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Upscaling Sensible Heat Fluxes With
Area-to-Area Regression Kriging

Yong Ge, Member, IEEE, Yongzhong Liang, Jianghao Wang, Qianyi Zhao, and Shaomin Liu

Abstract—Surface sensible heat flux (SHF) is a critical indi-
cator for understanding heat exchange at the land-atmosphere
interface. A common method for estimating regional SHF is to
use ground observations with approaches such as eddy correlation
(EC) or the use of a large aperture scintillometer (LAS). However,
data observed by these different methods might have an issue
with different spatial supports for cross-validation and compari-
son. This letter utilizes a geostatistical method called area-to-area
regression kriging (ATARK) to solve this problem. The approach
is illustrated by upscaling SHF from EC to LAS supports in the
Heihe River basin, China. To construct a point support variogram,
a likelihood function of four parameters (nugget, sill, range, and
shape parameters) conditioned by EC observations is used. The
results testify to the applicability of ATARK as a solution for
upscaling SHF from EC support to LAS support.

Index Terms—Area-to-area, kriging, sensible heat flux (SHF),
upscaling.

I. INTRODUCTION

ENSIBLE heat flux (SHF) is the process by which heat

energy is transferred from the Earth’s surface to the atmo-
sphere by conduction and convection; it is a critical indicator for
understanding heat exchange at the land—atmosphere interface.
Many applications in meteorology, climatology, hydrology, and
agriculture require estimates of SHF [1]. Currently, common
methods for estimating SHF at the local, regional, and global
scales can be categorized by one of four types. The first type
uses remote sensing data [2], and the second makes use of
ground observations [3]. The third and fourth types use land
surface modeling and land data assimilation, respectively [4].
Such SHFs observed or estimated by these different methods
might have different spatial supports. The issue of different
spatial supports causes scaling conversion, which can occur
in the same or different groups, for the purpose of validation,
cross-validation, comparison, or subsequent analysis [5]. For
example, for ground observations, the measurements of SHF
commonly include the Bowen ratio, eddy correlation (EC), and
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lysimeter [6], [7]. These approaches can observe fluxes at ten
to tens of thousands of square meters around a station.

This letter focuses on scaling conversions of SHF ground
observations, particularly upscaling from EC to large aperture
scintillometer (LAS) supports. In particular, LAS measure-
ments are integrated over a long transect of approximately
500-5000 m from the same or different underlying surfaces,
whereas EC measurements are normally a few to hundreds
of meters [1], [8]-[14]. Compared with the support provided
by LAS, EC support can be considered over a small area.
Both supports change with time, and their shapes are irregular.
More often, area-weighted [1], [15] and footprint-weighted [16]
methods are used to investigate the scaling issue, with reason-
able results. However, implementing these methods commonly
involves physical process models or prior knowledge, which
requires that the user is familiar with these. These methods
do not consider spatial heterogeneity over complex terrain and
only provide approximations as irregular footprints [4]. In the
geostatistics field, upscaling EC observations to LAS support
can be handled by a method called area-to-area kriging (ATAK)
[17]-[21], which considers the spatial autocorrelation and sup-
ports of areal data to obtain the best linear unbiased estimation.
However, different underlying surfaces produce different SHFs,
which might lead to the nonstationarity of a random function.
So it is not reasonable to upscale directly with ATAK. Because
covariates contain information about the dependent variable,
regression kriging [22] can produce more accurate predictions
than ordinary kriging. Moreover, an assumption of stationarity
for the regression kriging residual is usually more realistic
than an assumption of stationarity for the target variable itself.
Therefore, we propose to initially use a regression approach
with environmental variables related to SHF and then apply
ATAK to the residuals. This method is termed area-to-area
regression kriging (ATARK). It is applied to the Heihe Wa-
tershed Allied Telemetry Experimental Research (HiWATER)
experiment. HHWATER was launched by the National Natural
Science Foundation of China in 2010 [8]—[10], [23] to validate
remote sensing models, algorithms, and products. Furthermore,
the Multi-scale Observation Experiment on Evapotranspiration
over the heterogeneous land surfaces of HIWATER was under-
taken from May to September 2012 [8], [10].

II. MATERIALS AND METHODS
A. Study Area and Data Description

The Heihe River basin lies in an arid region of northwest-
ern China. It was selected as an experimental watershed for
conducting HIWATER because it is a typical inland river basin
that has long served as a test region for integrated watershed
studies and land surface or hydrologic experiments [23]. The
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Fig. 1. Yingke-Daman irrigation district.

study area here is the Yingke-Daman irrigation district (see
Fig. 1) in the middle reaches of the Heihe River. This district is
between 38°50'-38°54’ N and 100°19'-100°24" E. The terrain
slopes gently downward from west to east, with elevations
ranging from 1560 to 1447 m. Cornfields cover most of the
area, but land cover also includes buildings, roads, orchards,
greenhouses, forests, and other vegetation. The core experimen-
tal area covers a roughly 5.5 by 5.5 km region, centered near
100°22' E, 38°52' N. There were four LAS system groups (eight
sets, with two sets in each group) installed within 3x3 and
2x1 Moderate Resolution Imaging Spectroradiometer pixels,
and 17 EC systems are installed within the core experimental
area. Details concerning specific performances and intercom-
parisons are found in [9]. Spatial distributions of EC and LAS
systems are shown in Fig. 1: EC1 is in a vegetable field,
EC4 is on building ground, EC17 is in an orchard, and the
others are in cornfields. Different underlying surfaces produce
different SHFs, particularly in daylight. SHF observed on
building ground is much greater than SHFs observed in fields
(see Fig. 2). EC footprints were calculated with a Eulerian
analytic flux footprint model [24], whereas LAS footprints were

D e =
[ | Comn field < W

| km

calculated by combining the path-weighting function of LAS
[12] with a Eulerian analytic flux footprint model [10], [25].
Footprints will change over time because they are affected by
such factors as instrument height, atmospheric stability, wind
speed, and wind direction. The small circles in Fig. 1 represent
the source areas (the size and extent of footprints) of EC,
and the large circles covering different underlying surfaces
represent the source areas of LAS. The total flux contribution
of the chosen total source area was set at 95%. Our objective is
to upscale SHF from EC support to LAS support and then make
a comparison with the observations of LAS.

Data used include the mean values of SHF observations
and footprints of 17 EC and 4 LAS between 12:00 and 12:30
Beijing standard time (BST) and the mean values of wind
speed observations of 17 EC between 12:00 and 12:30 BST.
These EC and LAS data were preprocessed. Corresponding
methods and quality control procedures are given in [25]. Land
Surface Temperature (LST), Normalized Difference Vegetation
Index (NDVI), and Fractional Vegetation Cover (FVC) of the
Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER) product [26] are from about 12:15 BST. We
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Fig. 2. EC SHF observations of different underlying surfaces.

chose observations from nine periods, i.e., June 15, June 24,
July 10, August 2, August 11, August 18, August 27,
September 3, and September 12, 2012, when the weather was
clear and ASTER satellite passes were available for the study
area. The resulting remote sensing images captured on these
days had high quality.

B. Area-to-Area Regression Kriging

The ATARK rescaling procedure was divided into four steps
according to the situation in our study area.

Step 1. Trend Modeling: We first extract the auxiliary en-
vironmental variables using the footprints of 17 EC systems
from nine periods. Then, a linear multiple regression model is
established

Hiy=Bor+ P10 F'V Cit+ Bar-LSTsy+ Bz NDV Ly + Bag - W Sy
(D

where H;; is the SHF of the ith EC during the ¢th period and
FVCy, LSTy, NDV 1, and WS, are auxiliary environmen-
tal variables extracted by the ith EC footprints during the ¢th
period. We can achieve full coverage of wind speed over the
study area using simple interpolation such as ordinary kriging.
Stepwise regression would be adopted in case of collinearity.

Step 2. Derivation of Point Variogram: After the regression
procedure, we obtained 17 residuals (EC support) and one SHF
trend for each period. Based on the assumption of stationar-
ity, residuals of LAS support can be estimated with ATAK.
Before the application of ATAK, the most important—and
difficult—procedure is to calculate the point support covari-
ance, or equivalently the point support variogram, of the
residuals. One popular method is the deconvolution procedure
[27], which can derive a point support variogram based on
the variogram calculated by the areal observations using their
centroids. Because only 17 EC support residuals are available
during a single period, the centroid-based variogram would be
unstable, which could cause unreliable deconvolution results.
In this letter, we use restricted maximum likelihood (REML)
estimation to assess the point support variogram. The solution
is to assume the second-order stationarity of the residual at
the point support and use four parameters (nugget, sill, range,
and shape parameters) to characterize a Matérn variogram [28].
After that, we can calculate the area-to-area covariance of the
EC support using

N (vi)N(v;)

C p}mpl
k=1 [=1

C_'(vi,vj):

N(vi) N(v;)

PLE Vi, EV; (2)

Fig. 3. Area-to-area covariance between any two areas.

where C(v;, v;) is the area-to-area covariance between any two
areas v; and v; (see Fig. 3). N'(v;) and N (v;) are the number of
points used to discretize the two areas v; and v;, respectively.
Fig. 3 is just a sketch map. In practice, there are many more
points to be used to discretize the areas. Equation (2) means
that C'(v;, v;) is computed between any two points discretizing
the areas v; and v;.

Assuming that the target variable follows a normal distri-
bution and 6 is the vector of four parameters of the Matérn
variogram, the likelihood function conditioning on the EC
support residuals is given by

_ 1. _
L(61Z,) = 27 ¥ |y} exp(QZchizv) @

where Z,, corresponds to 17 EC support residuals and C. is
the area-to-area covariance matrix calculated using (2). With
the aforementioned equation, we can derive the point support
variogram model. Next, ATAK will be used to upscale the
residuals from EC support to LAS support.

Step 3. Prediction and Error Variance of Residual at LAS
Support: Assuming the second-order stationary of the residual,
the ATAK value over vy was estimated as a linear combination
of K neighboring units

K

> Ai(vo)z(vs) 4)

i=1

2 (v) =

where v is the unknown area support to be estimated and v; is
the area support of the regression residual. In this letter, vy and
v; represent the supports of LAS and EC, respectively. \;(vo)
is the weight assigned to z(v;) for the prediction at vy. The
K weights are the solution of the following system of linear
equations:

Z)\ (v0)C'(vi, v5) + p(vo) =C(vi, vo),

§<>

i=1,2,....K

(&)

The ATAK prediction error variance for v, is computed as

C(vo,v0) Z)\ (v0)C (v, v0) — p(vo).  (6)



GE et al.: UPSCALING SENSIBLE HEAT FLUXES WITH AREA-TO-AREA REGRESSION KRIGING 659

TABLE 1
SIGNIFICANT TEST FOR COEFFICIENTS AND EQUATION

R P

Square  Constant FVC LST NDVI WS  Model
15 Jun 0.404 0.000  0.006 - - - 0.006
24 Jun 0.596 0.000 - - 0.000 - 0.000
10 Jul 0.878 0.000 - - 0.000 - 0.000
2 Aug 0.952 0.044  0.033 0.024 - - 0.000
11 Aug 0.411 0.000 - - 0.006 - 0.006
18 Aug 0.391 0.009 - 0.007 - - 0.007
27 Aug 0.925 0.020  0.003 0.012 0.030 - 0.000
3 Sep 0.374 0.109 - - - 0.096  0.096
12 Sep 0.386 0.001  0.096 - 0.043 - 0.092

Step 4. Obtaining the Estimation: Finally, the estimated
value of LAS supports can be obtained by adding the regression
estimations (step 2) to the ATAK results (step 3).

III. RESULTS AND DISCUSSION

Based on the data and methods described in Section II,
environmental variables were extracted using EC footprints.
A stepwise procedure was used for selecting environmental
variables, and the regression models and regression coefficients
were tested for significance. As shown in Table I, most of the
regression coefficients and models are considered significant.
The symbol “-” means that the variable has been excluded from
the regression model by the stepwise method.

To derive a point support variogram in step 2, EC source
areas must be discretized first. Then, using (2) and (3), the
point support variograms of SHF residuals at nine periods were
estimated using REML (see Fig. 4).

Although a point support variogram is estimated using
REML here, Goovaerts [27], Truong and Heuvelink [28], and
Nagle et al. [29] have pointed out that area support observations
retain little information to infer the nugget component of a point
support variogram. Fortunately, area-to-area covariance will not
be influenced by the nugget variance because nugget variability
cancels out for both areas. With the point variogram mod-
els available, SHF estimations of LAS supports were derived
according to steps 3 and 4. A comparison of SHF observations
and estimations of LAS supports is shown in Fig. 5.

Assuming no uncertainty in the regression trend of SHF,
ATAK prediction error variances of LAS support were calcu-
lated and showed as a 95% confidence interval. The dashed
lines are models forced to pass through the origin and fit to the
points. The results of upscaling for LAS1, LAS2, and LAS4 are
close to these observations, with coefficients of determination
larger than 0.89 and the slope of the dashed line close to 1.
One of the main reasons is that the underlying surfaces of
LAS1, LAS2, and LAS4 are relatively homogeneous, which
means that the SHF observations of EC and LAS are similar.
However, LAS3 was obviously underestimated. Although the
coefficient of determination was greater than 0.8, the slope of
the dashed line was less than 0.79. All of the upscaling results
for LAS3 were smaller than the observations. The main reason
for this is that the underlying surface of LAS3 is more complex,
particularly with more buildings within the source area, which
produced higher SHF observations, but the EC systems could
not capture completely. Meanwhile this higher SHF contributed
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Fig. 4. Point support variograms for nine time periods in 2012.

a lot and could be observed by LAS3. These smaller measure-
ments from the EC systems might cause underestimations in the
regression step and then lead to smaller upscaling results than
the LAS3 measurements.

IV. CONCLUSION

Because the accuracy of different SHF measuring methods
can be assessed by scaling issues, upscaling ground-based
SHF measurements is of great importance for the validation,
cross-validation, comparison, or subsequent analysis of these
methods. In this letter, the ATARK method has been presented
as a way to upscale SHF from EC support to LAS support.
The method has been illustrated using data from the HHWATER
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Fig. 5. SHF comparison of observations and estimations of LAS supports.

experiment to upscale 17 EC SHFs to LAS supports. By incor-
porating environmental covariates in the regression procedure,
ATARK can produce more accurate predictions, and the as-
sumption of stationarity of regression residuals is more realistic.
The comparison between SHF estimations and observations
of LAS supports testifies to the suitability of ATARK as a
method for upscaling, except for the underestimations caused
by a highly heterogeneous underlying surface.

ACKNOWLEDGMENT

The authors would like to thank three anonymous reviewers
and the editor for their precise and valuable comments that
greatly improved this letter.

REFERENCES

[1] F. Beyrich, H. De Bruin, W. Meijninger, J. Schipper, and H. Lohse, “Re-
sults from one-year continuous operation of a large aperture scintillometer
over a heterogeneous land surface,” Boundary-Layer Meteorol., vol. 105,
no. 1, pp. 85-97, Oct. 2002.

Y. Song et al., “A revised surface resistance parameterisation for estimat-
ing latent heat flux from remotely sensed data,” Int. J. Appl. Earth Observ.
Geoinf., vol. 17, pp. 76-84, Jul. 2012.

S. Liu et al., “Measurement, analysis and application of surface energy
and water vapor fluxes at large scale,” Adv. Earch Sci., vol. 125, no. 11,
pp. 1113-1127, Nov. 2010.

T. Xu, S. Liang, and S. Liu, “Estimating turbulent fluxes through assim-
ilation of geostationary operational environmental satellites data using
ensemble Kalman filter,” J. Geophys. Res., Atmos., vol. 116, no. D9,
pp- D09109-1-D09109-16, May 2011.

[5] R. P. Haining, Spatial Data Analysis: Theory and Practice.
U.K.: Cambridge Univ. Press, 2003.

D. Baldocchi et al., “FLUXNET: A new tool to study the temporal and
spatial variability of ecosystem-scale carbon dioxide, water vapor, and en-
ergy flux densities,” Bull. Amer. Meteorol. Soc., vol. 82, no. 11, pp. 2415-
2434, Nov. 2001.

[2

—

[3

=

[4

=

Cambridge,

[6

=

[71 W. Massman and X. Lee, “Eddy covariance flux corrections and uncer-
tainties in long-term studies of carbon and energy exchanges,” Agric.
Forest Meteorol., vol. 113, no. 1, pp. 121-144, Dec. 2002.

[8] Y. Ma et al., “Estimations of regional surface energy fluxes over heteroge-

neous oasis-desert surfaces in the middle reaches of the Heihe River dur-

ing HHWATER-MUSOEXE,” IEEE Geosci. Remote Sens. Lett., vol. 12,

no. 3, pp. 671-675, Mar. 2015.

Z. Xu et al., “Intercomparison of surface energy flux measurement sys-

tems used during the HHWATER-MUSOEXE,” J. Geophys. Res., Atmos.,

vol. 118, no. 23, pp. 13 140-13 157, Dec. 2013.

[10] S. Liu et al., “A comparison of eddy-covariance and large aperture scin-
tillometer measurements with respect to the energy balance closure prob-
lem,” Hydrol. Earth Syst. Sci., vol. 15, no. 4, pp. 1291-1306, Apr. 2011.

[11] C. Watts et al., “Comparison of sensible heat flux estimates using AVHRR
with scintillometer measurements over semi-arid grassland in northwest
Mexico,” Agric. Forest Meteorol., vol. 105, no. 1, pp. 81-89, Nov. 2000.

[12] W. Meijninger et al., “Determination of area-averaged sensible
heat fluxes with a large aperture scintillometer over a heteroge-
neous surface—Flevoland field experiment,” Boundary-Layer Meteorol.,
vol. 105, no. 1, pp. 37-62, Oct. 2002.

[13] L. Jia et al., “Estimation of sensible heat flux using the Surface Energy
Balance System (SEBS) and ATSR measurements,” Phys. Chem. Earth,
Parts A/B/C, vol. 28, no. 1, pp. 75-88, Jan. 2003.

[14] Z.Jia, S. Liu, Z. Xu, Y. Chen, and M. Zhu, “Validation of remotely sensed
evapotranspiration over the Hai River Basin, China,” J. Geophys. Res.,
Atmos., vol. 117, no. D13, pp. D13113-1-D13113-21, May 2012.

[15] L. Mahrt, D. Vickers, J. Sun, and J. H. McCaughey, “Calculation of area-
averaged fluxes: Application to BOREAS,” J. Appl. Meteorol., vol. 40,
no. 5, pp. 915-920, Sep. 2001.

[16] U. Rannik et al., “Footprint analysis for measurements over a heteroge-
neous forest,” Boundary-Layer Meteorol., vol. 97, no. 1, pp. 137-166,
Oct. 2000.

[17] P. C. Kyriakidis, “A geostatistical framework for area-to-point spatial
interpolation,” Geograph. Anal., vol. 36, no. 3, pp. 259-289, Jul. 2004.

[18] X.Liu, P. C. Kyriakidis, and M. F. Goodchild, “Population-density estima-
tion using regression and area-to-point residual kriging,” Int. J. Geograph.
Inf. Sci., vol. 22, no. 4, pp. 431-447, Jul. 2008.

[19] R. Kerry, P. Goovaerts, B. G. Rawlins, and B. P. Marchant, “Disaggre-
gation of legacy soil data using area to point kriging for mapping soil
organic carbon at the regional scale,” Geoderma, vol. 170, pp. 347-358,
Jan. 2012.

[20] P. M. Atkinson, “Downscaling in remote sensing,” Int. J. Appl. Earth
Observ. Geoinf., vol. 22, pp. 106—114, Jun. 2012.

[21] C. A. Gotway and L. J. Young, “A geostatistical approach to linking ge-
ographically aggregated data from different sources,” J. Comput. Graph.
Stat., vol. 16, no. 1, pp. 115-135, Jul. 2007.

[22] T. Hengl, G. Heuvelink, and D. G. Rossiter, “About regression-kriging:
From equations to case studies,” Comput. Geosci., vol. 33, no. 10,
pp. 1301-1315, Oct. 2007.

[23] X. Li et al., “Heihe Watershed Allied Telemetry Experimental Research
(HiWATER): Scientific objectives and experimental design,” Bull. Amer.
Meteorol. Soc., vol. 94, no. 8, pp. 1145-1160, Aug. 2013.

[24] R. Kormann and F. X. Meixner, “An analytical footprint model for non-
neutral stratification,” Boundary-Layer Meteorol., vol. 99, no. 2, pp. 207—
224, May 2001.

[25] S. Liu, Z. Xu, Z. Zhu, Z. Jia, and M. Zhu, “Measurements of evapotran-
spiration from eddy-covariance systems and large aperture scintillometers
in the Hai River Basin, China,” J. Hydrol., vol. 487, pp. 24-38, Apr. 2013.

[26] J. Zhou, J. Li, L. Zhang, D. Hu, and W. Zhan, “Intercomparison of
methods for estimating land surface temperature from a Landsat-5 TM
image in an arid region with low water vapour in the atmosphere,” Int. J.

Remote Sens., vol. 33, no. 8, pp. 2582-2602, Oct. 2012.

[27] P. Goovaerts, “Kriging and semivariogram deconvolution in the presence
of irregular geographical units,” Math. Geosci., vol. 40, no. 1, pp. 101—
128, Jan. 2008.

[28] P. Truong and G. B. M. Heuvelink, “Bayesian area-to-point kriging us-
ing expert knowledge as informative priors,” Int. J. Appl. Earth Observ.
Geoinf., vol. 30, pp. 128-138, Aug. 2014.

[29] N. N. Nagle, S. H. Sweeney, and P. C. Kyriakidis, “A geostatistical linear
regression model for small area data,” Geograph. Anal., vol. 43, no. 1,
pp. 38-60, Jan. 2011.

[9

—





