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INTRODUCTION

The reality of upstream blocking in stratified flows has been recognized

for many years. If a stratified flow with Brunt-Viiiseilii frequency N

(N' : -glp dpldz,where p is the fluid density, g the acceleration due to
gravity, and z the vertical coordinate) is set in motion with meanvelocity U

over a (two-dimensional) obstacle of height h, then naive energy arguments
(and common sense) indicate that if NhlU is sufficiently large, fluid near

the ground would be blocked on the upstream side and not flow over the

obstacle. Casual observations and "folklore" have long indicated tbat

this phenomenon is common near mountain ranges in the atmosphere.

However, the nature and mechanics of how it occurs have only recently

become clear. It is now known that upstream blocking in large-Reynolds-

number flows propagates as a wave phenomenon, generated by nonlinear

effects over the topography. These waves may be linear or nonlinear

depending on circumstances, and they propagate primarily as "columnar"

motions, meaning that they permanently alter the density and horizontal

velocity profiles as they pass through the fluid ahead of the obstacle.

Blocking occurs when these changes reach sufficient amplitude. Since they

alter the upstream conditions, the understanding of these upstream dis-

turbances caused by the obstacle is a prerequisite for calculating the steady-

state flow over an obstacle, regardless of the other details of the flow.

These effects generally depend on the topography being approximately

two-dimensional (2D) with sufficiently large height. They are common in

geophysical situations such as fiords, estuaries, and in the atmosphere.

Since blocking is primarily a two-dimensional stratifled phenomenon,

in this review we exclude the effects of rotation and are concerned with
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76 BATNES

topography that is at least nearly two dimensional. The literature on
stratified flow over topography is quite large, but most of the earlier
studies were focused on downstream phenomena such as lee waves and
windstorrns, rather than upstream effects. This article is primarily con-
cerned with the latter effects, and downstream-flow properties are only
discussed insofar as they relate to upstream phenomena. From this view-
point, the study of the subject began with the pioneering work of Long
(1954, 1955). Since then, the state of the subject has been reviewed by
Long (1972) and, for laboratory experiments, by Baines & Davies (1980).

The character of the flow will depend on the mean density stratification
of the fluid, and here there are two main considerations. Firstly, the
stratiflcation may take the form of a number of homogeneous layers, or the
density may vary continuously with height. In the latter case a layered
model can be used as an approximation, although many layers may be
needed. Secondly, the fluid depth may be finite or infinite. In the finite-
depth case the stratified fluid is bounded above by a rigid horizontal
boundary or an infinitely deep homogeneous layer, so that all upward-
propagating energy is reflected downward; the vertical spectnrm of linear
internal waves consists of discrete modes. In the infinite-depth case, wave
energy may propagate upward out of tte region of interest without any
downward reflection. This may be achieved by a fluid that is effectively
infinitely deep or that has a region which absorbs and dissipates internal
wave energy above some sufficiently high level. The vertical spectrum of
internal wave energy is continuous, with no downward energy propa-
gation. The behavior of finite- and infinite-depth systems is quite different
in general. In particular, finite-depth systems contain an additional
parameter-the total depth of the stratified fluid. Furthernore, the linear-
ized solutions (for flow over obstacles with small l) become singular for
layered and finite-depth systems when the speed of an internal wave
mode is zero rclative to the topography, whereas this does not occur for
infinite-depth systems without trapped modes.

Both finite- and infinite-depth continuously stratified systems may con-
tain a critical layer, which in the present context implies a level in the
flow where the (initial) mean velocity of the fluid is zero relative to the
topography. Critical layers introduce considerable complications, and in
order to focus on the essentials of upstream blocking we assume that they
are initially absent in the flows discussed here. However, topographic
disturbances may themselves produce I o c al critical lev els.

A simple criterion for upstream blocking can be obtained from the
following energy argument, due to Sheppard (1956). One may liken strati-
fled fluid approaching an obstacle to balls being rolled uphill. Relative
to neutral stratification, an approaching fluid pafiicle must overcome a
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potential-energy deficit due to the stratification if it is to surmount the
barrier. For continuously stratified fluid, a fluid particle with velocity t/
will not have sufficient kinetic energy to reach aheight h if

L p u '

In the particular case where U and the Brunt-Viiisiilii frequency l/ are
constant with height, this relation gives the criterion for blocking as

Nh

u ' I '

Laboratory experiments with 3D axisymmetric and near-axisymmetric
obstacles (Hunt & Snyder 1980, Snyder et al. 1985) show that this criterion
agrees closely with observations taken on the centerline. However, this
agreement must be regarded as almost a coincidence, since the theoretical
derivation ignores the effects of neighboring fluid particles through the
pressure term. For two-dimensional topography this energy argument is
not consistent with observations, and the value of NhlU required for
blocking is closer to 2, as shown below.

The most common dimensionless number in this topic is the Froude
(pronounced "Frood") number F. Unfortunately, this name is used for
different quantities in different circumstances by different people. In the
flow of homogeneous fluid with a free surface, .Fis defined to be (ll(gl)tt',

where I may be an obstacle length L, the fluid depth D, or (conceivably
but rarely) an obstacle height ft. So defined, F may represent any one of
three parameters, and these have very different physical significance. The
first lUl@L) 

r/2] was used extensively by William Frou<le and relates to
wave drag. The second has been commonly termed the Froude number
since the work of Moritz Weber (Rouse & Ince 1957) and is the ratio of a
fluid speed to a Tinear wave speed. The use of "Froude number" for
both terms must be regarded as accepted terminology. For the case of
continuous stratification with constant N, we have the corresponding
parameters UINL, UIND and UlNh. All three (plus their squares and
reciprocals and suitable constant multiples) have been termed the "Froude
number" by various authors. This proliferation of the term has caused
unnecessary confusion because, again, these three parameters have very
different physical significance: The first relates to internal wave drag, the
second is the ratio of a fluid speed to a wave speed, and the third relates
to nonlinear wave steepening and upstream blocking. By analogy with
free-surface flows it may (regrettably) be regarded as accepted practice to
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78 BAINES

tenn UINL and UIND Froude numbers, but there seems to be little senser
or justification for using the same appellation for UlNh (although the
present author is as guilty ofthis in the past as anyone else). I suggest that
it is more appropriate to write this number as NhlU, and we leave it
nameless with no symbol in this article. A suitable name might be "Nhu."

In the following sections we consider the nature of the blocking phenom-
enon in systems of increasing complexity. We begin with a single homo-
geneous layer with a free surface, then proceed to multilayer systems, and
finally discuss continuously stratified systems of finite and inflnite depth.
Most theoretical studies have assumed that the obstacle has a long hori-
zontal length scale, so that the flow is mostly hydrostatic (apart from
certain situations mentioned below); this provides a substantial simpli-
fication of the equations, and the flows calculated should at least be
representative ofthe character offlow over shorter obstacles, because the
essential nonlinearities are retained.

SINGLE LAYER

We consider the flow of a single layer over a long (slowly varying) obstacle,

so that the flow is mostly in hydrostatic balance. We also note that the

equations governing hydrostatic flow of a single layer are the same as

those for hydrostatic flow of a two-layer system with an infinitely deep
inertupperlayer,if g isreplacedby g' : g@r-pz)lpr

This single-layer system provides examples of the two main types of

nonlinear disturbances produced by topography in finite-depth flows. The

first of these is the hydraulic jump, which is the end result of a steepening
process due to nonlinear advection. For many purposes these jumps may

be regarded as traveling discontinuities that do not change their shape or
properties with time; their detailed structure will depend on a balance

between nonlinear steepening and a combination of linear dispersion,

dissipation, and wave breaking. The second type of disturbance is the
rarefaction-a term borrowed from gasdynamics, but here the word
implies that the disturbance is being rarefied, rather than the fluid density.

This type occurs when the trailing part of the disturbance travels more

slowly than the leading part (conversely to the hydraulic-jump case), so
that nonlinear advection causes the disturbances to become progressively

more stretched out as time passes. Both of these types of disturbance are

important for stratified flows over obstacles in general.

The effects of two-dimensional topography on a single layer have been

'This point will be discussed in more detail in the monograph "Topographic effects in
stratified flows" by the author.
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investigated by Long (1954, 1970, 1972-theory and experiments) and

independently by Houghton & Kasahara (1968-theory and numerical

experiments). Their results have been summarized in a unified form in

Baines & Davies (1980). If a fluid layer of depth ds is impulsively set into

motion with velocity uointhe presence of an obstacle of maximum height

h, the resulting flow may be characterized by two dimensionless
parameters-a Froude number Fo: uol@de)'/2 and H : hldo.From the

equations of momentum and mass conservation, one may infer that the

final steady state depends on Fsand H, as shown in Figure 1. The equations

for the various curves are

A'B'+A' .E '  :  H:  l_  14 ' t * I f i ,
L L

Porliolly blocked 9I

Supercrilicol flow

0

H = h  l d o

Figure I Hydrostatic singleJayer flow over an obstacle: The flow regimes are obtained after

an impulsive start from rest for various values of F6 and 11, where ft is the maximum obstacle

height and ao is the speed of the obstacle relative to the initial undisturbed stream, which

has depth do.

8 ( F 7 + l ) 3 / 2 + l  I  3
A ' , F ' , ' H : -  

t o ; + -  4 - 2 F 0 ,

B'C' : Fn : (H - tr(t;rj) .

To the left of curve F'A'B' , where the flow is either supercritical (f'6 > l)

or subcritical (Fo < l), the flow upstream and downstream is the same as

the initial undisturbed flow (apart from transients), and the flow over the

obstacle is given by the Bernoulli equation. To the right of B'C' the obstacle

height is sufficiently large to completely block the flow. When the flow is

partially or totally blocked, a hydraulic jump propagates upstream to

infinity, reducing the incident mass flux and altering the upstream fluid
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velocity u and layer thickness d. An equation relating jump speed to the
change in conditions across the jump may be derived and used to obtain
the properties of the overall flow. In the partially blocked case, flow over
the obstacle crest is controlled by the local condition.F: ul(gd)tt2:1.
On the downstream side, a hydraulic jump may be attached to the obstacle
(below A'D') or swept downstream (above A'D'): farther downstream, a
rurefaction (simple wave) disturbance connects the flow to the original
undisturbed state. In the region E'A'F' the flow may be either partially
blocked or supercritical, depending on the initial conditions, so that a
hysteresis phenomenon exists in this system. The existence of these double
equilibria has been verified numerically by Pratt (1983) and experimentally
by Baines (1984).

When two long obstacles are present in two-dimensional flow, the hydro-
static long-wave model may not be applicable. If the steady-state flow for a
single obstacle is everywhere subcritical or supercritical, the steady-state flow
pattern for each of two long obstacles of the same height will be the same
as that for a single obstacle. However, if upstream blocking occurs, the
long-wave theory may yield no sensible answer; in these cases nonlinear
wave trains are observed in the region between the obstacles (Pratt 1984).
Various flow regimes obtained experimentally for a tange of heights of
two obstacles are shown in Figure 2. Apart from possible wave breaking,
the observed flows were all completely steady. This phenomenon may be
interpreted, at least in part, with the theory of Benjamin & Lighthill (1954).

We define the mass flux Q, energy R, and momentum flux S of a uniform
stream of velocity u1 and depth dy taking density as unity, by Q : ufiy
R:iu?+Sar, S: u?a,+iga?. fnen i f$and S" denote rhe values of

R and S for a critical stream (F : u 1l J gdr : l) of given volume flux Q,
the possible values of R and S for steady flows on this stream are given in
Figure 3. The upper boundary of the cusp represents subcritical uniform
stream flows (1 < 1), the lower boundary represents supercritical uniform
flows (F > 1) and solitary waves, and the region in between represents

Figure 2 Sketches of experimentally

found flow regimes for a single layer over

two obstacles (from Pratt 1980. @)
hrx hr; laminar lee waves between ob-

stacles. (b) hr < hr) long-wave subcritical

flow between obstacles. (c) i, > h2;break-

ing lee waves. (d) ht>ftr; long-wave

supercritical flow between obstacles (solid

line) or containing hydraulicjump (dashed

line).
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Figure 3 The energy density (Rfmomen-

tum flux (S) diagram for possible steady

states of a single layer with given mass

flux p. For critiial flow, we have R : R",

S : .t". Numbers on the cusp denote values

of F (from Benjamin & Lighthill 1954).

flow with cnoidal wave trains. Flow over an obstacle causes a decrease rn

S equal to the (inviscid) drag force; hence, in passing over an obstacle,

the point on the diagram representing the stream flow moves downward

from the upper branch of the cusp. For a single obstacle it may reach the

lower branch. but. with a second obstacle, in the cases of interest it will

only traverse part of this gap (AB in Figure 3), giving a cnoidal wave train

downstream ofthe first obstacle. Ifthese waves are large enough to break,

then a decrease in R will result (BC), and then a further decrease in S

(CD) at the second obstacle. The details of these changes in S may be

dependent on the spacing between the obstacles and their shape; the

phenomenon needs further study. If several obstacles are present in the

flow, we may expect a succession of such zigzags in the R-S plane, so

that R and S decrease toward their minimum values R" and S" and the

downstream flow tends toward criticality. On the other hand, if any one

obstacle blocks the flow, it is blocked everywhere.

For three-dimensional (3D) topography (for example, a 3D barrier in

a channel) the flow will be totally blocked if and only if the barrier is higher

than the 2D blocking height (given in Figure 1) continuously across the

channel. Also, if the channel is narrow relative to the longitudinal length

scale, the flow may be controlled by a critical condition that depends on

the topographic height profile at the "minimum gap" (rather than a single

height); we discuss this point in a broader framework below.

TWO OR MORE LAYERS

The upstream effects of two-layer flow have been investigated numerically

by Houghton & Isaacson (1970) and experimentally by Long (1954,1974)

and the author (Baines 1984). The last paper gives a comprehensive

description of the various flow types that occur with two immiscible fluids
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when the flow is commenced from a state of rest. so that the velocities of
the two layers are initially equal. The experiments have been carried out
with moderately long obstacles (with length comparable to the depth), and
the observations have been satisfactorlTy compared with results from a
hydraulic two-layer model (using mass and momentum equations for each
layer). The observed upstream disturbances may take one of three forms,
as follows. (a) A hydraulic jump (Figure 4a), similar in character to those
observed in single-layer flows. The jump is undular at small amplitudes;
at large amplitudes the interface becomes turbulent at and on the lee side
of the crests due to Kelvin-Helmholtz instability. (b) A limiting bore plus
a rarefaction (Figure 4b). As the amplitude of a bore and the downstream
lower-layer depth are increased, the effect of the upper-layer thickness
becomes more important;the speed of the bore tends to a maximum value
at apafiicular amplitude, and the energy loss across the bore decreases to
zero at (or very near) this same point. This bore of maximum amplitude
and zero dissipation is termed a "limiting bore," and it consists of a
monotonic increase in the lower-layer depth, which still propagates without
changing shape. If the downstream lower-layer depth is forced to increase
further, this must result in a rarefaction that propagates more slowly than
the bore. (c) A pure rarefaction (Figure 4c). lf the lower-layer depth is
initially greater than or equal to a value that is approximately half the
total depth (and depends on p2f pr), an increase in the lowerJayer depth
is propagated as a rarefaction only.

When hydraulic jumps are present, the hydraulic model requires a
relationship between the jump speed and the conditions upstream and
downstream of it. In order to obtain this relationship for multilayered

k Figure 4 Examples of the types of non-
linear disturbances in twoJayer flow. (a) A
hydraulicjump, which propagates at con-
stant speed without changing shape. (D) A
limiting bore and rarefaclion; the limiting
bore is a bore of maximum amplitude that
propagates at constant speed without
changing shape, and for the following rare-
faction, the leading part propagates faster
than the trailing part. (c) A pure rare-
faction. The arrows represent relative pro-
pagation speeds of the interface height.
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flows, an assumption about the flow within the jump is required. One

assumption that meets the requirements is that the flow within the jump

is hydrostatic, and this is equivalent to the assumptions used by Yih &

Guha (1955), Houghton & Isaacson (1970), Long (1970, 1974), Su (1976),

and Baines (1984). However, it is obviously not strictly correct, and Chu

& Baddour (1977) and Wood & Simpson (1984) have suggested that for

two-layer systems, it may be replaced by an assumption of conservation

of energy in the contracting layer in the jump. In cases where the two

criteria have been compared with observations (Wood & Simpson 1984,

Baines 1984), the difference between them is small and the comparisons are

inconclusive, and hence the question of the most appropriate assumption is

still open.
We now consider the results for flow between rigid upper and lower

boundaries with (p I - p t) I p t << 1, starting from a state of rest. The resulting

flow may be specified by three parameters Fo, H, and r, wherc

1)n
t ] _

r  0  
- -

C s
, c f ,

P t  ,  9 z
)  

- r )
u t o  u  2 0

where zo is the initial fluid velocity relative to the topography, p y d1x and

pz, dzo denote the density and initial thickness of the lower and upper

layers, respectively, ft is the maximum height of the obstacle, and the total

depth D : d1s+d2s. Figure 5 shows the model results in terms of Fo, H

for r :0.1,0.5. For r :0.1 the'diagram is very simi lar to Figure I  for a

single layer when Fo 5 1.4. However, when Fo> 1.4 the upstream dis-

turbance may be sufficiently large for the flow to become critical immedi-

ately upstream of the obstacle (the dashed line in Figure 5a); this marks

an upper limit to the magnitude of the upstream disturbance, which does

not increase further if 11 is increased. On part of this curve the upstream

bore has reached its maximum amplitude, and a small-amplitude rarefac-

tion follows it. Flow states with upstream bores in the two-state (hysteresis)

region may not be realizable experimentally because of interfacial friction
(Baines 1984). For r : 0.5, on the other hand, no upstream jumps occur,

and the only upstteam disturbances are of the rarefaction type. As r

increases from 0.1 to 0.5, the Fo-fl diagram evolves continuously from

Figure 5a to Figure 50.
Mathematical analyses of the nonlinear region near resonance (Fe - 1)

have recently been carried out by Grimshaw & Smyth (1986) and by W.

K. Melville & K. R. Helfrich (private communication). These studies

enable the fluid response for fairly long obstacles with small fI to be

calculated as the solution of a forced Korteweg-de Vries (KdV) equation;
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an extended KdV (EKdV) equation incorporating cubic nonlinearities is
required to model two-layer effects, such as limiting bores. An example of
the results obtained from the KdV equation is shown in Figure 6. Results
are in qualitative agreement with laboratory observations for small r, and
Melville & Helfrich obtained reasonable detailed quantitative agreement
with the EKdV equation for larser r in some cases.

SUPERCRITICAL FLO\,{ JUST CRITICAL UPSTREAM

SUPERCRITICAL OR
PARTIALLY BLOCKID

LAYER 1 PARTIALLY
BLOCKED

LAYER 1 BLOCKED

U

PARTIAL BLOCKING
CRITICAL FLOW UPSTREAM

r = 0 5

SUBCRITICAL

UO

-=*<=\\t:
0,5

H = h / D

(b)

Figure 5 Flow-regime diagrams in terms of F6, Il for twoJayer flows : (a) r : 0 .l ; upstream
disturbances are mostly hydraulic jumps (cf Figure l). (b) r:0.5; upstream disturbances
are all rarefactions.

COMPLETE

H = h / 0
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The hydraulic model may be extended to systems with more than two

layers (and hence with more than one internal mode) by the following

procedure (P. G. Baines, submitted for publication, 1986). It may be shown
(Benton 1954, Lee & S,a, 1977) that at the crest of an obstacle, either the

horizontal gradients of all interfaces must vanish or else one mode must

be critical there (i.e. its propagation speed relative to the topography must

be zero). If one particular mode is critical at the crest and the obstacle

height is increased by a small amount, the flow may adjust to retain

this critical condition by sending a small-amplitude columnar disturbance

upstream that has the structure of the critical mode. This disturbance will

have the character of a jump if dclda > 0 and a rarefaction if dclda <0,

where c is the linear wave speed propagating against the upstream flow

and a is the amplitude of the preceding columnar disturbances. By these

means, it is possible to construct the Fs-H diagram for any number of
layers, although the procedure becomes more difficult as H increases and

the upstream disturbances become more complex. In particular, criteria

for blocking of the lowest Iayer may be obtained. Figure 7 shows the

Fo-H diagram for three layers between rigid boundaries, originally of

equal thickness and with equal density increments. Up to the point where

blocking of the lowest layer begins, the upstream disturbances are pure

rarefactions. Treatment of the flow with a blocked layer present is

n

Figure 7 Fg-II regime diagram for three-layer flow, with layer velocities and thicknesses

initially equal. In the shaded regions the upstream disturbance of the appropriate mode

increases in amplitude as 11 increases.

I '1ODE 1 CRITICAL UPSTREAM

N
N
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more complicated, and the details are given in P. G. Baines & F. Guest
(submitted for publication, 1986).

For hydraulic flows (long obstacles) governed by a critical condition at

dhldx :0, in many cases (such as the one- and two-layer systems described
above) the upstream flow may be determined independently of the down-
stream flow, although this will not be true in general. Downstream flows

are more complicated and are less well understood. Smith (1976) observed

lee waves behind short obstacles in subcritical two-layer flows and found

that the wave amplitudes were substantially larger than those predicted by

linear theory. For long obstacles in two-layer flow with r << 0.5, when

upstream bores are present the lee-side flow may contain a stationary jump

or the jump may be swept downstream. When the flow is critical just

upstream, it must be supercritical over the obstacle and then adjust to

downstream conditions by a sudden descent of the interface on the lee

side to another supercritical state through what is sometimes called a

"hydraulic drop" (Baines 1984). These flows may be affected by lee-side

flow separation, which is conspicuously present in some cases when the

upstream flow is supercritical. Lawrence (1985) has made a detailed study

of downstream flow features using miscible fluids and alarge flume that
permits the flow to exist in a steady state for long periods. In particular,

the nature of mixing processes and their dependence on various features

of flows with a downstream hydraulic jump have been explored; mixing

was observed to be due primarily to Kelvin-Helmholtz billows in the

region of maximum shear upstream of the hydraulic jump, rather than to

processes within the jump itself. Armi (1986) has made an experimental

study of two-layer flow through horizontal contractions.

There do not appear to have been any relevant studies oflayered flows

with three-dimensional barriers, or with two or more barriers.

CONTINUOUSLY STRATIFIED FLOW-FINITE
DEPTH

One might expect that the upstream phenomena present in layered flows

would have their analogues in continuously stratified fluid. This is in fact

the case, although the subject has developed quite independently. Virtually

all reported studies of upstream effects in continuously stratified fluids

have used approximately uniform stratification, i.e. fluid with constant

Brunt-Viiisiilii frequency l[. In a fluid of depth D, mean velocity U, and

obstacle height h,wehave the dimensionless parameters

ro :# ,  H :3 , Nh nH- n -  
h
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Here ,F'o (sometimes written as llK) is a Froude number based on the
lowest internal wave mode. Linear theory (with small ft) does not predict
steady upstream disturbances unless Fo < | and the topography is semi-
infinite [or effectively semi-infinite (Wong & Kao 1970)]. In this case,
upstream columnar motions of O(h) are obtained as linear "transients";
these are not in fact transient, because the obstacle has no downstream
end, and so they constitute a steady upstream disturbance. For obstacles
of finite length, weakly nonlinear theories by Benjamin (1970) (single
layer), Keady (1971) (two layer) and Mclntyre (1972) (constant N) predict
an O(h2) columnar motion upstream of and related to the downstream lee-
wave train; for the constant-N case, these effects are numerically very
small and have been looked for experimentally without success (Baines
1977). Solutions to the linear equations, in fact, become singular when the
phase (and group) velocity of long waves for some internal mode is zero
relative to the topography. For constant N this implies Fo : lln, where n
is an integer. This resonance causes nonlinear terms to become signiflcant
over the obstacle, even for smaTl H, and it is this process that causes the
steady-state upstream disturbances. For stratification with constant i/
the nonlinear steepening effects are extremely small, so that upstream
disturbances propagate as linear waves (though their generation over the
obstacle is nonlinear), even for moderate amplitudes (provided that the
background state is not significantly altered). Consequently, only modes
that are subcritical (c,: NDlnn > U) can propagate upstream.

The first observations of upstream effects in continuously stratified fluids
were made by Long (1955), who observed upstream jets and blocking close
to the obstacle when Fo < I and NltlU was sufficiently large. Wei et al.
(1975) noticed that these upstream disturbances propagated far upstream
as unattenuated columnar linear modes; the obstacles used in their experi-
ments were steep sided, and Wei et al. regarded these upstream effects as
consequences of lee-side separation and a turbulent wake. The present
author (Baines 19'l'7, 1979a.b) observed these columnar modes and
upstream blocking for smooth streamlined obstacles and described their
properties for various values of Fe and ,F/. For small NhlU,linear lee-wave
theory describes the steady-state flow quite well, except near the points
of resonance ( l /Fef n) (Baines 1979a).  For 1/n*1<Fo <11n, as H
increases, a critical value is reached beyond which steady upstream co-
lumnar motions of mode r are observed, and this height is zero for Fo: lln.

The analysis of Grimshaw & Smyth (1986) generalizes the forced
Korteweg-de Vries equation for two-layer flow near resonance to
arbitrary finite-depth flows near resonance (Fs - lln); the coefficients are
dependent on the mean velocity proflle and stratiflcation. Comparisons
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between this model and experiments with continuous stratification have

yet to be made.
As NhlU increases, the upstream disturbances in the laboratory experi-

ments are observed to increase in amplitude until upstream blocking

occurs. If f'0 < 0.5 this occurs for NhlU >-2, for obstacles of witch of

Agnesi shape. The onset of upstream blocking is manifested as a layer of

fluid of finite thickness (typically - lh) comitg to rest, rather than as a

stationary thin layer near the ground that then thickens vertically.

All the experiments just described were carried out by towing obstacles

along tanks of finite length filled with stratifled fluid. The columnar modes

produced at the obstacle will reflect from the upstream end of the tank

(McEwan & Baines 1974),but the observations were made before these

returned to influence the observed field offlow significantly. Snyder et al.

(1985) reported a series of observations of the density field upstream of

two-dimensional obstacles (as well as other shapes), and they attributed

upstream blocking to a "squashing" phenomenon. For their experiments,

reflection from the upstream end (and in some cases, also the downstream

end) was significant, so that the term "squashing" is applicable to their

results. However, contrary to their suggestion, it is not applicable to the

above-cited experiments that simulate a tank of infinite length (albeit for

a finite time). Snyder et al. also pointed out that the most slowly moving

upstream modes (n,n- 1, . . .) have significant amplitudes, so that the flow

may take a long time to reach steady state at a fixed distance upstream.

This is quite consistent with the flow-field observations of Baines (1979a,b),

for example, who reported steady (or nearly steady) flow in the immediate

vicinity of the obstacle near the end of the observing period.

A hydraulic model of the type described in the previous section, but one

with 64 layers, has been developed to model flow over long obstacles with

continuous stratification when -F1 is not small (P. G. Baines & F. Guest,

submitted for publication, 1986). Results are given in Figure 8, up to the

point of blocking of the lowest layer, for Fs > 0.3. In this parameter range,

only modes n : 1,2, and 3 may become subcritical (and hence propagate)

upstream. A 64-layer model is a good approximation to continuous strati-

fication when the upstream disturbances are small, but this is not neces-

sarily the case when they are large, particularly near Fo:lln; as slow-

moving layers become thicker, their discreteness becomes significant. Some

similarity between Figure 8 and the two- and threeJayer calcufations

(Figures 5b and 6, respectively) is evident. The speeds of the upstream

disturbances vary little with amplitude and are treated as rarefactions.

These results have not yet been tested experimentally. This is partly because

laboratory experiments with hydrostatic stratified flow are difficult because
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they require obstacles whose lengths are much greater than the fluid depth.
Experiments described in Baines (1979a) for moderately short obstacles
(length/depth - 1.5) give the curve for the onset ofupstream disturbances
shown Qightly) dashed in Figure 8; this implies that shorter, steeper
obstacles may generate upstream disturbances for smaller h than longer
obstacles. No results from fully numerical models for these finite-depth
systems have yet been published.

We next consider the flow in a channel of width Wpast a two-dimensional
transverse barrier with a small gap at one end of width w. This models a
two-dimensional ridge with gaps of width 2w spaced periodically along
the ridge at intervals of 2W.lf wlW << I we may expect the gap(s) to have
negligible effect on the upstream motion. Experiments with this geometry
have been reported for a particular obstacle (a short witch of Agnesi) by
Baines (1979b) and Weil et al. (1981) for a range of gap sizes. If blocked

Figure 8 F0-H diagram for the hydro-
static 64Jayer model, approximating uni-
form stratification, up to the point of
blocking for Fo > 0.3. The "critical flow
upstream" region (0.95 < -F'o < 1) is an
artifact of discrete layering. In the shaded
region, upstream disturbances increase in
amplitude with increasing 1L The dashed
line denotes the observed onset of steady
upstream disturbances in uniform strati-
fication for flow with obstacle-length/
depth = 1.5 [i.e. nonhydrostatic flow
(Baines 1979a, Figure 6a)l (frora P. G.
Baines & F. Guest, submitted for pub-
lication,1986).

\

H =n/D



UPSTREAM BLOCKING 9I

fluid is present upstream in the 2D case (w:0), for wlW << 1 the
"blocked" fluid will slowly converge on the gap and flow through it, but

its upstream depth will only be affected slightly. If the gap is made wider,

the depth of this nearly blocked fluid decreases as a result of increased
leakage through the gap. The depth ofthe nearly blocked layer,2", a height

that separates fluid flowing horizontally around the barrier from fluid

above flowing over it, is quite sharply defined, as shown in Figure 9. For
wf W:0.125 this depth is given approximately in terms of NhlUby

z,lh -- l-2UlNh.

lf wlW is large enough there may be no permanent upstream disturbances

at all. For long 3D obstacles (hydrostatic flow), in order to have upstream

disturbances it is necessary for the flow to become critical at the minimum
cross section, and the largest value of w lW for which this occurs will mark
the change from flow that is 2Dlike to 3Dlike.

CONTINUOUSLY STRATIFIED FLOW-INFINITE
DEPTH

This last case is the one of greatest relevance to the atmosphere. The upper

radiation condition implies that there is no downward-propagating energy

at the upper region of the fluid, so that (initially at least) a discrete spectrum

of vertical modes does not exist; the spectrum of vertical wave numbers is

continuous. Nevertheless, purely horizontally propagating linear internal

waves are possible, provided that they have infinitely long horizontal

wavelength. Furthermore, propagation of these waves in the upstream

direction is possible for vertical wave numberc n < Nf U, with wave speeds

(both phase and group velocities) c: Nln-U inthe upstream direction
(see, for example, Lighthill 1978, Section 4.12). The question is, Under

what circumstances are they produced, given the absence of the resonance

mechanism with discrete modes? For this system the importantparameler

is NhlU, with the length and shape of the obstacle having only secondary

significance.
Numerical studies of upstream effects in this system with 1/ and U

initially uniform have been reported by Pierrehumbert (1984) and

Pierrehumbert & Wyman (1985), and laboratory studies have been

described by Baines & Hoinka (1985). Earlier numerical studies of simi-

lar systems have concentrated on downstream effects, although some

upstream disturbances are visible in the results of Peltier & Clark (1979).

Pierrehumbert & Wyman employed a Boussinesq hydrostatic model

with a terrain-following coordinate system and a sponge layer at the

top to absorb wave energy. With obstacles of Gaussian shape and an
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impulsive start to the flow, they found that the steady-state flow was well

described by the Long's model solution [a solution that extends steady-

state linear theory to finite amplitude when N/t/ is constant (Long 1955,

Lilly & Klemp 1979)l up to the point of overturning (NhlU < 0.75).

For NhlU > 0.75, columnar upstream disturbances of finite amplitude

were generated, and these increased in amplitude with NhlU. Upsfieam

blocking occurred near the obstacle for NhlU > 1.5 (Gaussian shape)

and NhlU > 1.75 (witch of Agnesi shape), but upstream propagation

of this blocked fluid was not observed until NhlU ) 2. Figure 10 shows

the time evolution of the flow field computed by Pierrehumbert & Wyman

for NhlU :2.0.

Baines & Hoinka (1985) carried out towing experiments in a stratified

tank similar to those described earlier. but with the difference that a

radiation condition at the top of the working fluid was simulated with a

novel geometrical arrangement. Experiments were carried out up to the

point where the flow in the vicinity of the obstacle appeared to be steady

and before this flow could be significantly affected by wave motion reflected

from the upstream end of the tank. Five different obstacle shapes were

used, and a broad range of NhlU vahtes were covered for each one. The

obstacles were not long enough for the flow to be hydrostatic. Near-steady-

state flow fields are shown in Figure 11 for the witch of Agnesi. The

principalresultswereasfollows. (a)For 0 < NhlU < 0.5 (+0.2)nosteady

upstream effects were observed, and the steady-state flow was generally

consistent with linear theory and Long's model solutions. (b) For

NhlU > 0.5 (tO.Z1 steady upstream columnar disturbances were

observed, with amplitude increasing from zero as NhlU increased above

0.5. As the "error bars" indicate, this lower limit was only determined

approximately because of the presence of upstream transients and the

smallness of the signal. However, it seemed to be independent of obstacle

shape and was not dependent on overturning in the lee-wave field, which

was not observed untll NhlU l 1.5. Upstream blocking was observed

when NhlU reached a value in the range 1.3 to 2.2, with the actual value

depending on the obstacle shape, but for symmetric obstacles the value

was approximately 2. As may be seen in Figure 11, reduced velocities and

blocking at low levels upstream ate accompanied by increased velocities

above the level of the obstacle, and this velocity profile oscillates with

decreasing amplitude as the height increases. The density gradient

is very small in the slow-moving or blocked fluid, and it is corre-

spondingly large in the overlying jet region; as NhlU increases, this

region becomes more like an interface that can support horizontally pro-

pagating waves, as shown on the lee side in the last two frames of Figure

11. For NhlU > 1.5 a stagnant region (or "wave-induced critical level")
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exists above the jet over the lee side of the obstacle, and as Nft/ U increases,

the wave field at upper levels becomes less apparent. The flows then appear

to be qualitatively similar to the finite-depth flows for the same NhlU,
provided Fo << l. The behavior shown in Figure 9 for 3D topography

should also occur in the infinite-depth case.
There is, as yet, no mechanistic model that czn explain and describe the

upstream motions for this infinite-depth case. Unlike finite-depth systems,

upstream effects are not observed unless NhlU is sufficiently large, and the

value at which this occurs is different in the numerical and laboratorv

N h
U

= O . 4 7 N h
U

=  1 . O 8

N h

U
: 1 . 5 6 N h

U
=  2 . O O

N h
U

= 2 . 8 4 N h
U

= 3 . 7 9

W O f A

Figure I I Near-steady-state streamlines for the witch ofAgnesi for a range of Nfr/ U values.

Flow is from left to right. Note the upstream blocking in the last three frames (from Baines

& Hoinka 1985).
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experiments. If, as the laboratory observations suggest, upstream motions
may appear without lee-side overturning, then this result implies possible
hysteresis in the system because the Long's model solutions are valid
steady-state solutions up to the point of overturning. Recent non-
hydrostatic computations by J. T. Bacmeister & R. T. pierrehumbert
(private communication) have investigated various start-up conditions,
and the results suggest some steady upstream motion for NhlU > 0.5 for
a gradual commencement of motion, but the results are complicated by a
slow approach to steady state.

Finally, two further aspects deserve mention, although space limitations
preclude detailed discussion. Firstly, for application to the atmosphere,
where time scales of more than a few hours are important, the Earth,s
rotation must be considered. This has been discussed for finite Nhlu bv
Pierrehumbert & Wyman (1985). Upstream effects are restricted to ;
distance of order Nhlf, wherc f is the Coriolis parameter. Secondly,
the question of stagnant fluid versus sweeping out of periodic valleys
1n 2D stratified flow across the valleys has been studied by Bell &
Thompson (1980) for finite-depth systems and by p. Manins & F. Kimura
(private communication) for infinite-depth systems. (Both studies em-
ployed numerical and laboratory models.) Bell & Thompson found that
blocking in the valleys occurred for NhlU )0.8. Manins & Kimura
observed that blocking in valleys was related to wave breaking and
obtained a similar criterion, although the flow flelds were different in
many respects from those described by Bell & Thompson.
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