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Abstract We propose an approach to upscale solute transport in spatially periodic porous media. Our

methodology relies on pore-scale information to predict large-scale transport features, including explicit

reconstruction of the solute plume, breakthrough curves at fixed distances, and spatial spreading

transverse to the main flow direction. The proposed approach is grounded on the recently proposed

trajectory-based spatial Markov model (tSMM), which upscales transport based on information collected

from advective-diffusive particle trajectories across one periodic element. In previous works, this model

has been applied solely to one-dimensional transport in a single periodic pore geometry. In this work we

extend the tSMM to the prediction of multidimensional solute plumes. This is obtained by analyzing the

joint space-time probability distribution associated with discrete particles, as yielded by the tSMM. By

comparing numerical results from fully resolved simulations and predictions obtained with the tSMM over

a wide range of Péclet numbers, we demonstrate that the proposed approach is suitable for modeling

transport of conservative and linearly decaying solute species in a realistic pore space and showcase the

applicability of the model to predict steady-state solute plumes. Additionally, we evaluate the model

performance as a function of numerical parameters employed in the tSMM parameterization.

1. Introduction

Solute transport in porous media is a fundamental problem across many disciplines, including subsurface

geological systems and the performance optimization of engineeredmaterials such as filtrationmembranes.

A key challenge in this context is to obtain accurate predictions at spatial scales much larger than the ones

associated with individual pores without having to resolve the physical and chemical processes taking place

within complex pore spaces. This is achieved by upscaled formulations that embed pore-scale features into

effective parameters and therefore can be employed to predict large-scale behaviors. To this end, a classi-

cal approach is resorting to a continuum-scale advection-dispersion equation (ADE) (Cheng & Bear, 2016;

Scheidegger, 1954). In such a formulation mechanical dispersion induced by pore-scale velocity gradients

is modeled through a Fickian-like dispersion term, parameterized via a fourth-rank dispersivity tensor. The

definition of the dispersivity tensor purely based on pore-scale properties presents significant challenges.

From a theoretical perspective, the solution of three closure problems is required to fully parameterize

solute transport based on pore-scale information through volume averaging (Valdés-Parada et al., 2016).

These separate closures are necessary to isolate and characterize the separate effects of diffusion and advec-

tion on transport. However, even such a detailed approach may not yield reliable predictions due to a lack

of separation of scales, violating the assumptions required by the volume averaging method. In such a

case, non-Fickian transport features emerge, particularly at relatively short times and distances (Berkowitz

et al., 2006; Salles et al., 1992). Formally, these effects can still be represented with Eulerian nonlocal

(integro-differential) models. In principle these models can be derived by applying upscaling approaches,

such as volume averaging, that can relate pore-scale geometry and fluid velocities with the emerging trans-

port dynamics through a set of closure differential equations (Wood & Valdés-Parada, 2013). However, it is

often found that resorting to such approaches leads to formidable mathematical and numerical complexity

(Davit et al., 2012; Porta et al., 2016), which is associated with (i) the numerical resolution of various clo-

sure problems and (ii) the approximation of integro-differential equations to obtain the desired large-scale

outputs.
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A specific problem in the context of solute transport upscaling is posed by the modeling of solute plumes,

which corresponds to the explicit spatial reconstruction of the solute spatial spread at a given time, or at

steady state (i.e., under steady-state boundary conditions, such as continuous injection). For instance, the

analysis of transverse spreading and mixing of steady-state solute plumes has great practical relevance in

bioremediation and reactive transport scenarios at field and laboratory scales (Cirpka & Valocchi, 2007;

Chiogna et al., 2010; Tang et al., 2015). In these applications the target process is the spreading and mixing

of a solute in the direction transverse to a steady flow field characterized by a prevalent direction. Following

classical ADE-based descriptions, transport in the transverse direction is typically modeled by introducing

a dispersivity parameter. This standard definition typically considers dispersion to be uniquely propor-

tional to advective velocity (Scheidegger, 1954). This formulation was successfully employed, for example,

to interpret transport and mixing in microfluidic systems characterized by relatively simple geometries

(Willingham et al., 2008). However, studies performed in the last decade have demonstrated the impact

of molecular diffusion on transverse dispersion through experiments and numerical simulations (Chiogna

et al., 2010; Muniruzzaman & Rolle, 2015; Rolle et al., 2012; Ye et al., 2016). Such results can be qualitatively

linked with analytical and numerical studies showing that the dispersion tensor becomes asymmetric in

advection-dominated scenarios (Auriault et al., 2010; Pride et al., 2017). These studies show that full param-

eterization of the dispersion tensor can become a troublesome task, particularly in media characterized

by a complex and multiscale pore structure. Additional levels of complexity are introduced when reactive

processes are also considered on top of pore-scale advective-diffusive transport.

Over the last decade it has been recognized that pore-to-continuum upscaling of solute transport can often

be conveniently obtained by considering solute velocities (or associated travel times) over fixed spatial

increments by means of a Markov chain. This led to the formulation of various flavors of so-called spatial

Markov models (SMMs) (e.g., Kang et al., 2014; Le Borgne et al., 2011; Puyguiraud et al., 2019; Sherman,

Bianchi Janetti, et al., 2020). The SMM is based on the calculation of the travel time across a fixed distance

and a one-step correlation existing between successive travel times. By including correlation the SMM is

able to employ information available on a limited portion of the system to predict transport across much

larger distances. Notably, such an approach is effective in the presence of advection-dominated scenar-

ios that become challenging to upscale with classical Eulerian approaches. The advantages of employing

a spatial Markov approach to obtain the solute breakthrough curve (or first passage time) at a given lon-

gitudinal distance has been demonstrated in a number of previous works, relying on both numerical and

laboratory-scale experimental data sets (e.g., Bolster et al., 2014; Le Borgne et al., 2011; Sherman, Bianchi

Janetti, et al., 2020; Sherman et al., 2018). Several recent works have discussed methodologies that employ

Lagrangian SMM-like approaches to predict solute particles' space-time locations at various scales of obser-

vations (Russian et al., 2016; Wright et al., 2019). Yet, to the best of our knowledge, this approach has not

been applied to the explicit space-time reconstruction of solute plumes starting from pore-scale properties.

In this work, we pursue this objective with the aim of opening new pathways for the application of SMM

approaches to transport in porous media at laboratory and field scales. To achieve this goal, our work starts

from that of Sund et al. (2017), Sherman et al. (2019), and Most et al. (2019) where a trajectory-based SMM

(here labeled tSMM) was formulated. The methodology relies on a set of numerically simulated Lagrangian

trajectories obtained for a single unit cell of the porous medium, which is then used to predict transport

across much larger distances. The approach has been applied so far to the simulation of transport, mix-

ing and surface reactions across a periodic pore with a highly idealized geometry. From a methodological

standpoint, these previous implementations of the tSMM are unable to (i) simulate transport in complex

porousmedia and (ii) model transverse spreading of solute plumes which is highly relevant in the situations

described above. The presentwork aims to overcome these limitations. In particular, the specific objectives of

this contribution are to (i) extend the tSMM to the upscaling of transient and/or steady-state solute transport

in the longitudinal and transverse direction and (ii) yield an efficient, accurate and computationally afford-

able representation of the ensuing multidimensional solute plumes. As such, our approach paves the way

for novel fields of application for the tSMMby extending its applicability to problems displaying various spa-

tial (one-dimensional andmultidimensional) and temporal characteristics (steady and unsteady). This latter

point is particularly challenging because the simulation of steady-state transport with Lagrangian method-

ologies typically entails very large computational costs, as well as the need to implement specific methods

to impose boundary conditions that are consistent with those considered in classical Eulerian models based

on partial differential equations (Koch & Nowak, 2014; Sole-Mari et al., 2019).
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Figure 1. Geometry (left) and normalized velocity magnitude |u|∕|u| (right) in the unit cell.

To accomplish these goals, we consider a periodic medium showing a disordered periodic geometry. Peri-

odicity is imposed in agreement with numerous theoretical upscaling approaches applied in porous media

and are relevant to engineering systems across a wide range of applications (Gebäck & Heintz, 2019; Kim

et al., 2013; Municchi & Icardi, 2020; Schmuck & Berg, 2014).

2. Methodology

2.1. Pore-Scale Setting

We consider transport of a passive solute in a periodic two-dimensional porous medium. The medium is

composed of a collection of periodic unit cells,whose geometry is represented inFigure 1. Theunit cell is arti-

ficially created using a stochastic generation procedure as detailed in Sherman, Bianchi Janetti, et al. (2020),

Smolarkiewicz andWinter (2010), andHyman andWinter (2014). The cell properties are reported in Table 1.

We assume here to deal with a semi-infinite periodic porous domain, that is, x∈ [0,∞) and y∈ (−∞,+∞).

Because the medium is composed by an infinite number of identical cells, for convenience we define

x̂ = x − Lxfloor

(
x

Lx

)
, �̂ = � +

L�

2
− L�floor

(
�

L�
+
1

2

)
(1)

as a coordinate system referenced to the unit cell, x̂ ∈ [0,Lx] and �̂ ∈ [0,L�], where Lx and Ly define the

dimensions of the unit cell in the x and y directions, respectively.

The cell is discretized into square pixels of side Δ = 2 × 10−6m, which for our example results in a unit

cell composed of 2,048 × 2,048 pixels. The solid and fluid phases are identified by an indicator field I, with

I = 1 associated with pore space and I = 0 with solid pixels. The correlation length of the indicator field I is

taken as a representative length scale for the pore space and is denoted as �S. Transport is described by the

standard advection-diffusion equation with no flux boundary conditions at the solid-fluid interface:

�C(x,t)

�t
+ � ⋅ [u(x)C(x, t)] = � ⋅ [D�C(x, t)] ∀x ∈ Γ� luid, t > t0

D �C(x,t)

�n
= 0 ∀x ∈ Σsur�ace, t > t0

C(x, t0) = C0,

(2)

Table 1
Geometrical Characteristics of the Unit Cell

Porosity Lx (m) Ly (m) Δ (m) �S (m)

0.631 4.096 × 10−3 4.096 × 10−3 2 × 10−6 1 × 10−4

Note. Lx , Ly, Δ and �S indicate, respectively, the dimensions of the unit cell, the spatial
discretization along x and y directions, and the representative length scale of the system.

BIANCHI JANETTI ET AL. 3 of 16



Water Resources Research 10.1029/2020WR028408

where u = [u, v] is the fluid velocity, C is solute concentration, D is the diffusion coefficient, and C0 is

the initial concentration distribution. The velocity u is obtained by numerically solving the Navier-Stokes

equations with OpenfoamⓇ, release v1712 (OpenCFD Limited, 2017) and diffusion coefficient is assumed

to be known and constant. We impose a uniform pressure gradient along the x direction, labeling x an y as

longitudinal and transverse directions, respectively. The velocity is computed assuming periodic boundary

conditions on the top-bottom cell boundaries and the no slip condition on the fluid-solid interface. The

Péclet number associated with transport is calculated as Pe = U�S∕D, where U is the average fluid velocity

along the x direction over the whole fluid domain. In our simulation we set D = 10−9m2/s and we adjust

Pe by setting U to the desired value. Note that this is acceptable as our simulations are in a Stokes regime,

where inertial effects are negligible with respect to viscous ones. Transport is solved numerically using a

Lagrangian particle-based randomwalk method, where the solute plume is discretized into a finite number

of N particles. Each particle displaces according to

xn+1
i

= xn
i
+ uidt + �i

√
2Ddt

�n+1
i

= �n
i
+ vidt + �i

√
2Ddt

i = 1, … ,N , (3)

where dt is a time step that is constant, �i, �i are independent identically distributed randomnumbers drawn

from normal distributions with zero mean and unit variance. We define a reference time step dt* according

to the following criterion |dmax| ≤ 0.5Δ where

|dmax| = max (|u|) dt + 2
√
2Ddt∗ (4)

is an estimate of the maximum displacement. No flux boundary conditions at the fluid-solid boundary are

imposed as elastic reflections (see the supporting information for additional details). We note here that

the unit cell porosity, as well as the correlation between void and solids are fixed as input parameters of

the generation methodology and may have an impact on the resulting flow field and consequently on the

solution of transport equation (see Equation 3). For example, imposing a smaller porosity will promote

channeling and, in turn, the concentration of trajectories along similar paths in the periodic cell. In this case

rare eventswill likely dominate diffusion in cavities anddead endpores, resulting in tailing and solute delays.

The analysis of the influence of the parameters used for the stochastic generation of the unit cell can be

performed in a parametric study or in the context of multipleMonte Carlo pore space realizations. However,

all these aspects are not within the objectives of the present work and will not be discussed further here.

2.2. SMM

We upscale transport using the framework of the tSMM proposed in Sund et al. (2017). The methodology

is based upon pore-scale transport trajectories and their associated travel times. In the following, we first

describe the pore-scale trajectories simulations and then how these are used to parameterize the tSMM.

2.2.1. Pore-Scale Trajectories

Parameterization of the model is grounded on the pore-scale simulation of a set S = {s1, … , sNs} of

Ns advective-diffusive trajectories, for a specific Pe. These particle trajectories are simulated by solving

Equation 3 across a single cell in the longitudinal direction, that is, between the inlet location x = 0 and

the outlet location x = Lx. Figure 2 represents a sample of 100 trajectories across the considered unit cell

selected from a flux weighted initial condition and setting initial location of particles distributed along the

entire unit cell cross section. The comparison between the two considered cases allows for identification of

the effects of diffusion on the pore-scale trajectory paths. Although there is a factor of 10 difference in terms

of Pe between the two cases, the trajectories appear very similar at first sight. Differences are noted only

after close inspection of the details of the trajectories paths, where it is apparent that for Pe = 100 particles

explore a wider portion of the pore space than for Pe = 1,000 (cf. Figures 2b and 2d). These apparently small

differenceswill have a definite impact on the response of the system. In otherwords, even if the input-output

connectivity is broadly similar in the two cases and is constrained by the geometry of the cell, the emerging

transport behavior will be quite different and is sharply influenced by Pe, i.e., by the physics of the transport

process, as will be shown in section 3. We observe that for diffusion-dominated cases (Pe ≤ O(1)) the tra-

jectories would display a different pattern and explore the geometry cell much more uniformly than shown

in Figure 2. This case is however not explored in this contribution, as upscaling there is typically more

straightforward and our focus is on advection-dominated cases. For each trajectory si we record the travel

time � needed to travel across a distance Lx in the longitudinal direction and the y positions (yin, yout) of
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Figure 2. Sample of 100 trajectories employed for model parameterization for (a and b) Pe = 100 and (c and d) Pe = 1,000. Dashed red lines indicate the unit
cell boundaries, and the trajectories are binned in different colors as a function of the yin location. The two middle panels represent a zoom on the region
highlighted in red for the two cases.

the particle at the inlet and outlet as the particle enters and exits the domain. Particles are injected at loca-

tions x = 0, �in ∈ [−L�∕2,L�∕2]. Particles may cross into adjacent cells along the y direction, but due to the

periodicity of the cell geometry, each location yout can be mapped to a corresponding �̂out using Equation 1.

Therefore, the coordinate yout(si) can be determined as �out(si) = �̂out(si)+ΔC(si)L�, whereΔC(si) is an integer

that indicates the net number of cell transitions in the transverse direction observed for a given si trajectory

path. We can then compute Δ�(si) = �out(si) − �in(si). The trajectories are subdivided into NB equiprobable

bins that are assigned by considering the starting locations yin(si) in ascending order. This implicitly defines

a discretization of the �̂ axis in terms of the binning of the trajectories. To exemplify this binning, the tra-

jectories in Figure 2 are subdivided into 10 bins, indicated by different colors. The trajectories si consider

all simulated pathways between the locations x = 0, �in ∈ [−L∕2,L�∕2] and x = Lx, �out ∈ (−∞,+∞). We

observe that some trajectories may even travel backward along x close to the inlet section before traveling

downstream, as indicated in the highlighted parts in Figure 2. These effects are present for both considered

Pe and are likely to be emphasized in a two dimensional setting if compared to a three-dimensional one with

similar characteristics.

2.2.2. The tSMMParameterization

The information collected in the parameterization step is then used to build the following tSMM:

xk+1
i

= (k + 1)Lx

�k+1
i

= �k
i
+ Δ�

[
sk
i
|�̂out(sk−1i

)
]

tk+1
i

= tki + �
[
ski |�̂out(s

k−1
i )

]
(5)

where both �k+1
i

and tk+1
i

are determined through aMarkov chain, which is related to the transverse location

assigned to the particle in the periodic cell during successive steps k, leveraging the information given by

the trajectories in si. The innovative feature of the model in Equation 5 with respect to previous implemen-

tations (Sherman, Bianchi Janetti, et al., 2020; Sund et al., 2017) is that it allows for predictions of transverse

spreading over successive Markov steps. This is achieved by considering y as a continuous variable; that is,

the Markov chain has a longitudinal fixed spatial step Lx, while transport along y is considered through the

Δy(si) obtained from the trajectories si recorded during the parameterization stage. In essence, at the begin-

ning of the simulation (step k = 0) each particle i is assigned to an initial location �0
i
corresponding to a
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Figure 3. Conditional joint distributions P(t̃, �̃|x̃) for x̃ = 5, 10, 25, and 50 and P(x̃, �̃|t̃) for t̃ = 20 predicted by the tSMM
considering (a) Pe = 100 and (b) Pe = 1,000.

selected initial or boundary condition (e.g., flux weighted or uniform distribution on the inlet boundary).

From this information we select a trajectory s1
i
, randomly sampling from those whose yin(si) lies in the same

bin interval as �0
i
. By selecting the trajectory, we also obtain a given travel time �(s1

i
) and transverse displace-

mentΔ�(s1
i
), fromwhich we evaluate �̂out(s

1
i
). The latter can be then used to select a new trajectory s2

i
for the

next transition and the procedure can then be repeated for any arbitrary step number k> 0.

2.3. Model Outputs

To analyze the outputs of our tSMM model, our analysis relies on the following dimensionless space-time

coordinates

x̃ =
xk

L
, �̃ =

�c

L
, t̃ =

tU

L
(6)

where L = Lx = L�, x
k corresponds to the longitudinal spatial coordinate of kthMarkov step (see Equation 5)

and �c(x) = �(x)− �̄(x), that is, is the transverse location centered with respect to the average transverse posi-

tion �̄(x) observed at a given x. The value of �̄(x) is not constant with x because the average transverse velocity

component is not exactly equal to 0. While this component is only approximately 1% of the longitudinal

mean velocity U, it still induces plume migration along y after a number of cells.

The key output of the tSMM is the joint probability distribution P(x̃, �̃, t̃). In this distribution, the variable x̃

can only assume discrete values, while the �̃, t̃ are continuous.

Physically meaningful information related to the plume can then be extracted from this joint probability

by considering conditional and marginal distributions. In our analysis we will consider the conditional dis-

tributions P(t̃, �̃|x̃) for a given dimensionless downstream distance x̃, or P(x̃, �̃|t̃) for a given dimensionless
time, t̃. Examples of these conditional distributions P(t̃, �̃|x̃) for x̃ = 5, 10, 25, and 50 and P(x̃, �̃|t̃) for t̃ = 20

obtained from the tSMM are shown in Figures 3a and 3b for Pe = 100 and 1,000, respectively.

In addition, we consider the marginal probability distributions P(x̃, �̃), and P(t̃|x̃), P(�̃|x̃) conditional to a
given dimensionless downstream distance. These distributions have a clear physical meaning: the marginal

distribution P(x̃, �̃) represents the steady-state distribution of the particle plume, while P(t̃|x̃) corresponds
to the breakthrough curve, that is, the first passage time probability distribution at distance x̃. Finally, the

probability distribution P(�̃|x̃) provides the probability distribution associated with transverse position at a
control plane and is related solely to transport in the transverse direction.

To produce benchmark data against which to test the tSMMwe run a randomwalk direct numerical simula-

tion (DNS) using transport Equation 3 considering a medium composed of the collection of 50 periodic cells

whose properties are described in Table 1. The accuracy of the tSMM defined in section 2.2 will be tested

by comparing the above mentioned probability distributions with their analogs obtained from the DNS. For
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Figure 4. Conditional joint distributions P(t̃, �̃|x̃) for x̃ = 25 and Pe = 100 obtained with (a) DNS and (b) tSMM and for
Pe = 1,000 predicted by (c) DNS and (d) tSMM.

each of the above defined distributions we provide a quantitative evaluation of the mismatch between DNS

and tSMM using the Hellinger distance (Hellinger, 1909):

HD[F1,F2] =
1√
2

√√√√
N∑

i=1

(√
�1,i −

√
�2,i

)2
, (7)

where F1 is any of the above-mentioned marginal or conditional distributions predicted by DNS and F2
corresponds to its counterpart obtained with the tSMM. These distributions are approximated through N

discrete bins, and f 1, i and f 2, i are the values of the distributions in the i
th bin.

TheHDmetric quantifies the distance between twoprobabilitymeasures, and it is a proper distancemetric in

themathematical sense, by satisfying the properties of nonnegativity, symmetry, and triangle inequality.HD

is also bounded between 0 and 1, where 0 means that the two distributions are indiscernible and 1 that they

are maximally distant. As an additional advantage with respect to other metrics, e.g., the Kullback-Leibler

divergence (Kullback & Leibler, 1951), this metric can be employed also if the two distributions have a

different support.

3. Results

First, we show results obtained considering parameterization of the tSMM with Ns = 106, NB = 100, dt∗ =

10−5 s, and 10−6 s for Pe = 100 and Pe = 1,000, respectively. The time step dt* indicates the values of dt

evaluated according to Equation 4. Then, in section 3.3 we analyze the impact of parameters NB and dt on
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Figure 5. HD[PDNS(�̃, t̃|x̃);PtSMM(�̃, t̃|x̃)] as a function of the downstream location x̃ for Pe = 100 (red) and 1,000 (blue).

the accuracy of the tSMM. For all cases, including the DNS reference simulation and tSMM, we impose

a flux weighted boundary conditions. Note that in the reference DNS simulation the dt parameter is kept

constant and equal to dt*.

3.1. Model Performance as a Function of Pe

The tSMM is able to replicate the shape of the reference conditional distribution P(t̃, �̃|x̃) obtained from the

DNS for both investigated Péclet numbers. Figure 4a shows the joint distribution P(t̃, �̃|x̃) for x̃ = 25 and

Pe = 100 from the high-resolution DNS and corresponding results obtained with the tSMM (Figure 4b). The

agreement between the two solutions is significant for all transverse coordinates, �̃, and dimensionless travel

times, t̃. Analogous results are obtained for Pe = 1,000 (see Figures 4c and 4d) and for all other investigated

Markov steps (not shown). For both Pe values the maximum value of the probability distributions is found

at �̃ ≈ 0. Note that �̃ locations associated with zero probability across the whole time window correspond to

the occurrence of solid along the considered transverse section.

To quantify the accuracy of the tSMM outputs with respect to the reference DNS, Figure 5 shows the metric

HD[PDNS(�̃, t̃|x̃);PtSMM(�̃, t̃|x̃)] defined in Equation 7 for both investigated Pe numbers and all Markov steps.
We note that the distance between the DNS and the tSMM distributions slightly increases with x̃ and is

generally larger for Pe = 100 than for Pe= 1,000. This result is likely due to the fact that the effect of noise in

lowprobability values increaseswith the strength of diffusion. Fluctuations related toPe= 100 are associated

with the increased noise associated with the increasing effect of diffusion (for decreasing Pe number), with

noise becoming significant in the less densely populated positions far from the plume center (see Figure 4).

Figure 6 depicts conditional joint distribution P(x̃, �̃|t̃) for t̃= 20, corresponding to the time-dependent solute
plume. DNS and tSMM predictions are shown for Pe = 100 (see Figures 6a and 6b) and for Pe = 1,000 (see

Figures 6c and 6d). Again, the tSMM is able to capture all essential features displayed by the fully resolved

simulations. Note that tSMM allows for predictions of the evolution of the plume in the longitudinal and

transverse directions employing a significantly smaller computational effort than the DNS. The total com-

putational time required for tSMM is obtained as the sum of the time required for (i) one periodic cell

DNS calculation (needed for tSMM parameterization) and (ii) the solution of Equation 5 for the considered

Markov steps. As an example, the total computational time for running the tSMM is approximately 2.0% of

that one needed for the DNS results when considering 50 Markov steps for Pe = 100 and 1.8% for Pe = 1,000.

Note that this percentage decreases for simulation across higher numbers of unit cells (i.e., the computa-

tional gain increases with the dimension of the system of interest). This is related to the fact that, as specified

above, the parameterization of the tSMM requires as initial step a DNS simulation over a single periodic cell,

which is the most computationally intensive part of the procedure. Conversely, the computational gain for

fixed dimension of the system only slightly decreases with decreasing Pe, because the time required for the

unit cell DNS employed for the tSMM parameterization increases proportionally to the time required for

the DNS over the whole system. Additional details about computational time are included in the supporting

information.
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Figure 6. Conditional distributions P(x̃, �̃|t̃) for t̃ = 20 and Pe = 100 obtained with (a) DNS (b) tSMM and for
Pe = 1,000 predicted by (c) DNS and (d) tSMM.

The marginal distributions P(x̃, �̃) are depicted in Figures 7a and 7b for Pe = 100 and 1,000, respectively. As

mentioned above, these distributions identify the steady-state plume for a nonreactive solute. These distri-

butions are here obtained at no additional computational cost with respect to the transient case, which for

a DNS would not be the case and significant additional cost would be required. These results are obtained

considering a flux weighted injection of particles along the entire cross section of the unit cell. Note that

the form of system (5) does not change if we consider different types of injection conditions. Different injec-

tion conditions simply require to set up theMarkov Chain in Equation 5 with different starting locations �0
i
.

These different simulations can then rely on the same set of trajectories for parameterization and would be

associated with very low computational costs (see the last column of Table S1) if compared with a pore-scale

DNS. For illustrative purposes, we perform an additional tSMM simulation where the injection takes place

in a point rather than along awhole inlet section of the periodic cell and the ensuing results are shown in the

supporting information. Figure 8 displays breakthrough curves P(t̃|x̃) considering travel distances x̃ = 5, 10,

25, and 50 from the injection location and provides a quantitative comparison between the reference DNS

and the tSMM results. We note that the tSMM can reproduce the breakthrough curves across a wide range

of distances and both Péclet numbers. This result shows that the trajectory-based upscaledmodel accurately

predicts arrival times in a porous mediummade of periodic unit cells displaying a disordered geometry and

is in line with those obtained within simpler geometrical settings (Sund et al., 2017).

The comparison between tSMM and DNS marginal distribution of transverse locations P(�̃|x̃) is shown in
Figure 9 for two selected distances from the injection (x̃= 5 and x̃= 25) and for both investigatedPenumbers.

BIANCHI JANETTI ET AL. 9 of 16



Water Resources Research 10.1029/2020WR028408

Figure 7.Marginal distribution P(x̃, �̃) for (a) Pe = 100 and (b) Pe = 1,000.

To compare the spreading of the particle plume over all Markov steps, we consider the standard deviation

of distribution P(�̃|x̃) as a function of x̃ (see Figure 10).

Results obtained through the tSMM are in close agreement with those yielded by the DNS. We observe that

the change in Pe has marked effects on transverse spreading of the solute, as has been previously observed

in laboratory and numerical studies (Chiogna et al., 2010; Rolle et al., 2012). In particular, the standard

deviation �y continuously increases as a function of the longitudinal distance traveled for Pe = 100. On

the contrary, �y is approximately constant up to x̃ = 20 for Pe = 1,000 and then starts increasing. This

result implies that for such an advection-dominated situation we only observe significant transverse spread-

ing after particles have traveled a distance of 20 cells. This result is due to the converging-diverging nature

of advective streamlines in two-dimensional fields as can be detected in Figure 2. Such behaviors are cer-

tainly amplified with respect to a three-dimensional setting characterized by an analogous porosity. Yet

the tSMM is able to predict these different dynamics based on the simulation of transport across a sin-

gle two-dimensional unit cell. We are aware that behaviors observed in two-dimensional systems are often

not transferable to three dimensions (Marafini et al., 2020), and we remark that the methodology can be

extended to three dimensions, by relying on the same procedure described in section 2.2. We also empha-

size that two-dimensional setups may be relevant in specific applications, e.g., the design or the modeling

of experiments in microfluidic systems (e.g., Willingham et al., 2008).

Figures 11 shows the HDmetric associated with results in Figures 8 and 9 as a function of the downstream

location for Pe= 100 (red) and Pe= 1,000 (blue). We note that theHDmetric is smaller than 5% in both cases

Figure 8. Breakthrough curves P(t̃|x̃) obtained at control planes located at distances x̃ = 5, 10, 25, and 50 unit cells for
(a) Pe = 100 and (b) Pe = 1,000. Symbols and lines represent the DNS and tSMM results, respectively.
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Figure 9. Comparison between the marginal distributions P(�̃|x̃) as given by direct numerical simulation (black lines)
and tSMM (red dots) for x̃ = 5 and (a) Pe = 100, (b) Pe = 1,000, for x̃ = 25 and (c) Pe = 100 and (d) Pe = 1,000.

for both investigatedPe. This quantitatively demonstrates the high fidelity of the tSMMmodel in reproducing

the DNS results.

3.2. Steady-State PlumesWith First-Order Degradation

As a showcase application of the capabilities of the tSMM, we also evaluate the influence of a first-order

reaction on pinching off the steady-state plume. Our choice relies on the fact that a linear reaction model

is typically employed in a wide variety of situations including radioactive decay (Ciriello et al., 2013) and

bioreactive systems (Cirpka & Valocchi, 2007). We assume in this application that the solute undergoes

degradation following linear kinetics. This is accounted for in a straightforwardmanner in the tSMM frame-

work. Starting from the conservative plume results (see Figure 7), for each particle we define the probability

of reaction as Ri(t, �) = 1− e−�t, where � is the kinetic degradation rate. Then we compare Ri with a random

number, U i, drawn from a standard uniform distribution. If Ui ⩾ Pi, no reaction occurs, while if U i <Pi,

the particle is removed from the system. In our examples � is chosen based on obtaining specific values of

Damkhöler numbers, Da =
�
2
S
�

D
.

We compute marginal distributions P(x̃, �̃) to represent the steady-state plume for this reactive scenario.

The results obtained for Da = 1 and 5 (corresponding to � = 0.1 and 0.5 s−1) and Pe = 100 are depicted in

Figures 12a and 12bwhile Figures 12c and 12d show the case associatedwithDa= 5 and 10 (corresponding to

�= 0.5 and 1 s−1) and Pe= 1,000. These results portray the ability of our proposed tSMM to predict transport

Figure 10. Comparison of the standard deviation, σy, of the distribution P(�̃|x̃) for the DNS and tSMM as a function
of x̃.
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Figure 11. (a) HD[PDNS(t̃|x̃);PtSMM(t̃|x̃)] and (b) HD[PDNS(�̃|x̃);PtSMM(�̃|x̃)] as a function of the downstream location x̃
for Pe = 100 (red) and Pe = 1,000 (blue).

in longitudinal and transverse direction while also accounting for a reactive solute undergoing a first order

reaction process. Note that the results are obtained at negligible additional computational cost with respect

to the unsteady state, conservative, transport simulations.

3.3. Error Analysis

To provide a quantitative description of the influence of parameters NB and dt on the accuracy of the pro-

posed SMM, we evaluate HD[F1,F2], see Equation 7, choosing as F1 and F2 the marginal distributions of

Figure 12.Marginal distribution P(x̃, �̃) for a reactive contaminant undergoing a degradation following a linear
kinetics for Pe = 100 (a) Da = 1, (b) Da = 5, and Pe = 1,000 (c) Da = 5, (d) Da = 10.
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Figure 13. ⟨HDα⟩ for Pe = 100 and Pe = 1,000 as a function of the Markov step number (cell number) for different dt
and numbers of bins NB employed in the parameterization step.

travel times, P(t̃|x̃), or transverse positions, P(�̃|x̃), conditional to a given downstream location x̃ from the

injection point, evaluated with DNS and tSMM, respectively. Note that the time step is kept constant and

equal to dt* in the DNS, while we consider in the following different values for the simulation of the tra-

jectories employed to parameterize the tSMM, To simplify the notation, we introduce here the following

indicators:

HDt = HD[PDNS(t̃|x̃);PSMM(t̃|x̃)] (8)

HD� = HD[PDNS(�̃|x̃);PSMM(�̃|x̃)] (9)

to assess the model errors. The analysis is performed considering both Pe = 100 and Pe = 1,000 and con-

sidering different values of NB and dt for the parameterization of the tSMM, while, as mentioned above,

in the reference DNS the dt is constant and equal to dt*. In order to provide an overall assessment of the

impact of parameters dt and NB, we focus on the average of HD
 (with 
 = t, �) across all 50 investigated

Markov steps (the averaging operator is denoted by the symbol ⟨⋅⟩). Figures 13a and 13b show ⟨HDt⟩ and
⟨HDy⟩ as a function of dt/dt* and NB, respectively. Continuous lines correspond to Pe = 100, while dashed

lines depict results associated with Pe = 1,000. Red and blue colors are related to arrival time and transverse

location distributions, respectively. Note that for Pe = 100 both ⟨HDt⟩ and ⟨HDy⟩ are not very sensitive to
the choice of parameter dt (see Figure 13a). On the contrary for Pe = 1,000 we observe a sharp increase of

⟨HDt⟩ and ⟨HDy⟩ for dt> 2dt*. This is probably due to the fact that advective particle displacements depend
linearly on dt, as opposed to the diffusive ones which scale with dt0.5. The variation of ⟨HDt⟩ and ⟨HDy⟩ as
a function of NB is displayed in Figure 13b for the two investigated Pe numbers. These results show that the

quality of model predictions deteriorates for decreasing number of bins associated with the tSMM param-

eterization. Note that NB = 1 corresponds to considering the particle trajectories as totally uncorrelated

across successive Markov steps, while setting NB > 1 in the tSMM parameterization allows consideration of

correlation between particle trajectories belonging to the same bin. We note that considering uncorrelated

particle trajectories does not provide good agreement between DNS and tSMMdistributions, as indicated by

high values of the HD
 metrics. Also in this case correlation effects at a fixed downstream distance become

stronger as Péclet number increases, in linewith the results of previous studies (Bolster et al., 2014; Sherman

et al., 2019).

4. Discussion and Conclusions

Our study proposes a methodology for upscaling solute plumes in periodic porous media through a tSMM.

We extend the work of Sund et al. (2017) to the case of a multidimensional unsteady solute transport and

exemplify our approach considering a two-dimensional porous medium with a disordered geometry. Our

framework is based on the simulation of advection-diffusion randomwalk particle trajectories across a single

periodic flow cell with the aim of predicting transport over a much larger scale. In particular, our analysis

explicitly includes the evaluation of the joint space-time probability distributions associated with solute
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plumes providing an efficient and accurate representation of both transient and steady-state transport in

porous media for different Pe numbers. Our work leads to the following major conclusions:

1. From a comparison with high-resolution DNSs we show that the proposed tSMM accurately predicts

spatial and temporal distributions of a conservative solute plume using information collected from

a single cell simulation. The current framework is not restricted to a simplified geometry setting or

a particular flow condition but can be employed to accurately predict multidimensional transport in a

disordered two-dimensional pore space once the flow field has been evaluated. Note that in principle our

methodology can be used with different type of initial injection condition, for example, flux-weighted or

uniformly distributed, pulse or continuous injection, and can be extended to a three-dimensional setup.

2. Our model is able to predict different transport dynamics, particularly regarding the influence of Pe

on transverse plume spreading. Our results are in line with previous laboratory and numerical studies

(Chiogna et al., 2010; Rolle et al., 2012). In particular, the change in Pe, due to a change in the diffusion

coefficient of the compound, had marked effects on transverse spreading of the solute and this is well

captured by our upscaling approach.

3. Particle trajectories and associated travel times, whichwere simulatedwith the proposed tSMM to predict

conservative transport, can be naturally extended to simulate reactive transport processes with negligi-

ble additional computational cost. As an example, in this work we analyze the influence of a first-order

kinetic reaction on a steady-state plume. To do so, our model has been coupled with a probabilistic repre-

sentation of a linear degradation reaction and applied for severalDa numbers. Note that themethodology

is already fully compatible with the analysis of other types of reactions (e.g., sorption/desorption) as was

shown by Sherman et al. (2019) for an idealized benchmark problem.

4. The effect of tSMM parameterization (in particular the parameters dt and NB) was studied for the two

analyzed Pe. As expected, the difference between tSMM and DNS distribution both in space and time

increases with increasing dt and decreasing NB, respectively. A marked effect of parameterization was

observed for Pe = 1,000 with respect to Pe = 100 due to fact that (i) the contribution of the advec-

tive transport, which increases with Pe, is more affected by the choice of dt employed in the tSMM

parameterizazion and (ii) the relevance of particle trajectory correlation increases with Pe.

For all the above points the simulation time needed for the tSMM is negligible if compared to the one

required for high-resolution DNS. This is one of the great advantages of the proposed tSMM which allows

predictions of multidimensional transport across large distances (for both conservative and reactive solutes)

without the burden of excessive computational resources. Note that, in its current form, the model can be

applied to a spatially periodic domain. This restriction is similar to the fact that solving a closure problem on

a periodic unit cell is required for many well-established upscaling procedures. At the same time, broaden-

ing the scenarios of interest, for example, extending themethodology to upscaling transport of a conservative

and/or reactive solute in a disordered nonperiodic porous domain, as well as to interpret laboratory and/or

field-scale observations, would constitute additional elements of interest which are compatible with the

approach we rest upon. This will hopefully now be possible after the model has been formulated and tested

in a synthetic and controlled scenario such as the one presented here. A first attempt in the direction of non-

periodic media is available in (Sherman, Bianchi Janetti, et al., 2020; Sherman, Hyman, et al., 2020) who

obtain promising results which can be built on in the context of future investigations.

Data Availability Statement

Data sets for this research are available online (at https://data.mendeley.com/datasets/rzg53tn963/1).
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