) methods. The seatterplots 
of modeled ET by WaSSI-C versus USGS-ET (Figure 3a)

and MODIS-ET versus USGS-ET (not shown) indicated 
higher variability of P-Q values than WaSSI-C versus 
MODIS-ET for a few watersheds. The errors were likely 
related to watershed hydrologie alteration by human activ
ities such as interbasin water transfers, groundwater recharge 
(e.g., missing surface water at gauging stations, and ground
water withdrawals added to surface water) that all affected the 
accuracy of ET estimates by the USGS-ET method. In spite of 
the discrepancies at individual watersheds, the cross-model 
validation suggested that both WaSSI-C and MODIS-ET 
models captured ET variability over space and time.

[24] As expected, the highest monthly ET occurred in July 
(85 ± 32 mm month )̂, and lowest ET in January (20 ± 
13 mm month^^). The seasonal pattems of mean monthly 
ET predicted by WaSSI-C matched very well with those 
of MODIS-ET (Figure 5). The two sets of ET predictions 
were significantly correlated to each other (R^ = 0.80, 
RMSE = 14.3 mm month^\ p < 0.0001, WaSSI-C ET = 
142 + 0.73*MODIS-ET). MODIS-ET had a much higher

1:1 me

Regression line

>  400

WaSSI-C ET = 0.85 USGS ET + 75

R^=0

200 400 600 800 1000 1200 1400 1600
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Figure 4. A comparison between mean annual ET (mm yr ) by WaSSI-C and the USGS-ET. (a) Scat
terplot and (b) spatial display of differences, across 2103 HUCs for the period of 2001-2006.
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Figure 5. A comparison of mean monthly modeled ET by 
WaSSI-C versus MODIS estimates across 2103 HUCs for 
the period of 2001-2006.

spatial variability (SD = 30-50 mm month^^) than did 
WaSSI-C modeled ET (SD = 25-30 mm month in the 
growing season.

3.2. Spatial and Temporal Distributions of GEP 
and NEE
3.2.1. Modeled GEP Comparisons

[25] We applied the uncalibrated WaSSI-C model to the 
continental United States and calculated GEP for each 
watershed and each month over the period of 2001-2006. 
Mean annual GEP (Figure 6) modeled by this study were 
compared to two other GPP products (Figures 7 and 8). 
Across the 2103 watersheds, mean modeled annual GEP 
was 1360 g C vnT  ̂ yr^^ and ranged from 200 to 3000 g C 
m^^ yr^^ (Figure 6). The total conterminous United States

carbon uptake was 10.11 Pg C yr  ̂ during 2001-2006, 
which was higher than the mean GEP (7.06 Pg C yr 
estimated by Xiao et al. [2010] (Table 4). Since modeled 
GEP is directly proportional to ET in this study (Table 2), 
spatial pattems of GEP closely followed the ET distribution 
(Figure 2). The top three WRRs with high spatial mean 
annual GEP values were WRR08 and WRR06 (mean = 
2400 g C and WRR03 (mean = 2336 g C
yr^^) located in the southem United States. WRR03 received 
the highest precipitation under a warm climate (i.e., high 
PET). In terms of total amoimt of ecosystem carbon uptake, 
the top three regions were WRR03 (1.7 Pg C yr^  ̂ or 2337 g 
C yi^^l WRRIO (1.37 Pg C yr^^ or 1057 g C 
and W RRll (0.89 Pg C yr^^or 1431 g C rX^ yr^^).

[26] Our mean annual GEP correlated well with estimated 
EC-MOD GEP \Xiao et al., 2010] (R^ = 0.83, RMSE = 
279 g C rX^ yr^ , p  < 0.001, GEP = 208 + 0.97 EC-MOD 
GEP) (Figure 7). Compared to EC-MOD, WaSSI-C esti
mates were 208 g C m  ̂ yr \  or about 10% greater on 
average (Figure 7a). The spatial distribution of difference was 
complex. WaSSI-C predicted higher GEP that EC-MOD in 
regions with high GEP values, such as the southem United 
States, but lower in the cool regions with low GEP, like in 
the northeastem United States and the Pacific Northwest 
(Figure 7b).

[27] We found a large discrepancy in annual GEP between 
WaSSI-C model predictions and MODIS-GEP (Figure 8). 
Our estimates were about 30% higher that estimate by 
MODIS GEP. This result was consistent with Xiao et al.’s 
[2010] observation that eddy flux-based model predictions 
are generally higher than MODIS-GEP for highly produc
tive regions. The differences between WaSSI-C and MODIS 
GEP estimates were greatest at GEP > 1500 g C rX^ yr^\ 
WaSSI-C GEP exhibited a weaker relationship with MODIS 
GEP (R2 = 0.72, RMSE = 359 g C rX^ y r^ \  p < 0.0001, 
GEP = 231 + 1.25 MODIS GEP) than with EC-MOD.

WaSSI-C Modeled GEP (g C yr. ')

GEP
1 22- 400
401 - 800
801 - 1200
1201 -1600
1601 -1800
1801 -2000
2001 -3000

I I WatBT Resource Region (WRR)

Figure 6. WaSSI-C simulated spatial distribution of mean annual GEP (g C m  ̂yr )̂ for the contermi
nous United States over the period of 2001-2006.
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Figure 7. A comparison between mean annual GEP (g C m  ̂ yr estimates by WaSSI-C and EC- 
MOD. (a) Scatterplot. The dashed line is 1:1 line, and the solid line is regression line, (b) Spatial display 
of differences, across 2103 HUCs for the period of 2001-2006.

[28] The large differences found from this study could be 
attributed to several reasons: (1) Deficiency in MODIS-GEP 
algorithms related to the critical light use efficiency 
parameter [Zhang et a l, 2008] and inherent errors due to 
limitation of meteorological data. Comparing to tower- 
based measurements, a 20-30% error was not uncommon in 
MODIS-GEP [Heinsch et a l, 2006]. (2) Uncertainty of 
input parameters (i.e., LAI derived from MODIS products) 
and driving variables data (i.e., coarse meteorological data) 
for continental scale applications [Zhao et a l, 2006; Xiao 
et a l, 2010]. All models, including WaSSI-C, involved 
this type uncertainty. (3) Insufficient representation of some 
ecosystems within the FEUXNET as well as accurate land 
cover classification for our study. Past flux measurements 
are conducted mostly in mature or unmanaged forests, and 
the contribution of young or managed forests may be 
underrepresented in the current flux data sets. Additionally, 
model parameters are lumped to one biome without dis
crimination to age, ecosystem structures, free species, or

disturbances [Amiro et a l, 2010]. For examples, few flux 
towers exist for wetlands and savannas that represent the 
two ends of the water regime. A lack of representations of 
these biomes would result in large errors of GEP estimation. 
(4) The ET model used in this study does not account for 
other vegetation characteristics than LAI variability. One 
solution is to develop specific ET model for each biome 
when sufficient eddy flux tower data become available. 
Finally, measurement errors exist in flux data used since 
eddy covariance towers represent a single point in space that 
is integrated over the entire stand [Oren et a l, 2006].
3.2.2. Modeled NEE

[29] The WaSSI-C modeled spatial pattems of mean 
(2001-2006) annual NEE (Figure 9) were compared to 
estimates by EC-MOD (Figure 10). Across the 2103 
watersheds, annual WaSSI-C modeled NEE varied from a 
carbon source of 200 g C yr^^ to a strong carbon sink of
-1150 g C m ^yr  ̂ (Figure 9). The conterminous U.S. mean 
NEE was -353 ± 298 g C m  ̂yr \  representing a total net

Regression line
2500 -

2000  -

Y  1500 -

(/J 1000  ■

WaSSI-C GEP = 1.24 MODIS GEP + 234 
=0.72

500 1000 1500 2000 2500 3000

MODIS GEP ( g C m '^ y r .- ' ')

DifTerences in Modeled GEP (g C  yr.'^) 
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Figure 8. A comparison between mean annual GEP (g C m  ̂yr )̂ estimates by WaSSI-C and MODIS. 
(a) Scatterplot and (b) spatial display of discrpencies across 2103 HUCs for the period of 2001-2006.
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Table 4. Summary of Annual Conterminous United States, Regional, and Global Estimates of Carbon Fluxes

GEP

NEE or Carbon 
Sequestration 

(Absolute Values) Methodology Comments Reference

7.06 Pg yr '

NPP = 0.92-1.45 P g y r  ‘

NPP = 3.4 Pg C yr

10.11 Pg C yr

109.12 Pg C yr“ ‘
(NPP = 56.02 Pg C yr“ ‘) 

121.7 Pg C yr“‘

0.37-0.71 Pg C yr“ ‘ 
(including C exports) 

1.21 Pg C yr~^ (all lands) 
0.63 Pg C yr“ ‘ 
(excluding croplands) 

0.54 Pg C yr^' (all lands) 
0.36 Pg C yr“ ‘

NEP = -0 .1 2  Pg C yr“ ‘ 
(carbon loss)

0.12-0.23 Pg C yr“ ‘
0.666 Pg C yr“ ‘

(net C absorption)
1.24 Pg C yr~^ (croplands, 

C export not included)

2.6 ±  1.7 Pg C yr“ ‘

multiple methods

EC-MOD model; regression 
tree scaling up eddy flux 
data in the United States 

process-based ecosystem model 
coupling eddy flux data and 

remote sensing 
NASA-CASA model

NASA-CASA model 
SOCCR Project; multiple 

methods and sources 
ET based, water-centric 

model parameterized with 
global eddy flux data 

model synthesis 
MODIS

processes-based models

conterminous United States 
(1980-1989) 

conterminous United States 
(2001-2006)

southem region (13 states) 
U.S. Great Plains grasslands

continental United States 
(1982-1997)

North America (1996-98) 
North America

conterminous United States 
(2001-2006)

global, deforestation excluded 
global

global

Pacala et al. [2001] 

Xiao et al. [2010, 2011]

Zhang [2008]
Zhang et al. [2010]

Potter et al. [2006]

Potter et al. [2003] 
Pacala et al. [2007]

this study

Denman et al. [2007] 
Zhao et al. [2005]

Beer et al. [2010]

carbon sequestration of 2.54 Pg C yr^  ̂ during 2001-2006.
When crop lands NEE were excluded from the calculations, 
the total NEE was reduced to 1.24 Pg C yr \  Because NEE 
was modeled linearly from GEP in this study (Tables 2 
and 3), spatial pattems of NEE was closely related to GEP 
distribution (Figiue 8). Similar to GEP distributions, when 
NEE was expressed on a unite area basis with croplands 
excluded, the top three WRRs were WRR6 (-554 g C vnT̂  
y r X  WRR3 (-405 g C y r X  and WRRS (-390 g C

yr 7  in the southeastem United States. These WRRs between the two data sets were significant (R^ = 0.63

(-0.30 Pg C yr^^), W RRll (-0.14 Pg C yr^6, and WRR05 
(-0.23 Pg C yr^6- 

[30] We found large differences in NEE estimates from 
those o f Xiao et al. [2011] (Figure 10) and other limited 
continental-scale carbon sink values in the literature (Table 4). 
Xiao et al. [2008, 2011] estimated spatial mean NEE as 
-220 ± 225 g C yr^  ̂ and total carbon sequestration of 
-1.21 Pg C yr^  ̂for all ecosystem included, or -0.63 Pg C yr^  ̂
when croplands were excluded (Table 4). Correlations

received abundant precipitation and radiation energy (repre
sented by high PET in this study). In terms of contribution 
to total regional NEE, the top three regions were WRR03

RMSE = 179 g C y C \p  < 0.0001, NEE = -120 + 1.06* 
EC-MOD NEE). Compared to EC-MOD, WaSSI-C predicted 
on average 33% higher NEE (Figure 8), even greater in

WaSSI-C Modeled NEE(g C m'^ yr.'^)

NEE
H  -1148 - -BOO 
H  -799 - -600 
H  -899 - -400 
H  -399 - -200 

-199 - 0 
1 -200

I I Wtater Resource Region (WRR)

Figure 9. Spatial distribution of WaSSI-C simulated mean annual NEE (g C m  ̂yr 6  over the period of 
2001-2006.
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Figure 10. A comparison between mean annual NEE (g C m  ̂ yr estimates by WaSSI-C and 
EC-MOD. (a) Scatterplot and (b) spatial display of differences, across 2103 HUCs for the period 
of 2001-2006.

regions with high ET and GEP. The differences were highest 
in the southem United States in general, and in the Lower 
Mississippi Valley in particular, with a large contribution 
of croplands.

[31] The large differences in predicted NEE could be 
attributed to several reasons. First, NEE was underestimated 
for ecosystems with high carbon sequestration potential 
across season and sites for EC-MOD estimates \Xiao et a l,
2008]. Second, radiation was not an input variable to esti
mate PET or ET by the WaSSI-C model due to model sim
plification, which can cause potential overestimate of NEE. 
PET was estimated using a temperature-based approach. 
However, it is well known that plant transpiration is very 
responsive to radiation. Large PET does not automatically 
translate to high transpiration or carbon assimilation at the

ecosystem level even under a wet condition. For example, a 
recently cleared forest land may receive similar energy as a 
mature stand, but the low LAI of the young stand may result 
in relatively much less transpiration but higher soil evapo
ration than older stands [Sun et a l, 2010]. Therefore, we 
may have overestimated NEE for some areas (i.e., sparsely 
vegetated wetlands) in the southem United States where total 
ET was estimated rather high. In this case, a large portion 
of ET may be water evaporation (e.g., plant canopy inter
ception + soil evaporation). The small number of flux tower 
sites (Table 2) may also misrepresent the tme global pattems 
of ecosystem WUE, and fiorther refinement of these esti
mates is bound to improve model performance. Third, unlike 
WaSSI-C, Xiao et al. [2008, 2011] did not use local pre
cipitation and soil physical property data as model inputs

400

^■ N E E  (all landeover) 

NEE Crop Excluded 

1= 1 NEE EC-MOD 

 EWUE (NEE/ET)

300

200

100
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Figure 11. Summary of modeled mean annual water yield, carbon gain or loss expressed as Q 
(billion m^ yU^) and NEE (Tg yr~^), and ecosystem water use efficiency (EWUE) (NEE/ET, g C kg“  ̂
H2O) by water resource region (WRR).
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Figure 12. WaSSI-C modeled annual variability of key eeosystem fluxes in the eonterminous United 
States during 2001-2006.

although the use of normalized differenee water index 
derived from MODIS eould partly aeeount for soil moisture 
eonditions. Bias eould be introdueed for regions that have 
high preeipitation variability or where ET and plant earbon 
uptake is sensitive to soil water storage. In addition, neither 
model eonsidered the effeet of soil organie matters on NEE 
through Re, nor the effeet of deep root funetioning on NEE 
\Domec et a l, 2010], thus amplifying the effeets of elimatie 
variables on the differenees. A reeent eomprehensive model 
evaluation study by Schwalm et al. [2010] found that all the 
22 eeosystem models assessed performed poorly in matehing 
observed CO2 fluxes at a series of eddy flux sites, suggesting 
a large knowledge gap in modeling earbon eyele even at the 
site level.

[32] It eould be eonfusing when eomparing NEE values 
among studies that used different aeeounting methods and 
with a poor definition of earbon sequestration. This is 
espeeially troublesome when reporting the total sum values 
at the eontinental seale due to error propagation. A few 
studies have attempted to doeument the earbon sequestration 
strength for either the entire or eertain geographie regions of 
the United States (Table 4). Although some eonsisteney of 
earbon sequestration estimations was reported by previous 
studies [Pacala et al., 2007; Xiao et al, 2010, 2011], given 
the poor performanee of existing models [Schwalm et a l, 
2010], we argue a large uneertainty remains in reported U.S. 
eeosystem earbon sink and this study offers improved 
understanding and estimation of earbon fluxes and interac
tions between earbon and water.
3.2.3. Ranking of Water Resonrce Region According 
to Carbon and Water Flnxes

[33] Water yield volume and total earbon sequestration are 
summarized by water resonree region (WRR) to rank their 
capacity of providing eeosystem services (Figure 11). Over 
the period of 2001-2006, we estimated a total water yield 
of 1.92 trillion m^ yr an annual NEE of 1.24 Pg C yr^  ̂
(croplands excluded) and mean water use effieieney of 
-0.57 ± 0.38 g C kg^^ H 20^ for the eonterminous United 
States. The top three water production regions were

WRR17, WRR03, and WRR05, each of which received 
highest preeipitation and covered a large geographie region. 
The top three earbon uptake regions (i.e., WRR03, WRR05, 
and WRRIO) overlapped two of the three regions identified 
by water yield. WRRIO had a similar total NEE as WRR 7, 
8, 11, and 12. WRR 17, located in the high latitude with 
low PET, exhibited relatively low NEE in spite of receiv
ing large amount of preeipitation in the dormant season. 
Although the magnitudes of estimated NEE by WRR were 
different between the WaSSI-C and EC-MOD models, 
the NEE ranking pattems for the two models were sim
ilar, suggesting model eonsisteney in estimating NEE 
(Figure 11).

[34] Trade-offs between earbon and water at the regional 
seale can be evaluated by eeosystem water use effieieney 
(Ewue ^  NEEiET), representing the amount of earbon 
sequestered per unit of water eonsumed (g C • Kg^^ H2O). 
This study showed that the Ewue values of the most pro
ductive regions in both water and earbon (WRR03 and 
WRR05) were relatively high eompared to those of the arid 
regions (WRR 13-16) or cool regions (WRR 10, 17, 18) 
that had low productivity (Figure 11). However, overall 
E w u e  was rather uniform aeross regions, suggesting mutual 
constraints between earbon and water fluxes.
3.2.4. Temporal Variability of ET, GEP, and NEE 
and tbe Roles of P

[35] The mean annual preeipitation (P) for the eontermi
nous United States during 2001-2006 was 775 ± 34 mm, 
about 8% lower than the long-term (1960-2007) mean of 
847 mm. Year 2004 was a relatively wet year among the 
6 years studied, resulting in higher GEP and NEE, and water 
yield (Q) than other 5 years (Figure 12). The severe drought 
in 2002 caused a noticeable decrease in GEP and NEE as a 
whole aeross the Untied States. In contrast, ET fluxes 
fluctuated little over the entire study period (Figure 12), 
suggesting earbon fluxes were more sensitive to preeipita
tion change that ET as a large seale.

[36] The low interannual variability of fluxes presented in 
Figiue 12 might have masked the tme coupling between
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Figure 13. Anomalies of annual precipitation relative to the 48 year period 1960-2007 taken from the PRISM climate 
database and anomalies of GEP and NEB relative the 6 year mean in 2002 and 2006, showing impacts of server droughts 
on ecosystem fluxes. The arrows indicate an increase of carbon sequestration potential (more native in NEE).
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Figure 14. Relationships between anomalies of annual P 
and (top) annual ET, (middle) GEP, and (bottom) NEE, sug
gesting regional differential responses of eeosystem fluxes 
to ehanges in P in 2002 and 2006. Anomalies of P were rel
ative to 48 year mean (1960-2007), while anomalies of ET, 
GEP, and NEE were relative to tbe mean of 2001-2006.

water and earbon proeesses. For example, year 2002 bad tbe 
same annual preeipitation as 2004 (757 mm), but tbe 2 years 
bad rather distinet spatial pattems of earbon and water fluxes 
owing to spatial preeipitation variability (Figure 13). Tbe 
westem and eastem regions experieneed separate severe 
droughts in 2002 and 2006, respeetively, resulting in large 
deereases in GEP and NEE. Tbe regional deereases in 
GEP and NEE elosely followed with tbe deereases in P 
(Figure 13). Tbe reason was that modeled GEP and NEE

was a linear funetion of ET wbieb was eontrolled by P in 
most regions in tbe United States. Indeed, annual ET 
anomalies were strongly influeneed by P, as were anomalies 
of GEP and NEE (Figiue 14). We found that tbe ET fluxes 
were more sensitive to P in water-limited dry regions (e.g., 
WRR 15) than in other regions. This was demonstrated by a 
severe shift to a steeper slope for tbe relationship between 
anomalies of ET and P eompared to tbe overall relation
ship aeross tbe eonterminous United States that has slope 
of 0.25 mm mm^^ (Figure 14). GEP and NEE bad similar 
pronouneed response to droughts for tbe arid regions. 
Annual ET generally inereased with an inerease in P at tbe 
annual seale, but we found tbe opposite for some watersheds 
(e.g., HUC 17100101-17100312) in WRR17 in tbe wet and 
eool Paeifie Northwest. In this ease, ET, GEP, and NEE 
deereased somewhat (in absolute values), up to 60 mm yr^\ 
100 g C m^^ yr 20 g C yr^\ respeetively, with tbe 
inerease in annual P up to 380 mm yr^^ in 2006 (Figure 14). 
A elose examination of seasonal preeipitation pattems in 
2006 found that tbe inerease in annual P was due to an 
inerease in winter preeipitation whereas tbe growing season 
preeipitation deereased eompared to tbe long-term mean, 
eonsequently resulting in a deerease in ET, GEP, and NEE 
(absolute values) in tbe annual totals.

4. Conclusions
[37] We developed a water-eentrie earbon and water 

resouree aeeounting model, WaSS-C, by linking a data- 
driven water balanee model and simple relationships 
between GEP, Re, and ET as derived from global eddy flux 
databases. This approaeb was similar to Beer et al.’s [2007, 
2010] water use effieieney approaeb to derive earbon fluxes 
from water fluxes. Tbe main advantages of our model are 
twofold: (1) tbe algorithms were developed from eddy flux 
data and eaptured tbe essenee of earbon and water interae
tions at tbe monthly seale, and (2) input data are widely 
available to run tbe model for predietion purposes. Tbe 
model requires only two basie elimatie variables (i.e., pre
eipitation and air temperature) and two major remote sens
ing produets (i.e., LAI, and land eover maps). As a result, 
it is highly transferable to other regions that have limited 
resourees as a first estimation of water supply and eeosys
tem produetivity.

[38] Tbe model was applied to tbe 2103 basins in tbe 
eonterminous United States. Model results suggest that most 
of tbe eeosystems in tbe United States are earbon sink at tbe 
annual timeseale. When eroplands were exeluded, tbe ear
bon sink eapaeity of eeosystems of tbe eonterminous United 
States was estimated to be 1.24 Pg C yr \  Terrestrial eeo
systems produeed about 1.92 trillion m^ of fresh water 
annually. There was a large spatial and temporal variability 
in both water and earbon fluxes aeross tbe United States, 
largely due to ehmate and vegetation dynamies over spaee 
and time. Tbe southeastern United States represented a 
region with a large earbon sink and high water yield. We 
found that earbon fluxes were strongly influeneed by water 
availability during tbe growing seasons. This was espeeially 
true for arid regions where ET, thus GEP and NEE, was 
more sensitive to ehanges in preeipitation.

[39] This study presents improved understanding and 
estimation of U.S. eeosystem water and earbon fluxes. Tbe
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spatial and temporal changes of ET modeled by WaSSI-C 
eompared reasonably well with both MODIS-ET products 
and estimates based on streamflow data of gauged water
sheds. Although modeled ET and GEP values by this study 
were eompared well to several referenee data sets, our NEE 
estimates were higher than those published by the published 
products, suggesting a large uneertainty in large seale NEE 
estimates in all methods used in this eomparison study.

[40] Future studies should aim at closing the NEE esti
mation gaps among different regional modeling methods. 
Alternative physiologically based soil respiration models 
need to be incorporated into oiu water-eentrie model to fully 
aeeount for eeosystem respiration fluxes. Eddy flux mea
surements and modeling efforts should foeus on eeosystems 
that are currently not represented in the flux networks, such 
as wetlands and managed eeosystems that are under various 
natural and human disturbance regimes. In spite of the 
uneertainty and defieieneies identified, our model will be 
useful in helping natural resouree managers eonstruet water 
and earbon budgets and examine trade-offs between earbon 
sequestration and water supply at the regional seale.
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