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Due to the considerable computational demands of modeling solute transport in heterogeneous

porous media, there is a need for upscaled models that do not require explicit resolution of the

small-scale heterogeneity. This study investigates the development of upscaled solute transport

models using genetic programming (GP), a domain-independent modeling tool that searches the

space of mathematical equations for one or more equations that describe a set of training data.

An upscaling methodology is developed that facilitates both the GP search and the

implementation of the resulting models. A case study is performed that demonstrates this

methodology by developing vertically averaged equations of solute transport in perfectly stratified

aquifers. The solute flux models developed for the case study were analyzed for parsimony and

physical meaning, resulting in an upscaled model of the enhanced spreading of the solute plume,

due to aquifer heterogeneity, as a process that changes from predominantly advective to Fickian.

This case study not only demonstrates the use and efficacy of GP as a tool for developing

upscaled solute transport models, but it also provides insight into how to approach more realistic

multi-dimensional problems with this methodology.
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INTRODUCTION

Solute transport in porous media is fundamental to many

significant engineering problems. Thus, modeling this

process is an area of active research in many disciplines.

One popular method of modeling the movement of solute

through porous media involves the use of physically based

mathematical equations based on conservation of momen-

tum and mass. Darcy’s Law and the advection–dispersion

equation (ADE) are widely accepted as the equations

governing flow and transport of groundwater and dissolved

substances at the continuum scale, the length scale at which

the heterogeneous aggregation of soil grains can be treated

as a homogeneous spatially averaged material. It is now well

recognized, however, that natural porous media exhibit

significant spatial variability at the continuum scale and that

this variability has a profound impact upon solute fate and

transport at the larger field scale relevant to environmental

and hydrological problems. The effect of this variability on

solute transport is enhanced spreading, a phenomenon

referred to as macrodispersion. Detailed measurements at

several field sites (Sudicky 1986; Mackay et al. 1986;

LeBlanc et al. 1991) have revealed that the length scale of

significant conductivity variations is of the order of a few

meters in the horizontal direction but only ten to twenty

centimeters in the vertical direction. Therefore, compu-

tational limitations prevent the use of a transport model grid

fine enough to resolve all of the spatial scales of this

variability. Furthermore, many problems of environmental

interest require solving the transport models many times

(e.g. through the use of Monte Carlo simulations); thus, a

need exists for more economical models of solute transport.
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For this reason, much effort has been directed towards

developing models that describe transport processes at a

length scale larger than the continuum scale so that coarse

computational grid blocks may be used. These “upscaled”

models cannot explicitly resolve all of the salient features of

the transport process, yet they should capture the impact of

the small-scale heterogeneity in order to provide an

accurate prediction of the overall plume evolution.

Traditional methods for upscaling the ADE include

stochastics (Gelhar et al. 1979; Dagan 1984; Sposito 1997;

Rubin 2003; Rubin et al. 2003), spatial filtering (Beckie et al.

1996; Beckie 1998), homogenization (Mei 1992; Wood et al.

2003) and statistical moments (Aris 1956; Frankel & Brenner

1989; Kitanidis 1992; Whitaker 1999). Unfortunately,

although these methods are mathematically rigorous, they

usually require restrictive assumptions, such as small

variability, large scale separation, or ergodicity or period-

icity of the medium, to achieve closure of the upscaled

models.

This study develops an upscaling methodology using

genetic programming (GP), a promising new tool for

modeling complex phenomena whose physics are not well

defined (Babovic & Abbott 1997a). For illustration, this

methodology is applied to the case of developing vertically

averaged models of the transport of a non-reactive solute in

confined stratified aquifers. The results are compared with

models developed through the method of moments (MoM),

a traditional upscaling technique that is well suited for this

transport configuration (Güven et al. 1984).

METHODS

The upscaling methodology developed in this study takes

advantage of GP’s ability to model complex phenomena.

This section includes a description of GP, followed by the

mathematical formulation of the upscaling problem

addressed in this study.

Genetic programming

Genetic programming is a domain-independent method

that creates a model based on input data by searching the

space of possible models. This search uses operations

inspired by natural evolution, which allow GP to cultivate

a diverse set of approaches to solving the problem (Banzhaf

et al. 1998). Genetic programming has shown success in

many applications (e.g. Koza et al. 1999; Savic et al. 1999).

Babovic & Abbott (1997b) present four applications of GP

in the field of hydrology. The results of these applications

illustrate the abilities of GP to: (1) model “emergent

phenomena,” (2) find models of data that match human

derived models, (3) develop models of phenomena that are

of higher quality than human derived models, and (4) find

models of complex phenomena that are equally accurate,

yet simpler to solve, than many human derived models.

Because this research is interested in developing

mathematical models of a physical process, GP was

configured to suggest models in the form of mathematical

equations, a task referred to as symbolic regression.

Regression is the most familiar method of determining

relationships between data and known parameters. In

traditional regression methods, first a model structure is

selected. Then, the coefficients of that model are estimated,

based on available data using a model-fitting algorithm. This

method builds the user’s bias into the resulting relationship

through the functional form of the model chosen for

regression. Symbolic regression, however, is a less biased

method of determining a relationship between data and

known parameters because it determines, based on the

available data, not only model coefficients, but also the

functional form of the model itself (Babovic & Bojkov 2001).

The process of symbolic regression begins with the

establishment of a population of models that has been

randomly generated from sets of independent variables and

mathematical operators. Each model can be conceptualized

as a hierarchy of building blocks connected via

mathematical operators, each of which is a valid math-

ematical statement. These building blocks will hereafter be

referred to as clauses. The search for models that best fit the

data is directed by one or more objectives that describe the

desired qualities of the model. The fitness of a candidate

model is based on its fulfillment of these objectives. The

search progresses as a series of iterations, known as epochs,

and the population in each successive epoch is generated by

selecting some of the models for propagation. Selection

favors models with higher fitness. Models are propagated

into the next epoch either without modification or with
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modification through the operations of crossover or

mutation. Crossover is performed by swapping clauses

between two equations, whereas mutation is performed by

altering an independent variable, constant or mathematical

operator in an equation.

In this research, a symbolic regression implementation

known as adaptive logic programming (ALP) was used.

ALP employs the concise language of logic programming to

facilitate the search through the space of possible math-

ematical equations. This language enables convenient

performance of crossover and mutation and avoidance of

syntactically incorrect equations via these operations. More

information regarding the ALP system can be found in

Keijzer et al. (2001).

While other data-driven methods exist that will create

black box models that map input data to outputs (e.g.

artificial neural networks), symbolic regression provides the

benefit of expressing the models in the language of

mathematics; hence they can be analyzed for information

regarding the underlying processes that created the data.

This information can lead to new understandings of the

physical processes being modeled.

While symbolic regression provides the advantage of

constructing models without domain-specific knowledge,

the field of application or desired use of the model may

impose constraints. In the case of this research, three goals

required the imposition of constraints on the symbolic

regression task based on the desire to create: (1) physically

meaningful models, (2) models that are parsimonious, and

(3) models that are expressed as partial differential

equations (PDEs).

Models of the physical domain must be dimensionally

consistent if they are to be considered meaningful; thus, it is

necessary to constrain the GP search to only dimensionally

consistent equations. While this can be accomplished in

many ways (e.g. Keijzer & Babovic 1999), it is most easily

accomplished by converting the model parameters into

dimensionless values – the strategy used in this study.

In addition to dimensional consistency, model parsi-

mony is desired, because it removes parameters that add to

model uncertainty without compromising predictive ability,

and it renders models that are easier both to analyze for

semantic meaning and to implement numerically. Symbolic

regression will not necessarily find the most concise form of

a mathematical statement. In fact, theoretical studies have

shown that GP has a tendency to construct models with

many extraneous clauses in an effort to protect salient

clauses from the destructive effects of crossover and

mutation (Banzhaf & Langdon 2002), a phenomenon

commonly referred to as “bloat.” Therefore, it is often

necessary for the user to simplify the resulting models into

statements that are easier to implement and analyze. Useful

strategies for the user to manually address model simplifica-

tion include converting mathematical operators to equival-

ent series representations (e.g. using a Maclaurin series to

represent an exponential function) and replacing clauses

that approximate constant values with constant-valued

parameters. Furthermore, domain knowledge can be used

to modify the model to address shortcomings in its

predictive ability.

Building differential equations via symbolic regression is

difficult, because no general differential equation solver

exists to evaluate the fitness of the candidate equations.

Thus, it is important to find a method of learning differential

equations without requiring integration of each candidate

differential equation in the population. In this research, the

upscaling problem is decomposed into a new problem that

does not require the use of calculus to evaluate the

objectives, as described in the next section.

MATHEMATICAL FORMULATION

Because data regarding the target phenomenon is presented

to ALP as a list of examples containing several descriptive

attributes and the observed response of the system, and

because it is necessary for the resulting upscaled models to

be easily implemented, in this study, the upscaling problem

was reduced to a problem of calculating upscaled solute

fluxes. The mathematical formulation starts with the ADE,

as it is assumed that this model is valid for continuum-scale

solute transport. Using the summation convention for

repeated indices, the ADE can be expressed as

›C

›t
¼ 2

›

›xi
uiCð Þ þ

›

›xi
Di;j

›C

›xj
ð1Þ

where C is the continuum-scale solute concentration, t is

the time, xi is the Cartesian position vector, ui is the pore

253 D. J. Hill et al. | Upscaling models of solute transport in porous media Journal of Hydroinformatics | 09.4 | 2007

Downloaded from http://iwaponline.com/jh/article-pdf/9/4/251/392910/251.pdf
by guest
on 21 August 2022



water velocity vector, and Di,j is the dispersion tensor. This

equation can also be expressed in terms of fluxes as

›C

›t
¼ 2

›JAi
›xi

þ
›JDi
›xi

¼ 2
›JTi
›xi

ð2Þ

where J A is the solute flux due to continuum-scale

advection, J D is the solute flux due to continuum-scale

dispersion, and J T is the total continuum-scale solute flux.

By employing spatial filtering, as shown by Beckie (1998),

Equation (2) can be upscaled to the block-scale equation:

› �C

›t
¼ 2

›�J
T
i

›xi
ð3Þ

where the overbar indicates a spatially filtered quantity

equivalent to the convolution integral of the continuum-

scale quantity multiplied by a filtering function. Since

volume averaging is a form of spatial filtering, the filtered

terms can be thought of as block-scale averages (Nitsche &

Brenner 1989; Beckie et al. 1996). With some algebra, the

block-scale total solute flux can be divided such that

�J
T
i ¼ �J

A
i þ �J

NA
i ð4Þ

where �JA ¼ �ui
�Cis the solute flux due to block-scale advec-

tion, and �JNA is the remaining non-advective solute flux. A

similar decomposition of the block averaged flux was used

by Efendiev et al. (2000). Unlike the block-scale advective

flux, this latter term contains sub-grid closure quantities,

and thus cannot be easily modeled at the block scale.

However, by collecting data regarding the block-scale non-

advective flux, ALP can be used to develop models of this

flux in terms of other block-scale parameters, which will

allow the solution of Equation (3). Thus, the upscaling

problem is reduced to the problem of finding a model for the

block-scale non-advective flux in terms of resolvable block-

scale quantities, and ALP does not have to search the space

of PDEs.

Data describing the block-scale non-advective flux can

be generated using two numerical grids: (1) a highly

resolved grid and (2) a coarse grid representing the block

scale. The ADE is solved numerically on the fine grid, while

the coarse grid is used for evaluating block-averaged

parameters throughout the simulation. Block-scale par-

ameters for each grid location are calculated by averaging

the fine-scale parameters over the entire block, or in the

case of vector quantities, such as the non-advective flux,

over the appropriate block surface for each vector

component.

CASE STUDY

This case study presents the development of vertically

averaged models of the transport of non-reactive solutes in

two-dimensional, confined, perfectly stratified aquifers (i.e.

vertically varying horizontal flow parallel to the layers). This

idealized transport system was selected to allow compari-

son of the GP-derived vertically averaged equations with

those derived using the method of moments (MoM) (Taylor

1953; Aris 1956; Güven et al. 1984; Kitanidis 1992), a well

accepted approach for perfectly stratified aquifers. This

section will proceed by first describing the upscaled

transport equations that can be derived using the MoM.

Then, two test cases using different synthetically generated

velocity fields will be defined. Next, mathematical simpli-

fications to Equations (3) and (4), which are made possible

by vertically averaging two-dimensional, confined, perfectly

stratified aquifers, will be discussed. Finally, the generation

of input data for ALP will be explained.

Method of moments

The MoM aims to describe the solute plume at any point in

time in terms of its spatial moments. Mathematical

expressions for the solute distribution’s moments as func-

tions of time can be derived from the ADE. For the case of

transport in a laminar shear flow (equivalent to the case of

horizontal flow in a perfectly stratified aquifer), Aris (1956)

demonstrated that the MoM could be used to derive models

for the temporal evolution of the spatial moments of the

cross-sectionally averaged concentration. Commonly, only

the zeroth, first, and second spatial moments are

considered, as the models for higher-order moments are

more cumbersome. The zeroth moment indicates the total

solute mass in the system, the first moment indicates the

mean position of the plume, and the second moment

indicates the plume spread. The resulting upscaled model of

transport has the same form as the ADE, except that an
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effective velocity vector calculated from the first moment

replaces the velocity vector, and the dispersion tensor is

replaced with a time-dependent macrodispersion tensor

calculated via the second moment. Thus, the MoM model of

the non-advective flux can be expressed as

�J
NA
i ¼ Deff

i ðtÞ
› �C

›xi
ð5Þ

where Deff
i ðtÞis the macrodispersion coefficient. It can be

seen that the assumption of locally Fickian macrodispersion

(i.e. the assumption that plume spreading due to the

variability of hydraulic conductivity can be effectively

modeled as a random process) is inherent in this model.

The resulting MoM model describes the solute distribution

at any time as Gaussian, with the same mean and variance

as the observed plume.

Because this type of model employs the assumption of

locally Fickian macrodispersion, it is only valid when the

plume has spread sufficiently, such that all velocities are

sampled with the same frequency with which they appear in

space. Furthermore, this method requires assumptions

regarding the continuum-scale velocity field in order to

close the equations for the spatial moments of the solute

distribution. One common assumption is that of a periodic

medium (Kitanidis 1992; Wood et al. 2003); in particular,

Aris (1956) showed that for confined, perfectly stratified

aquifers with flow parallel to the layers, such as those

considered in this study, it is possible to rigorously derive

the effective velocity and macrodispersion terms.

Synthetic aquifers

The process of defining the properties of the synthetic

aquifers for this study was guided by the desire to facilitate

comparison with the MoM and maximize the general-

izability of the aquifers. Assuming a two-dimensional

system where flow is parallel to the x axis, and the z axis

represents the aquifer depth, any arbitrary velocity profile

can be discretized into small sub-layers of constant velocity.

Because of this, and because this study is confined to

vertically averaged blocks, a two-dimensional compu-

tational grid is necessary to fully resolve the fine-scale

concentration distribution, whereas the aquifer’s vertically

averaged counterpart can be resolved with a one-dimensional

computational grid. The two-dimensional representation

will hereafter be referred to as the fine-scale representation.

The fine- and block-scale (coarse-scale) representations

are illustrated in Figure 1. In order to facilitate

comparison with the MoM, the following two velocity

distributions were considered:

uðzÞ ¼ h2 1 2
z2

h2

 !
ð6aÞ

uðzÞ ¼ 0:5 cos 2p
z

h

� �
þ 0:5 cos 4p

z

h

� �
þ 1 ð6bÞ

where h is the aquifer depth. The flow distributions

described by Equations (6a,b) will hereafter be referred to

as parabolic and cos–cos, respectively. Two distributions

were chosen in order to demonstrate the generality of the

derived upscaled models to solute transported by different

velocity distributions. The parabolic distribution was

selected because many MoM studies address transport by

this distribution (e.g. Aris 1956; Güven et al. 1984), while the

cos–cos distribution was selected because it varies more

sharply than the parabolic distribution. These velocity

distributions were applied by creating 100-layer synthetic

aquifers and defining the flow rate in each layer, such that

the total mass of water passing through the layer was

equivalent to the total mass of water that would pass

through the same discretized region using Equations (6a,b).

The number of layers for the aquifers was selected in order

to minimize the differences between the discretized distri-

bution of the aquifers and the continuous distribution

functions, thus facilitating comparisons with the MoM

upscaled equations, since these equations use continuous

velocity distributions. The depth of the aquifers was chosen

Figure 1 | Schematic of a two-dimensional perfectly stratified aquifer indicating both

the fine- and block-scale computational grids as well as the fine-scale

velocity distribution.
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to be 1 m. The transverse dispersion coefficient within the

aquifers was specified to be 0.01 m/s2. Since it has been

shown that the longitudinal spreading of the plume due to

aquifer heterogeneity is significantly larger than that due to

continuum-scale dispersion (Gelhar et al. 1979), the latter

was ignored. The exact values of these parameters, however,

are unimportant, because, as will be discussed shortly,

dimensionless parameters are used to describe the aquifers.

Thus, the numerical results of the transport simulation can

be scaled to represent a large number of aquifer geometries

and transverse dispersion conditions.

Simplifying the numerical formulation

The use of vertically averaged representations of two-

dimensional aquifers allows two simplifications to be

made to Equations (3) and (4). First, the subscripts (i) can

be dropped from the vector quantities (e.g. �J
NA
i ) because the

vectors have only one component (i.e. x directional). Thus,

Equations (3) and (4) can be combined and simplified to

› �C

›t
¼ 2

›

›x
�u �C2

›�JNA

›x
: ð7Þ

The second simplification involves converting from a

Cartesian to a Lagrangian coordinate system that moves

at the vertically averaged pore water velocity. In this

coordinate system, the position vector is xR ¼ x2 �ut, and

Equation (7) becomes

› �C

›t
¼ 2

›�JNA

›xR
ð8Þ

This simplification allows for convenient implemen-

tation of the upscaled solute transport model, because the

block-scale advective flux is implicitly accounted for by

the Lagrangian coordinate transformation. Therefore, the

block-scale solute concentration can be calculated using

Equation (8), where �JNAis modeled by ALP.

Since dimensionless training data are used to implicitly

constrain ALP to dimensionally consistent equations,

the following transformations were used to convert

dimensional data into dimensionless data:

f ¼
C

C0
ð9aÞ

t ¼
tDT

h2
ð9bÞ

j ¼
x2 �ut

h
ð9cÞ

cNA ¼ JNA h

DTC0
ð9dÞ

where C0 is the input concentration and DT is the transverse

dispersion coefficient.

Generation of training data

In order for ALP to develop models of the block-scale non-

advective flux, it is necessary to provide a set of training

examples that contain block-scale descriptive attributes and

the resulting block-scale non-advective flux observed in the

aquifer being studied. Training examples were collected

from the aquifer with the parabolic flow distribution for a

pulse input of solute. The time evolution of the continuum-

scale solute distribution was solved using a numerical finite

difference solution to the ADE, which employed operator

splitting to separate the modeling of the advective and

dispersive processes. A third-order explicit total variation

diminishing (TVD) method (Leonard 1988) was used to

solve the advection term, while an implicit method was used

for the dispersion term. This method for solving the ADE

was selected to minimize prediction errors of the numerical

solution to the ADE and, thus, to minimize errors in the

training data. The fine-scale solution used a highly refined

computational grid to minimize numerical errors. The

block-scale computational grid was defined such that each

block spanned the entire depth of the aquifer and had the

same length as the fine-scale grid.

The descriptive attributes selected to describe the block-

scale non-advective flux at the block interface consisted of

the block-scale concentration ( �f) at the upstream and

downstream block centers; the position of observed block

interface (j); the time of observation (t); the block-scale

concentration gradient (d �f=dj) at the block interface, as

well as at three upstream locations; the second spatial
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derivative of the block-scale concentration (d2 �f=dj2) at the

block interface and at three upstream locations; and the

mixed space/time derivative of the block-scale concen-

tration (d2 �f=djdt) at the block interface and at three

upstream locations. The values of the block-scale deriva-

tives were estimated using discrete approximations. Unless

otherwise indicated, these attributes were recorded at the

block interfaces. These attributes were selected because

they appeared in upscaled transport equations derived using

traditional methods (Gelhar & Axness 1983; Beckie 1998;

Efendiev et al. 2000). Because there are many block

interfaces and time steps in the numerical simulation of

the fine-scale transport model, it was necessary to select

only a subset of the salient examples for training. Examples

from a particular block interface were considered salient

only if the solute concentration at some point within a five-

block neighborhood surrounding the interface was non-

zero. The examples used to train ALP were selected at

random from the set of salient examples that were recorded

during every tenth time step of the simulation.

Parameterization of ALP

ALP requires many user-selected parameters to define the

search for good models of the training examples, including

objective, functional set, population size, and number of

training epochs. Unfortunately, there is little theoretical

work to direct the selection of these parameters, and thus, a

large number of experiments were performed with different

values in order to find good solutions.

The objective parameter defines the criteria by which to

evaluate the quality of the derived equations for predicting

the target attribute. ALP implements several types of

objectives, including both goodness-of-fit (e.g. sum of

squared errors) and parsimony (e.g. equation length)

objectives; furthermore, ALP permits multi-objective

searches. In this study, the objectives were selected to be

the correlation coefficient (r 2) between the candidate

equation and the training data and the equation length.

The r 2 statistic indicates the degree to which the relation-

ship between two variables is linear; thus, it is insensitive to

relational constants, such as scale or shift (Devore 1995).

The r 2 statistic was selected for this latter property because

it does not require ALP to find the correct value of the

relational constants, a task that is generally difficult for GP

(Koza 1992). Scale constants refer to constants that are

multiplied to or divided from a function, while shift

constants refer to constants that are added to or subtracted

from a function. When using the r 2 objective, it is necessary

to determine both the scale and shift constants a posteriori.

In this research, the scale and shift parameters were

determined by performing linear regression of the data

pairs composed from the observed non-advective flux in the

training data and the model prediction of this flux. The

slope and y intercept of this line are the scale and shift

parameters, respectively. The equation length was selected

to encourage ALP to explore equations of varying complex-

ity and to control bloat. Because ALP uses a multi-objective

search, controlling bloat in this manner will not eliminate

clauses that improve the model’s r 2 value.

The functional set defines the mathematical operators

that can be used to relate the attributes to the target value.

Several functional sets were evaluated, including the set of

all arithmetic operators (e.g. x þ y, where x and y are

attributes), the set of all arithmetic and geometric operators

(e.g. sin(x), where x is an attribute), and the set of all

arithmetic operators and the exponential function (i.e. e x,

where x is an attribute). It was observed that the latter two

functional sets found many large equations that fit the data

well and consisted of long chains of sine/cosine terms or

exponential functions, respectively. It is well known that

any continuous function can be represented by an infinite

series of sine/cosine or exponential terms through the

formation of Fourier or Taylor series. Because the expo-

nential operator is easier to simplify than the set of

geometric operators, the functional set including both

arithmetic operators and the exponential function was

used in order to retain the expressivity facilitated by

exponential functions without overwhelming the GP results

with difficult-to-analyze solutions.

The population size specifies how many candidate

equations participate in the search for good equations.

Larger populations contain a greater variety of clause

building blocks from which to derive new candidate

equations; however, larger populations also increase the

time it takes to evaluate one epoch of GP. Therefore, it is

necessary to have a population that is large enough to

represent an adequate number of discrete clauses, yet small
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enough to allow a reasonable computation time. According

to the guideline presented by Sastry et al. (2003) the

population would have to contain over 11 million individ-

uals in order to guarantee a good supply of building blocks

in this research. However, preliminary results indicated that

a population size of 1000 individuals was sufficient to

produce good results. For this reason, a population size of

1000 candidate equations was chosen.

The number of epochs specifies how many iterations of the

genetic operations the population of candidate equations is

subjected to.Langdon&Poli (2002) showed that more epochs

result in a larger number of extraneous clauses in each

candidate equation in the final epoch. Therefore, it is common

to use only a few training epochs but perform GP many times

(Koza 1992). In thispaper, each runofALP will be referred toas

an experiment. After all the experiments have been completed,

the results from each experiment are merged, eliminating all

the results that are dominated by results from different

experiments, resulting in a “front” of non-dominated (and

thus Pareto optimal) equations for modeling the training data.

The candidate equations are then evaluated for semantic

meaning, as well as for goodness of fit. In this study, hundreds

of experiments were performed, during which the candidates

were evolved for 50 epochs.

In addition to these parameters, a crossover rate of 0.8,

a mutation rate of 0.1, and binary tournament selection

were used. These values reflect those recommended by the

developers of the ALP system from extensive trials on many

different functions (e.g. Keijer et al. 2001; Babovic et al. 2001;

Keijzer 2002; Keijzer & Cattolico 2002).

RESULTS

The results from many experiments of ALP compose a

Pareto front of non-dominated solutions to the GP task. In

this case, the front consisted of many equations with nearly

equivalent r 2 values but widely varying lengths. In general,

longer equations tended to have slightly higher r 2 values.

Analysis of these models, however, showed that the

majority of the equations along the front contained the

same clause, along with many irrelevant or nearly-irrelevant

clauses that could be removed without significantly redu-

cing the ability of the equations to fit the training data.

These extraneous clauses were considered to be the result of

GP bloat and, thus, were removed from the equations,

resulting in a consensus on a final model for the data.

Three characteristic results from along the Pareto front

were

�c
NA
i ¼ �fi2Dj=2

j

t
ð10aÞ

�c
NA
i ¼ exp exp �fi2Dj=2

j

t

� �� �
ð10bÞ

�c
NA
i ¼ exp exp 0:85

› �f

›j

 ! !

2

�fi2Dj=2þ �fiþDj=2

2

� �
j
t
2 exp 0:85 › �f

›j

� �� �
exp exp �fiþDj=2

� �� � ð10cÞ

where the subscript i indicates the ith block interface. These

results fit the training data with r 2 values of 0.95, 0.97, and

0.95, respectively; thus, the models are of similar quality, but

they differ greatly with regard to semantics and complexity.

Equation (10a) contains only three parameters, all of which

contribute significantly to its quality. However, it is

interesting that the model only includes the dimensionless

concentration upstream of the block face. If this parameter

is replaced with the dimensionless concentration at the

block face (calculated as the average of the concentration

upstream and downstream of the block face), the resulting

equation becomes

�c
NA
i ¼

�fi2Dj=2 þ �fiþDj=2

2

j

t
ð11Þ

which also has an r 2 value of 0.95. Thus, the replacement of

the upstream concentration with the block face centered

concentration does not improve (or reduce) the quality of

the model’s fit with the non-advective flux data, but it does

improve the performance of this model for prediction of the

block-scale solute distribution. The improvement in the

solute distribution prediction occurs because, at the down-

stream edge of a solute plume, the model shown in Equation

(10a) will predict zero solute flux, whereas the model shown

in Equation (11) will predict a finite non-advective solute

flux, the latter case being the physically plausible model

response. This discrepancy in flux prediction between the

two models occurs because, at the downstream edge of the
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plume (i.e. at position i), the concentration a bit further

downstream (i.e. at position iþ Dj=2) is zero, whereas the

concentration just upstream (i.e. at position i2 Dj=2) is

non-zero.

Equation (10b) can also be reduced to Equation (11).

Recall that the exponential function is equivalent to the

Maclaurin series:

expðaÞ ¼
X1
n¼0

an

n!
: ð12Þ

Since the magnitude of the product within the expo-

nentials in Equation (10b) is always less than 1, the terms in

the series get smaller as n ! 1; therefore, all but the first

two terms of the series can be ignored. If this procedure is

followed for both exponential functions, the resulting model

is a linear function of Equation (10a). Since the r 2 statistic is

insensitive to scale and shift parameters, the r 2 value of the

approximation to Equation (10b) is equal to that of

Equation (10a), namely, 0.95. In return for the reduction

in performance caused by this approximation, there is a

substantial increase in both semantic meaning and ease of

implementation of this model.

Equation (10c) can also be reduced to Equation (11)

through evaluation of its clauses. Equation (10c) can be

divided into four clauses such that

�c
NA
i ¼ clause1 2 ðclause2 2 clause3Þ=clause4: ð13Þ

Using the training data, the minimum, mean, and

maximum values of clause1 can be calculated to be 2.705,

2.718, and 2.720, respectively. Because the clause has a

small range, it can be replaced by its mean with little loss of

generality. The same is true for clause3 and clause4. Since

clause2 is Equation (11), it can be seen that the approxi-

mation of Equation (10c) is a linear function of Equation

(11); thus, the r 2 value is 0.95, which is equivalent to the r 2

value of Equation (10c). Therefore, there is no measurable

predictive ability lost by using Equation (11) to approximate

Equation (10c).

In the preceding discussion, it was demonstrated that

different length models from the set of Pareto optimal

solutions could be simplified to the same model without a

significant loss of predictive ability. However, if the longer

models have a higher r 2 value, why were they not

preferred? The answer is twofold. First, there is a precedent

in learning theory to prefer simpler models to more complex

models with similar predictive abilities (i.e. Occam’s razor)

(Duda et al. 2001). Second, the longer models are often too

complex to be implemented numerically. Furthermore, a t

test with a 95% significance level showed that the difference

in r 2 values between the longer models and Equation (11) is

insignificant. Note that, due to space constraints, only a few

of the shorter equations were discussed; the same tech-

niques can be applied to the longer equations along

the Pareto front, often resulting in Equation (11).

This consensus between models strengthens the claim that

Equation (11) best models the non-advective flux.

It should now be clear that many of the Pareto-optimal

results of the GP task can be reduced to one common

equation shown in Equation (11). This model will hereafter

be referred to as the sub-grid advective (SGA) model for

reasons that will become clear shortly. The SGA model is

strongly correlated with the non-advective solute flux from

a pulse input of solute in both the aquifer with the parabolic

velocity distribution and the aquifer with the cos–cos

velocity distribution, with r 2 values of 0.95 and 0.93,

respectively, whereas the MoM model (Equation (5)) is

only weakly correlated with the observed non-advective

flux, indicated by r 2 values for the parabolic and cos–cos

velocity distributions of 0.1 and 0.24, respectively. This

result enables two conclusions. First, since flux data from

the cos–cos velocity distribution was not used for training,

this result indicates that the SGA model generalizes to

different flow conditions than those used for training. This

generality suggests that the SGA model describes the

mechanism of macrodispersion, rather than merely being

a concise representation of the training data. Second,

because a strong correlation exists between the SGA

model and the observed non-advective flux, but not

between the MoM model and the observed non-advective

flux, this result indicates that the SGA model is a better

predictor of the observed non-advective flux than the MoM

model. This result may appear surprising because the MoM

model should be correct at late times, when the assumption

of Fickian macrodispersion is valid. However, the r 2 metric

considers the model residuals holistically with respect to

time, and the model residuals are more likely to be large in
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magnitude at early times than at later times because the

magnitude of the non-advective flux is larger at early times.

Therefore, the r 2 metric is biased towards early time

behavior. Since r 2 was used as the goodness-of-fit metric,

this latter conclusion suggests why ALP did not create any

models similar to the MoM model.

In order to determine the scale and shift constants,

linear regression between the SGA model (converted back

into dimensional form) and the observed non-advective flux

was performed. This regression indicated approximate scale

and shift parameters of 1 and 0, respectively, resulting in the

equation:

�JNA ¼ �C
xR
t

ð14Þ

where xR is the position in the Lagrangian coordinate

system. This model describes the non-advective flux of

solute in the aquifer with the parabolic flow profile. The

zero value of the shift parameter is expected, because a non-

zero shift parameter would indicate that a significant

component of the non-advective flux could not be modeled

by the SGA model. Equations (8) and (14) can be solved

numerically to predict the time evolution of a pulse input of

solute in the aquifer with the parabolic flow profile at times

greater than zero (since time appears in the denominator).

Figure 2 compares the performance of the SGA

upscaled model with the MoM upscaled model for predict-

ing the evolution of the solute plume. Because the SGA

model is not valid at very early times, the fine-scale model

was used to predict the plume evolution for the first 30 time

steps of the simulation (until t ¼ 0.03), before the SGA and

MoM models took over the prediction. It can be seen that,

at early times, the SGA model more closely approximates

the plume shape, whereas at later times, the MoM model

produces a more accurate result. However, it is important to

note the y axis scale when comparing the two predictions,

because the maximum absolute error between the MoM

model and the fine-scale model is much larger than the

maximum absolute error between the SGA model and the

fine-scale model, as depicted in case 0 of Figure 3. This

latter result may be misleading because the MoM model was

derived such that the error between the predicted and

observed values of the first two spatial moments of the

plume is minimized, while the SGA model (Equation (11))

was developed with the goal of minimizing the total error.

Thus, a comparison that invokes absolute errors will be

biased towards the SGA model, while a comparison based

on moments will be biased towards the MoM model.

However, a comparison of the time evolution of the first

two moments, calculated by the SGA and MoM models, to

the first two moments of the plume, calculated using the

ADE, indicates that both the SGA and MoM capture the

time evolution of the zeroth, first and second spatial

moments well with average errors of less than one-half

percent. Therefore, in our numerical experiment, the two

models perform equally well when compared via spatial

moments.

Analyzing the second term in the SGA illustrates that

the block-scale non-advective flux can be attributed to

solute advection that occurs below the block scale:

xR
t
¼

x2 �ut

t
¼ u2 �u ¼ u0 ð15Þ

Equation (15) relates the position of the solute to u0, the

deviation (from the mean velocity) of the unresolved

velocity. Thus, the SGA model approximates the solute

transported by unresolved velocity variations using block-

scale resolvable parameters. In fact, it can be shown that the

SGA model is quite capable of reproducing the solute plume

evolution of a pulse input in a perfectly stratified system

with no transverse mixing.

Figure 2 indicates that, at early times, the time evolution

of the solute distribution in the aquifer appears purely

advective, and that the time evolution of the plume at late

times is well described by the MoM model. However, at

intermediate times, the solute plume behaves in a manner

consistent with a combination of the pure advection and

Fickian macrodispersion cases, where the influence of the

SGA model decreases with time, and the influence of the

MoM model increases with time. Thus, a new model, which

is a hybrid of the SGA and MoM models, is suggested:

�JNA ¼ FðtÞ*

MoMmodel

Deff
1

› �C

›x

 !
þ ð1 2 FðtÞÞ*

SGAmodel

�C
xR
t

� �
ð16Þ

where F(t) is a continuous function over all values of t and

has a minimum value of zero that occurs at t ¼ 0 and a
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maximum value of 1 that occurs at very late time, and Deff
1 is

the asymptotic coefficient of macrodispersion suggested by

the MoM. The function F(t), which will hereafter be referred

to as the mixing function, controls the influence of both the

SGA and MoM models over time, allowing the SGA model

to dominate the behavior of the solute distribution at early

times and allowing the MoM model to dominate its

behavior at later times. This model is consistent with a

conceptual model of the transport process in which, at early

times, insufficient solute has been exchanged between the

layers, such that the process is similar to the pure advection

process described by the SGA model. As a larger quantity of

solute samples more of the flow paths in the individual

layers, a larger fraction of the transport process behaves in a

manner consistent with Fickian macrodispersion; once

sufficient time has passed for the average solute behavior

to be consistent with having sampled all the flow paths, the

process is well described by Fickian macrodispersion.

Equations (7) and (16) can be solved to predict the time

evolution of a pulse input of solute in an aquifer at times

greater than zero.

In the discussion above, the mixing function F(t) was

intentionally vaguely defined because the optimal function

may vary depending on transport conditions. In this

research, a sigmoid function:

F tð Þ ¼ 1 þ exp 2 t
Dt

h2
2 a

� �
=b

� �� �21

ð17Þ

Figure 2 | Comparison of the MoM and SGA upscaled models for predicting the vertically averaged time evolution of a pulse input in the synthetic aquifer with parabolic flow.

Figure 3 | Comparison of the maximum absolute errors between ALP derived upscaled

models (SGA, H1, H1s, and H2) and the MoM upscaled model. Cases 0 and

1 refer to the transport of a pulse input in the synthetic aquifer with

parabolic flow, case 1s refers to the transport of a finite width input in the

synthetic aquifer with parabolic flow, and case 2 refers to the transport of a

pulse input in the synthetic aquifer with cos–cos flow.
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was chosen to demonstrate how the model described by

Equation (16) performs on the aquifers considered in this

study. Note that, in this equation, time is normalized by the

transverse dispersivity and aquifer depth, resulting in an

equation that generalizes to other aquifers with similar flow

distributions but different depths and transverse dispersion

coefficients. The parameters for the sigmoid were chosen via

a manual trial-and-error approach using visual inspection of

the solute distribution shapes to guide the search. Never-

theless, the upscaled models created performed well on a

variety of transport conditions, including different initial

conditions of the solute input into the aquifer with

parabolic flow and different velocity distributions. Since,

as described previously, the SGA model is not valid at very

early times, for the experiments described below, the fine-

scale model was used to predict the plume evolution for the

first 30 time steps (t # 0.03) of the simulation, after which

the hybrid and MoM models took over the prediction.

For the case of a pulse input into the aquifer with

parabolic flow (which is equivalent to ALP’s training

conditions), values of 0.3 and 0.01 were chosen for the

sigmoid function parameters, a and b, respectively. It can be

seen in Figure 4 that the hybrid model with these parameter

values, hereafter referred to as H1, performs better when

compared to the MoM model. At early times, model H1

preserves the favorable behavior of the SGA model,

predicting the bimodal solute distribution with high

accuracy. At late times, model H1 retains the benefits of

the MoM model, predicting a unimodal, nearly Gaussian

plume. At intermediate times, model H1 performs quite well

at capturing the peak concentration and shape of the

plume’s leading edge. It also does quite well at capturing the

overall shape when compared to the MoM model. Further-

more, the maximum absolute concentration deviation

between model H1’s prediction and the observed plume

shape is less than that of either the SGA or MoM models

alone, as illustrated in Figure 3.

The predictive abilities of the upscaled model H1,

however, are not restricted to the conditions on which it

was developed. Using superposition, this model can be

extended to the cases of an instantaneous finite width input,

a finite duration input, or even a continuous input, by

summing the effects of multiple pulse inputs each calculated

with model H1. For example, Figure 5 shows the superior

Figure 4 | Comparison of the MoM and H1 upscaled models for predicting the vertically averaged time evolution of a pulse input in the synthetic aquifer with parabolic flow.
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performance of the superposed H1 model, hereafter

referred to as H1s, for the case of an instantaneous input

over a finite width of the aquifer with parabolic flow. In

particular, model H1s more accurately predicts the shape of

the plume’s leading edge, as well as the peak concentration

location, than the MoM model at all times. Additionally, as

shown in Figure 3, the maximum absolute error between

model H1s and the observed plume shape is smaller than

that of the MoM model alone. Thus, though model H1 was

developed for particular initial conditions, it generalizes

well to other input conditions.

Furthermore, the hybrid model can be adapted for use in

the aquifer with cos–cos flow simply by changing the

parameters a and b of the sigmoidal mixing function to 0.5

and 0.0875, respectively. These parameters were found using

another trial-and-error fit. A comparison of the performance

of this adapted hybrid model, hereafter referred to as H2, with

the MoM model, for predicting the time evolution of an

instantaneous pulse input into the aquifer with cos–cos flow

is shown in Figure 6. Even for velocity distributions on which

the SGA model was not developed, the hybrid model

outperforms the MoM model in predicting the plume shapes,

especially in capturing the shape of the plume’s leading edge,

as well as in predicting the magnitude and location of the

peak concentration, and in minimizing the maximum

absolute error, as shown in Figure 3.

The applicability of the general hybrid model to a range

of initial conditions and velocity distributions suggests that

this model does not serve simply as a surrogate for the

observed data used to train it, but actually describes the

processes that drive the solute’s macrodispersion. For that

reason, it can be suggested that the behavior of the

macrodispersion changes from a process that manifests

itself as advective at the block scale to a process that

manifests itself as Fickian at the block scale. Furthermore,

since F(t) had to be re-parameterized for model H2, but not

model H1s, this experiment suggests that the behavior of

this change is a function of the velocity field, rather than of

the initial solute distribution. This knowledge could be used

to develop a relationship between the mixing function

parameters and the velocity distribution, so that a trial-and-

error fitting procedure would no longer be necessary.

Figure 5 | Comparison of the MoM and H1s upscaled models in predicting the vertically averaged time evolution of an instantaneous finite width input of solute in the synthetic

aquifer with parabolic flow.
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DISCUSSION

The case study presented in this paper illustrates several

benefits of using GP as a research tool. First, GP cannot

only be used to accurately model training data, but also to

produce mathematical models that researchers can under-

stand, unlike other data-driven approaches to modeling

(e.g. neural networks). This representation facilitates the

interpretation of model semantics, as was illustrated in the

case study, when the ALP derived model was related to sub-

grid advection. Furthermore, the representation of models

as equations renders them capable of being modified to

incorporate domain knowledge to improve applicability.

This is especially beneficial in the case of ill-defined

modeling tasks. For example, in the case study, ALP’s

objective was to find a model that fitted the non-advective

flux data well using the r 2 statistic. However, groundwater

researchers evaluate the quality of upscaled solute transport

models based on their ability to predict the time evolution of

plumes. This latter objective is difficult to express math-

ematically and would require the solution of a PDE for each

population member during each epoch. This would require

both an automated numerical implementation scheme and

a long time to evaluate each training epoch. Therefore,

significant economy is realized by decomposing the

problem and later reconstructing it from its constituents.

The reconstruction process is facilitated by the mathemat-

ical form of the GP models, which allowed the combination

of the SGA model with a model of Fickian macrodispersion

to improve late-time performance. The mathematical

representation of the GP derived models also facilitates

the integration of these models into more complex model-

ing tasks. For example, ALP helped create a model of the

block-scale non-advective flux, which could then be

integrated into a PDE describing the solute plume

evolution. Finally, because researchers can interpret the

mathematical equations produced by GP, these equations

can be used to gain insight into the predominant processes

that create the training data. For example, the case study

shows how the GP search encouraged the development of a

conceptual model of macrodispersion that changes from a

predominantly advective to a predominantly Fickian

process.

The results of the case study also provide some insight into

how to approach upscaling solute transport models to multi-

dimensional blocks using GP. This task requires learning a

Figure 6 | Comparison of the MoM and H2 upscaled models for predicting the vertically averaged time evolution of a pulse input in the synthetic aquifer with cos–cos flow.
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model for a multi-dimensional vector quantity. Therefore,

ensuring that mass continuity is conserved will be more

difficult than in the one-dimensional case presented here, and

new objectives may be necessary to guide the GP search

towards methods that conserve mass. Furthermore, a method

should be sought to reduce the observed bias of the r 2 metric

for capturing early time behavior.

CONCLUSION

This study presents promising initial results from a novel

data-driven approach to upscaling solute transport models.

A methodology was developed such that the problem of

upscaling models of solute transport from the fine scale to

the block scale was reduced to finding a model of the block-

scale non-advective flux. To demonstrate this method, a

case study was performed, in which vertically averaged

models were developed for the transport of solute in

perfectly stratified aquifers by flow parallel to the layers.

The many Pareto optimal equations found by ALP were

analyzed to discover a consensus equation that described

the advection of solute by fine-scale velocity variations from

the vertically averaged velocity that could be expressed

entirely in terms of block-scale parameters.

When this model was used to predict the time evolution

of the solute distribution, the short-term predictions were of

high quality, but this was not the case with the long-term

predictions. This result may be due to a bias in the ALP

fitness function toward capturing early time behavior. This

model, however, was determined by the consensus of many

searches to best capture the behavior of the non-advective

flux, thus compelling the development of a new hybrid

model of the non-advective flux that changed from an

advective to a Fickian process. This new hybrid model was

shown to be applicable to a variety of initial conditions and

flow distributions, rather than merely the conditions used to

train GP, suggesting that the new hybrid model describes

the mechanism of macrodispersion, rather than simply

being a surrogate for the training data.

Though the case study develops vertically averaged models

of solute transport under relatively simple flow conditions (i.e.

two-dimensional, steady state flow in a confined, perfectly

stratified aquifer of infinite extent), the results presented in this

study are promising. Data-driven modeling using GP is a novel

approach to the upscaling problem, and to our knowledge, no

previous studies exist in which data-driven modeling tech-

niques have been used to develop semantically meaningful

upscaled solute transport models. As demonstrated here, GP

can be used as a tool to inspire researchers to develop novel

solutions that may not be immediately obvious. The success of

the hybrid model for predicting the evolution of the solute

plume indicates that the GP upscaling methodology may

also be successful for modeling more complex systems.

Furthermore, the results of the case study provide insight

into how to approach more complex transport conditions,

as well as multi-dimensional blocks.
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