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UPSTREAM DIFFERENCING FOR MULTIPHASE
FLOW IN RESERVOIR SIMULATION

DECENTRAGE AMONT POUR LES ECOULEMENTS MULTIPHASIQUES
EN SIMULATION DE RESERVOIRS.

Yann Brenier, Jérome Jaffré

INRIA, B.P. 105, 78153 Le Chesnay cédex, France

Abstract

Upstream weighting for multiphase flow in reservoir simulation is analyzed. The associated
numerical flux is shown to be well defined, monotone, Lipschitz-continuous and consistent . In
the case of a two-phase flow the corresponding numerical scheme is convergent and the numerical
flux is compared to that of Godunov and Engquist and Osher. Finally simple way to obtain a
higher order scheme is outlined.

Résumé

Le décentrage amont pour des écoulements multiphasiques en simulation de réservoir est
analysé. On montre que le flux numérique est bien défini, monotone, Lipschitzien et consistant.
Dans le cas d'un écoulement de fluides a deux phases, le schéma numérique correspondant est
convergent et le flux numérique est comparé a celui de Godunov et de Engquist et Osher.
Finalement on décrit bricvement comment obtenir simplement un schéma d'ordre supérieur.

Key words: Conservation laws, multiphase flow, reservoir simulation, Riemann solver,
upstream weighting.

Mots clés: Lois de conservation , écoulement multiphasique, simulation de réservoir, solveur
de Riemann, décentrage amont.
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I, Introduction

Upstream differencing is widely used in computational fluid dynamics to design numerical
schemes for hyperbolic conservation laws [6]. Upstream differencing is also very popular for the
simulation of multiphase flow in petroleum reservoirs [8] but there it denotes a numerical scheme
different from those used in classical CFD and obtained from simple physical considerations. In
the case of incompressible two-phase flow this scheme has been already studied and cast into the
general frame of monotone finite difference schemes [10]. In this paper we show that the
calculation of the multiphase upstream weighted numerical fluxes is well defined even in the case
of more than two phases and we study the properties of these fluxes. In the case of two-phase
flow, convergence results are stated as in [10] and the two-phase upstream weighted numerical
flux is compared to standard ones used in classical CFD. Finally we present a simple way to
design higher order methods which would require a minimal amount of change in existing
programs actually used in reservoir simulation.

We consider n immiscible fluids flowing in a one-dimensional medium. We neglect
capillary effects, so a unique pressure p is defined for the multiphase flow. Also we assume that
the phases are incompressible. For the fluid ¢, 1 < & <n, we denote by S, the saturation, pg the
density, ky the mobility and ¢, the flow rate. Then the flow is governed by the following
equations derived from mass conservation and Darcy's law

3S,
(1.1) ¢T+aix'(pe=0, ? =1,...,n,

d
%-gg), £=1,..,n.

¢ and K are respectively the porosity and the absolute permeability multiplied by the

(1.2) @y = -Kk,y

cross-sectorial area, and gy is the gravity term of Darcy's law
oz
Be=Pe8yy
where g is the gravitation constant and z is the depth at the position x.

Introduce the total flow rate q = z Qy. As 2 S¢=1, by summing equation (1.1) and by
4 ¢

using the incompressibility condition we obtain 9/0x q = 0, which implies that the total flow rate q
is constant with respect to the space variable.
To express @ in terms of q instead of p, we sum equations (1.2) in order to eliminate p :

dp -1
i j
Plugging this expression in (1.2) we obtain
-1
y =(ij ke[q+KD, (ge-gj)kj).
i J

Therefore, as the mobilities k; are functions of S = (S,,...,S,), equations (1.1), (1.2) can

be rewritten as the following system of equations for the saturations

1.3) ¢asg+a (S)=0
- ot ax(pE S



-1
(14)  9«S)= (2 kj(s>) k(S (‘“Kz(g?‘gi)ki(s)
j J

where q is given by some boundary condition.

In reservoir simulation such a system of equations is usually discretized as follows [8].
Denote x;,y/, i € Z, the discretization points in space and S ¢,i(t) the constant value of the
approximate saturation on the interval (X; 5,X;41/) With h; = x;,, 12-Xi+172- Leaving out time

discretization, equations (1.3), (1.4) are semi-discretized in space by

dSe;i 1
(1.5) ¢i—a‘t—"l+g(kpe.i+1/2‘ (Pe,i-1i2)=0

where the numerical flux @y ;,1, is the approximiate flow-rate of the phase £ across x;,, p and is
given by

SN
(1.6) Piv12= (Z kj.i+l/2’ ke,i+1/2(Q+Ki+1/2 2 €rg) ki)
j j

The mobilities ky;,1/, 1 < & < n, are calculated using the upstream saturations with respect to
the flow of the phase £ :

ko(Sp if q+Ki+1/22 (88 kjir1/2> 0,
j

(1.7 Kpiv12= ky(S;, ) otherwise.

We note that expressions (1.6), (1.7) do not yield an explicit calculation of the numerical
fluxes @y .1/, since they depend on the mobilities which themselves depend on the sign of the
numerical fluxes.

Therefore our first task is to show that one can derive explicit formulas for the multiphase
upstream weighted numerical fluxes ; this is done by ordering the phases with increasing weights .
(section II). Then we give some regularity properties of these numerical fluxes (section III). In
the case of two-phase flow these properties imply convergence of the associated numerical
scheme and the two-phase upstream weighted numerical flux is compared with the Godunov and
Engquist-Osher ones (section IV). Finally we present a hi gher order method which preserves the
calculation of numerical fluxes, thus minimizing the amount of work necessary to modify
programs actually used in reservoir simulation (section V).

I, Explici ] i f igh ical fl

To simplify the notations we drop in (1.6), (1.7) the index i+1/2 and denote a=$;,
b=8;,172- Then (1.6), (1.7) are rewritten as, for 1 < ¢ <n,

* Wl *
J ]

ko®) if q+K Y (gr-g)ky>0
J

2.2) Ke= 1k ¢(b)  otherwise

We are going to give an equivalent expression for (2.2) which does not assume that we
know the sign of the numerical fluxes.

”



Let us order the phases with increasing weights :
(2.3) g1 <..<g,
and consider the quantities :

24)  8,=g+K {Z (Erg)kb) + 3 (gz-gj)k,-(a)}

j<t >t

Lemma 2.1
Once the phases have been indexed with increasing weights, the quantities 0y defined in
(2.4) are increasing with the index { of the phases, 1< ? <n. ‘

Proof
Since gy = g; for j=¢, we have

0y=+K | > (g pkb) + 3, (ge-gpkj(a)}

j<? j=e
and since gy = g; for j=0-1, we can also write

01.1= K | Y (g rgpkb) + 3 (gz-l-gpkj(a)}.

j<? 20
Therefore
0p0p1=K (grge) |2 kib) + > ki@)|
j<t j=

Since the mobilities k; and the absolute permeabilities K are positive quantities, by using (2.3) we
obtain
0y-6p, 20.
Introduce now the integer r € {0,...,n+1)such that :

0,if 6y>0 for 1<8 <n,
(2.5) r=
' largest ¢ such that 8 < 0, otherwise.
This definition makes sense since the 8; 's form an increasing sequence.

The main result of this section is the following theorem.

Theorem 2.1
Expression (2.2) for the upstream mobilities is equivalent to
« [kp(a) if & >r,
(2.6) k= | <H@

ke(b) if £ <,
for 1< & <n, where r is defined by (2.5).

Theorem 2.1 yields a simple algorithm to calculate the numerical fluxes. Once the phases
have been indexed with increasing weights,

i) calculate the quantities 6, given by (2.4),

ii) determine r satisfying (2.5),



iii) calculate the mobilities from (2.6),
iv) plug the mobilities into (2.1) to obtain the numerical fluxes.

Proof of theorem 2.1
Whatever the way the mobilities k*j are calculated we denote :

@7 8,=q+K X (grg)k; 1slsn.
J

Since

8;-8,.,=K Z (8erge-Dkj,
j

we deduce from (2.3) and the positivity of the mobilities and of the absolute permeability that the
3y 's form a sequence increasing with &.
First let us assume that the mobilities are calculated with (2.6). Then :

8y=a+K[Y (grg) kib) + X (gg) kj(a>}.

\ j<r jor
On the other hand, since gy=g; for j=2, 8 defined in (2.4) can be written in two ways :
0,=q+K 2 (gre) kib) + 3 (ere) ki@

i< >
=q+K [ Y Grgpki+ Y @rg) kj<a)}.
j<8-1 j>e-1

Comparing expressions for 8, and 6, , we obtain
6,=9,, 0,41 =90, .
Since 8y , as well as 8, is an increasing sequence, we obtain the following equivalences
Isre6,;<0e § <0,
which shows that (2.6) implies (2.2).
Conversely assume that the mobilities are calculated with (2.2). Since the 8y 's form an
increasing sequence, there exists an integer m € (0,...,n+1} such that :
83 S0 l<m
Then the mobilities given by (2.2) are :
*+ Jky@ if ¢>m,
ky=
kob) if &<m,

and 8, can be written as :

8y=q+K {Z (erg)k®) + 3 (ge-gpkj(a)}.

j€m j>m
Comparing with expression (2.8) for 6 ¢ we find :
O =8, Oms1 = O
Since 8y is also an increasing sequence, and using (2.5), we can write :
0o lsme§<0olcr
which terminates the proof of theorem 2.1.

v
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HI._Properties of upstream weighted numerical fluxes

In this section we shall show some regularity, monotonicity and consistency properties for
the numerical fluxes.

Theorem 3.1

Assume that the mobilities are continuous functions of the saturations and that their partial
derivatives with respect to each saturation are bounded. Then the numerical Sfluxes defined by
(2.1), (2.2) or equivalently by (2.1), (2.6) are Lipschitz-continuous functions.

Proof

It is clear that the numerical fluxes are piecewise regular functions and where they are
regular they have the same regularity as the mobilities k. However, a priori, they could be
discontinuous along the lines 8(a,b)=0. These lines can touch each other but cannot cross each
other since the sequence 8;(a,b) is increasing with ¢ (see lemma 2.1).

Let us consider such a line, say 4&=m,

Rgl = { @b)e [0,11"] 6 m(a,b)=0}.
Such a line divides the cube [0,1]2 into two parts :
R = {(a,b) e [0,1]"x [0,11"] em(a,b)>0},

R, = {(a,b) e [0,11" x [0,11"] em(a,b)<o}.
Consider a point (a, b )e RO where we are going to show that the numerical fluxes have.the
regularity given in theorem 3.1. For simplicity, we assume that 6, (a, b )=0 for 8=m, that is we
assume that no other line R% is touching RO, Then there is a small neighborhood V' of (a, b )
such that :

Byab)<0e 8<m-1 for (a,b)e V AR,

0,a,b)<0e=8<m for (a,b)e VU NR,,
or from (2.6),
ko@) if €>m

3.1 K, =
G-D Y Y k) if £ <m

, for (a,b)e VU

and
. /km(a) for (a,b) eV mR,":,,

(32) km" :
\km(b) for (a,b)e UV NR,

Thus across R%, one has to switch from the second argument b to the first argument a to calculate
k* . Therefore across RO_, all the numerical mobilities k* ¢, &#m, are as regular as the mobilities
k¢, except k", which is discontinuous.

From (2.1), (2.7), the numerical fluxes can be written as

* *-1 *
‘Pe=(zk1‘) koS,
J



Since
* *
(3.3) 8=+ K X (Enrg)kj =8y + K (gnrgp) X K]
. ] J

We obtain

* s - *
Dy =(ij) ke[K 2 (@rgn k; + 5m]
i i

* D -
= K(gp-gm ki +(ij) Ky,
J

When (a,b) tends to (a, b) € RO, then §_ = O — 0. Therefore ¢* , — 0 and for {#m
¢*p = (8¢-gm)k™p. Consequently @y is continuous for all &=1,...n.
Now we tum to the derivatives of ¢*; . By differentiating (2.1), we obtain :

* (Z k}‘)ak; i (Z ak;)k; .
J J

ky
(3.4) 99y = > Og+
3
J

*
b
Here 0 denotes any partial derivative with respect to a component of a or of b.

) (K > (ge-gpak;“).
J

J

Since 2 k; is always strictly positive, it is clear from (3.4) that the derivatives are all
j

bounded, so the numerical fluxes are Lipschitz-continuous.

Remark 3.1
Numerical fluxes are not more regular than Lipschitz-continuous. Indeed let us check that
their derivatives are discontinuous. From (3.3), (3.4) and rearranging terms, it follows :

, 5. 1 (2] 5 1
99, =3y | K(grgm + =2 |- 1L 1| K (grgm + —m |+ L (K Z(ge-gpak;)
Yk (ij) Sk Xk
] J J J
* * ;ak'l * ) k: *
= akg K(ge'gm) + ake - " kg m* + " [K z (gm-gj)akJ:,.
(ij (ij) Skl

J J J

The first two terms of the sum are continuous across RY,, but the third one is discontinuous : for
example, for 8<m, when considering the partial derivative with respect to the ith component of b
denoted b;, inside R+, this term is equal to

k (b) m-1
. ¢ : K Y, (83 (b)
2+ Y k@ L
j=1 FEm+l

while inside R, it is equal to

)]



ky(b) m-1
: K D" (8ar8)pk (0)

m-1 n i
Yk + k@ L
=1

j=m

and these two quantities are different as long as a is different from b, Therefore the derivatives of
the numerical fluxes are discontinuous across the line 6,,(a,b)=0.

Now we give monotonicity properties for the upstream weighted numerical fluxes.

Theorem 3.2

Assume that the mobility of the phase Qis increasing with the saturation of the same phase
and decreasing with the saturations of the other phases, for 8=1,...,n. Then the numerical Sflux
©*y(a,b) defined by (2.1),(2.2) or (2.1),(2.6 ) is an increasing (resp.decreasing) function of the
& component of the first ( resp.second) argument a (resp.b).

Proof
We shall show this theorem by studying the adequate partial derivatives.
Rearranging terms in (3 4) we can write the derivatives in a different form :

e (BT [ e gecomp

=(J2k) (Ek )akese ky 3 3k; (59 K (g4 gj)(zk))

= j#l

Finally, we obtain
* * -2 * * * *
J j=e j*e

Assume for instance that {<r. Then we have
. * * *
forj<r, SjSO, k- =kj(b), aa k~ =0, abtkj =agkj,

i =05k, dp,k; =0.

forj>r, 8j>0, kj=

ki), 0

2y J re

Therefore

* * -2 *
3,94 =(ij) Y k;\gketb) 8, -kg(b);(agkj(b) 8)[<0
! j=t el
since dgky(b) 2 0 and 9k (b) < 0 for &=,
Similarly
* w2 n
aa,q)e:(ij) K®) Y Quk@ 3|20
J

j=r+1

The case £>r is solved analoguously.



We terminate this section by giving consistency properties for the upstream weighted numerical

fluxes.

Theorem 3.3 _
The numerical flux ¢* defined by (2.1),(2.2) or (2.1),(2.6) is consistent, i.e. .
0ya,a) =@ya), &=1,..,n.

This property is obvious from the definition of the numerical fluxes.

IV, The case of two-phase flow

When considering only two phases (n=2), the system of conservation laws reduces to one
scalar conservation law to which we can apply the general theory of approximation of scalar non
linear conservations laws.

The two-phase model can be written as :

aS _ of(S) =0,

4.1) ot ox

(4.2) f=¢,= klli—iz (q+K(gz-g1ky),
where S=S,, so the mobility k; (resp. k,) is a decreasing (resp increasing) function of S. We
assume that =20 and that the phases have been numbered with increasing weight (g,>g,).
We approximate the two-phase model by the first order conservative scheme ’
n+1 At ™® n
(4.3) ; (Si -SP+ T @is1/20i.02 =0,

n n n -1. n n )
(4.4) Q111/2= K ivr2¥k2 10172 K2,541/2 (Q+K 0 1/482-8 DK 10170

where the mobilities at x;,;, are defined implicitely as

_ /kl(sin) if Q+Ki11/481-82K2,i412> 0,

kn
1,i+1/2= n )
\kl(Sm) otherwise,
(4.5)

koS if Q+K; 10828 DK] je1/2> 0,

n —
k2iv12= n _
ko(S;;1) otherwise,

As shown in section II, this implicit definition is equivalent to the following explicit definition.

Given ,
(4.6) 0 1= q+Ki+U2(gl-g2)k2(S?+1), 0 2 = q+Ki+]/2(g2‘gi)k1(S?),
then

n .
4.7) ki =ki(SD and ka1 0= ky(S)) if 06,<0,

KTir12= ki(Siyp) and kg 1 p = ky(S i 0 1500,

14

From theorems 3.1, 3.2, 3.3, we can apply a general theorem on convergence of monotone
schemes [7],[3].



)

Theorem 4.1

Assuming that the mobility k, is increasing and the mobility k, is decreasing, and that they
are both differentiable functions with bounded derivatives, then the numerical scheme (4.3), (4.4)
and (4.5) (or equivalently (4.3), (44), (4.6), (4.7)) is monotone and its solution converges to the
entropy solution of the two-phase equations (4.1), (4.2) when At and h tend to O while satisfying
the CFL condition :

n n
a(Pi+1/2 a(Pi-1/2 1 At
. S...)- . IMN—Z<C1 -
Max aa (Sl’sl+l) ab (Sl_l,Sl) ¢i h <1

0<S;.1,5; S, <1

This CFL condition has been written out by Sammon [10]. A nonuniform spatial mesh
version of this theorem could be derived from [11].

Equations (4.4), (4.5), or equivalently (4.4), (4.6), (4.7), define a numerical flux for
functions of the particular form (4.2) with k; decreasing and k, increasing. Therefore it is of
some interest to compare this numerical flux to others widely used in other fields than reservoir
simulations, as Godunov's [5] and Engquist and Osher's [4] numerical fluxes.

Sticking to notations of section III, the latter numerical flux functions are respectively
Min f(s) if a<b,
se[a,b]

Max f(s) if a=b,
se [a,b]

(4.8) FYa,b) =

b
49  FPap)= %[f(a) +£(b) - J I£'(s)! ds:|.

For the numerical flux function associated to the upstream weighted numerical scheme, we
introduce the quantities
(4.10) 8; = q + K(g;-g)ky(b), 62 = q + K(g;-g1)k(b),

and it is defined as
*

w k *
4.11)  F (ab)= —2— (@+K(gygpky,
kq+k,
where :
k; =k(a), k,= k@) if 0<6.<6.,
(4.12) Lo EReA T TR =72

ky =ky(b), ky=ky@) if 6,<0<6,.

These flux functions can be compared with respect to their regularity. Theorem 3.1 and
remark 3.1 tell us that the upstream weighted and Godunov flux functions have the same
regularity (Lipschitz-continuity) while the Engquist-Osher function is more regular
(C!-continuity).

The three flux functions can be also compared with respect to the amount of viscosity
present in the associated monotone conservative scheme, and this amount can be measured in
terms of the viscosity coefficient [12] :



Qab) = % f(a) + ff)b-); F(a,b) '

The Godunov viscosity coefficient is the smallest possible to ensure convergence of the n
associated monotone numerical scheme. Therefore the two-phase upstream weighted and
Engquist-Osher viscosities coefficients are larger and we are left with the problem to compare
them. From the expression of the viscosity coefficient, it is clear that this comparison boils down
to compare the numerical flux function themselves : the scheme with the smaller flux function

when b<a and with the larger one when b>a is the less viscous one.
Let us consider the case b>a, the other one being similar to study. We shall use the
derivative of f with respect to S
=t {klkz <q+K<g2-g1>k1>-kzk1<q+K<g1—gz)k»}-
(k1-k)
Introduce also the quantities
M1=q+K(g1-g2)ka(a), My = q +K(gy-g1)k;(b)
Since b>a, g0, g,>g,, by comparing with (4.10), we obtain
0,51,<N,<86,, 0<n,<0,.
According to (4.12), we must consider two cases.
Let us assume first that 0 < 0, < M1 SNz < 6;. Then, on one hand, from (4. 12), we obtain
FUW(a,b) = f(a).

On the other hand, since k; is decreasing and k, increasing, we have :

f'(a) = ———~—1——2[k l(a)k;(a)G 2—k2(a)k'1(a)n 1} >0,

(ky(a)+k ()

f'(b) = ! - [kl(b)k;(b)n 2-kz(b)k'l(b)elj >0. »

(k(b)+k,(b))
Moreover, since the function q+ K(g;-g,)k, is monotone and negative at the end points a,b, it is

negative in the interval (a,b) and consequently the derivative f' is positive in the interval (a,b) and
the function f is increasing in this interval. Therefore we have also :
FG(a,b) = FEO(a,b) = f(a),
and all the flux functions give the same result.
The second case, 6, <0< M2 < 8, is more difficult to handle since it involves many
subcases. However we can show that there is no general ordering of the upstream weighted and
Engquist-Osher flux functions. Whether one is larger than the other depends on the situation.

Indeed, assume g=0 so
foK kikoy
= K(go-g1) m >

and assume we are in the situation described on the sketch below

r
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>
0 a w b S

where f is concave on (a,b) and maximum at a point w such that a<w<b. On one hand, from
(4.12) we obtain

“.13)  FMab)=K(gyrgy) k1(b)k(a)

1
K O)ik,@ - KEr8) — L1
ki(b) " ko(a)

We note that

F™a,) < Min f(s) = Min {f(a),f(b)}].
s€ (a,b)

On the other hand, definition (4.9) gives

FEO(a,b) = f(a) - f(w) + f(b).
The end points (a,f(a)), (b,(f(b)) being fixed, if f(w) is large enough then FEO(a,b) < FUW(a,b)
and the numerical scheme associated to the two-phase upstream weighted numerical flux is less
viscous. On the contrary, if f(w) is small enough (close enough to Max{f(a),f(b)}) then FEO(a,b)
> FUW(a,b) and the scheme associated to the Engquist-Osher numerical flux is less viscous.

Remark 4.1

This situation (q=0) examplifies one of the specificities of the two-phase upstream weighted
numerical flux. Even when f is monotone in [a,b], the calculation involves the points a and b (see
expression 4.13). On the contrary standard upstream weighted numerical fluxes are equal to f(a)
or f(b). The first numerical scheme is upstream with respect to the flow of each phases while the
latter are upstream with respect to the derivative of f.

Remark 4.2

Still when =0, the multiphase upstream weighted scheme is based on the decomposition
1/f=1/k +1/k; where k; is increasing and k; is decreasing while the Engquist-Osher scheme uses
the decomposition f=f;+f; where f; is increasing and f; is decreasing.

V. Higher order methods for multiphase flow

The study in the above sections gives some mathematical justification to the multiphase
upstream weighted numerical flux widely used in reservoir simulation. Therefore, in order to
minimize changes in the existing codes, it is reasonable to keep this numerical flux when
designing more accurate methods. Following ideas due to Van Leer [13] a simple way to do so is

11



to introduce a discontinuous piecewise linear approximation of the solution and a slope limitation
device.

Precisely, the saturation of the phase ¢ in the interval Jx; ;25Xi+1/2[ 18 now defined by its
average value Sy; and its slope oy ; , £=1,...,n. Starting from a finite difference piecewise
constant approximation S1y; , the method has two steps. The first step constructs the slopes on ¢
in a way that prevents oscillations and the second step calculates the updated piecewise constant
values Sn+ly . .

Step 1 : construction of the slopes
. n . n n N n n n
0 if SUS Mln(Se’i+l,S!’i_1) orif S!,iz Max(Sg.iH,Sg'i_l),

n

Gei= Mi“[(s?.rsrel.i-l)/h’ (S?,i+1‘sz.9ﬂ‘] if Srel.i-1-<- Sg,is Srel,m’
n n n n . n n n
Max[(Sy -Sp; )/ (Sg;.rSy Dl if Sy; 128, ,28,;,,.

Step 2 : updating the new average values

Spi-Ses 1 n
o; —x g(‘Pe.in/z - (P:z.i.l/z) =0
where the approximate flow rate of the phase ¢ @"¢;+1/2 18 given in (1.6) with the mobilities
defined in (1.7) or explicitely as in section II. However the saturation used to calculate the
mobilities at x; . 17, are now the two limit values of the piecewise linear saturation at this point
instead of the midpoint values.

Such a scheme can be justified along the lines of [9] in the case of two-phase flow (scalar
case). It can be extended to multidimensional calculations through dimensional splitting or as a
gehuinely multidimensional scheme [1], [2].

VI._Conclusi

Upstream weighting for multiphase flow in reservoir simulation, though usually defined
implicitely through simple physical considerations, can be expressed explicitely with a simple
algorithm. The associate numerical fluxes have been shown to be Lipschitz-continuous (but no
more), monotone and consistent. In the case of two-phase flow convergence follows and the
two-phase upstream weighted numerical flux has been compared to Godunov's and
Engquist-Osher's. It generates of course more viscosity than Godunov's but with respect to
Engquist-Osher's it depends on the situation where it is so or not. Finally we showed how to
design more accurate schemes while preserving the multiphase upstream weighted numerical flux.
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