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Abstract: The aim of this work was to study the applicability of infrared spectroscopy combined
with machine learning techniques to evaluate the uptake and distribution of gold nanoparticles
(AuNPs) and single-walled carbon nanotubes (CNTs) in Cicer arietinum L. (chickpea). Obtained
spectral data revealed that the uptake of AuNPs and CNTs by the C. arietinum seedlings’ root
resulted in the accumulation of AuNPs and CNTs at stem and leaf parts, which consequently led to
the heterogeneous distribution of nanoparticles. principal component analysis and support vector
machine classification were applied to assess its usefulness for evaluating the results obtained using
the attenuated total reflectance-Fourier transform infrared spectroscopy method of C. arietinum plant
grown at different conditions. Specific wavenumbers that could classify the different nanoparticle
constituents of C. arietinum plant extracts according to their ATR-FTIR spectra were identified within
three specific regions: 450–503 cm−1, 750–870 cm−1, and 1022–1218 cm−1, based on larger PCA
loadings of C. arietinum ATR-FTIR spectra with distinct spectral differences between samples of
interest. The current work paves a path to the future fabrication strategies for AuNPs and single-
walled CNTs via plant-based routes and highlights the diversity of the applications of these materials
in bio-nanotechnology. These results indicate the importance of family-plant selection, choice of
methods, and pathways for the efficient biomolecule delivery, drug cargo, and optimal conditions in
the wide spectrum of bioapplications.

Keywords: Cicer arietinum L.; gold nanoparticles; carbon nanotubes; ATR-FTIR spectroscopy; machine
learning techniques; principal component analysis; support vector machine classification

1. Introduction

Effects of nanoparticles (NPs) on biological systems and for the environment are
known according to recent studies [1–5]. Plants are one of the most important organisms of
our ecosystem and they also face toxicity caused by contamination of NPs in the soil. Thus,
it is necessary to understand the interactions of NPs with plants, essential base components
of all ecosystems [6–8]. On the other hand, as NPs are being increasingly used in many
sectors of the industry, there is growing interest in the biological and environmental safety
of their production by using plant extracts as a model system [9]. Considerably, studying
all of these NPs-related topics will face challenges without having an efficient, robust, and
cost-effective system to differentiate the NPs composition, and to identify the uptake and
presence of SNPs inside the plants.

In the 21st century, many investigations have been related to the economic plants
uptake, distribution, translocation, and accumulation of NPs, for example: silver NPs
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(SNPs) in Brassica juncea and Medicago sativa [10], ceria NPs in cucumber [11], Au NPs in
rice, radish, pumpkin, and perennial ryegrass [12], SNPs in wheat [13], Au NPs and SNPs
in rice [14–16], AuNPs and CNTs in pea green [17,18], and SNPs in tomato [19].

Cicer arietinum L. is an annual plant from the Fabaceae family and it is one of the first
plants cultivated in the world. Molecular analysis demonstrates that the C. arietinum is from
the southeastern Anatolia region of Turkey, and the first information about the C. arietinum
wild species in the world is documented from the Hacılar village in Turkey [20]. In this
region, C. arietinum has been grown for about 7000–7500 years [21–23].

Because of its economic value (16.2 billion USD global trade in 2020) and its easy
adaptive conditions for laboratory, C. arietinum was selected as a plant model to observe
the absorption potential into the seeds and transportation-translocation of AuNPs and
single-walled CNTs as regards the root, stem, and leaf of the C. arietinum seedlings. The
spectral differences between the control group and Au NPs- or CNTs-exposed C. arietinum
seeds obtained with ATR-FTIR were studied by employing machine learning techniques.
Data obtained from the Au NPs- and CNTs-exposed seedlings and from the control samples
were compared and evaluated according to Au NPs and CNTs concentration distribution-
accumulation on the plant organs and their comparative significant importance, thus its
general value in other perspectives.

Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) has
become an attractive analytical method because it can be used with a little or essentially no
sample preparation, and analysis is relatively rapid [24]. These advantages and the small
sample volume result in time and cost savings, which consequently lead to an increase in
the number of analyzed samples. That is important for the future in-field applications.

Support vector machine (SVM) is a pattern recognition and classification method that
is used widely in data mining applications for the purpose of supervised classification of
data representing different classes of interest [25]. SVM is based on statistical learning to
determine a hyperplane for optimal separation of classes. SVM uses an iterative training
algorithm to achieve separation of different classes.

Principal component analysis (PCA) is typically used to provide a visual representation
of the relationships between samples and variables and to combine samples into classes [26].
In this work, PCA was applied especially for the translation of spectroscopic data into
lower dimensional space, and PCA score plots were used to objectively classify extract
samples of C. arietinum plant, whereas SVM analysis allowed for the classification of the
plant root, stem, and leaf extract samples based on the similarities of their spectroscopic
properties (due to NPs components). The hypothesis of the study was to differentiate
the NPs composition of the plant samples using C. arietinum as a model based on its
spectroscopical data.

2. Materials and Methods
2.1. Seedling Growth and Extract Preparation

In our study, the water soluble single-walled CNTs functionalized with polyethylene
glycol (PEG) obtained from Carbon Solutions at the concentration of 1.25 mg/mL in sterile
distilled water was used for the seed-NPs exposure. We also used 10 nm of diameter Au
NPs (optical density (OD) 1, stabilized suspension in 0.1 mM phosphate-buffered saline
(PBS), reactant free). The Au NPs was obtained from Millipore Sigma and subsequently, a
4x-dilution with sterile distilled water was used for the seed-NPs exposure.

The following are CNT properties obtained from [27]: type of material P7-CNTs;
individual tube lengths range from 0.5 to 3 µm and have an average diameter of 1.4 nm.
CNTs tend to occur as bundles with bundle lengths of 1–5 µm and average bundle diameters
of 2–10 nm and bundle length: 500–600 nm; bundle diameter: 4–5 nm [27]. The same
commercial CNTs that we used in our work were characterized in [28]. In this work P7-
CNTs were obtained from commercial P3-CNTs by derivatizing with PEG to give water
solubility. According to [28], the characterization of P7-CNTs revealed that the zeta potential
of CNTs in a pH range of the soil used in our work (from pH 6 to pH 8) is about—50 mV.
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The following are 10 nm diameter gold nanoparticles properties obtained from [28]:
polydispersity index (PDI) ≤ 0.2, core size: 8–12 nm, hydrodynamic diameter (Z): 11–25 nm;
concentration of particles/mL: 5.38 × 1012–6.58 × 1012, absorption max: 510–525 nm, OD 1,
zeta potential of −25.8 mV at pH 7.4 in stabilized suspension in 0.1 mM PBS (reactant free)
that we used in our work [29].

In the next step, 18 C. arietinum seeds (cv. dried raw garbanzo beans) were steril-
ized with sodium hypochlorite (7.5%) for 20 min. Subsequently, seeds were rinsed with
autoclaved-distilled water 3 times and seeds were taken to sterile tubes for further analy-
sis [30]. Later, 6 seeds were treated for duration of 2 days with 15 mL Au NPs (1.25 mg mL−1,
10 nm of diameter): water (group I). In parallel, 6 other C. arietinum seeds were treated with
15 mL CNTs (OD: 0.25): water for the duration of 2 days (group II); and 6 other C. arietinum
seeds were used as control (group III) and seeds were treated with 15 mL pure water for
duration of 2 days.

After 2 days, all three groups of seeds were planted into 0.5 L pots (10.5 cm × 9 cm)
for 3 weeks in growth chamber (22 ± 24 ◦C, humidity = 60%, 10-h light period, intensity:
250 µmol/m2/s). The residual water (group III) and two NPs solutions (group I and II)
which remained in each tube after 2 days seeds NPs treated cultures were poured directly
onto the seeds during planting process. All the groups were checked every 24 h and each
pot was irrigated with 8 mL distilled water.

After 3 weeks, the control, Au NPs, and CNTs groups were photographed, and differ-
ent parts of the C. arietinum plants (root, stem, and leaf) were sampled, and homogenized
and washed by deionized water. Afterward, the samples were collected for centrifugal
filtration, and for agitation, the plant samples were vortexed (10 s) and centrifuged for
30 min at the speed of 13,000 rpm (24 ◦C).

2.2. Data Collection and Analysis

For analysis of the ATR-FTIR spectral data, we used the multivariate data analysis
and machine learning techniques using PCA and SVM. For this purpose, we utilized the
Unscrambler software (CAMO Analytics). The SVM method was applied with the follow-
ing parameters: SVM type: Classification (nu-SVC), Kernel type: Radial basis function,
Gamma: 0.0005353319, Nu value: 0.5, Weights: All1.00, Cross validation segments: 10.
We used 26 C. arietinum plant samples for multivariate data analysis, with 1868 variables
representing ATR-FTIR spectral wavenumbers for the 400–4000 cm−1 spectral range and
572 wavenumbers for the specific range from 400 to 1500 cm−1. The cross-validation proce-
dure involved taking the training set and splitting it into 10 segments in a random way and
then to be trained with the SVM algorithm on 9 parts to test on the 10th part.

In this study, the SVM classification method was used based on our previous compar-
isons among other classification methods such as K-nearest neighbor, classification and
regression trees, neural networks, SVM, adaptive local hyperplane, and linear discriminant
classifiers for spectroscopic data sets. Our previous studies strongly show that SVM is one
of the most robust and accurate algorithms for spectroscopic data sets [24,31]. To minimize
a very strong IR absorption of water in several regions related to its O–H stretching and
different bending vibrations [32], we used dried samples for ATR-FTIR analysis. Neverthe-
less, some residual water might still be present in dried samples. It is well known that the
general regions of the infrared spectrum in which various kinds of vibrational bands have
been observed are associated to water molecule (i.e., ~1595, and ~3657 cm−1) [32]. There-
fore, the spectra were collected over the range 400–1500 cm−1 to minimize the potential
influence of several regions related to O–H stretching and different bending vibrations of
water molecule.

Finally, 5 µL aliquots from each tested group were placed on the diamond crystal
plate of the spectrometer and dried (room temperature for 30 min). The dried samples
were subsequently analyzed by the ATR-FTIR (Nicolet 6700 ATR-FTIR Spectrometer from
Thermo Electron Corporation, Waltham, MA, USA). Drops of the plant extract samples
were deposited over an aperture on the top of the device, and the aperture was connected to
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the surface of a diamond prism where the total reflection occurs. The ATR-FTIR spectra are
collected with a resolution of 4 cm−1. A total of 100 scans were averaged for each spectrum.
The background for the ATR-FTIR spectra is a spectrum of empty ATR crystal in the air.

3. Results
3.1. Morphological Results

The physical interactions related to the Au NPs and CNTs in the water occur via
passing the seed coat and semipermeable cell walls with the pure water. Since the seeds had
no endosperm at the maturity stages in C. arietinum, two developed cotyledons interfaced
with the NPs. Accordingly, the embryo of the seeds which were treated for 2 days with Au
NPs and CNTs solutions through their development process had cotyledons, which gave the
nutrients to the plumula (which gave nutrients to the stem), radicula (which gave nutrients
to the root), and hipocotyl (which gave nutrients to the part between root and stem). These
embryos interfaced the two tested NPs via the swollen cotyledons processes, and later, the
NPs interfered with other parts of the plant through transport and development processes.

Bioimages revealed that our tested groups had different morphologies (Figure 1a,b),
and the stem was growing more vertically and branched in our control plants (4.8–5.5 cm).

We also found that, among the tested groups, the highest stems (height: 14.8–26.2 cm)
were recorded for the CNTs, and the most leaves and lateral branching were observed on
stems with Au NPs (height: 15.2–17.8 cm) (Figure 1). In all three analyzed groups, the
leaves had alternate arrangement, with an imparipinnate compound leaf shape, and serrate
edges. We did not observe any morphological changes on the leaflets (foliole) in Au NPs
and CNTs groups compared to the control. However, in all the AuNPs and CNTs samples,
the imparipinnate leaves’ number, size, and leaflets were increased in length and width,
and leaflet colors were observed in dark green (Figure 1). The study of the root system in
our analyzed groups revealed that even though the C. arietinum in our control group had a
taproot rooting system consisting of primary root (0.9–4.6 cm) (Figure 1a (#1)) the Au NPs
and CNTs groups had longer and more lateral roots. The lengths of the root were recorded
as 5.3–7.2 cm and 1.8–3.9 cm, respectively, for Au NPs and CNTs.

Figure 1. Photos of typical C. arietinum seedling of the control group (#1 in frame (a)) and the sample
treated with: Au NPs (#2 in frame (a)) and with CNTs (#3 and #4 in frame (b)) (Pictures taken by
F. Candan).
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The efficiency of the carbon nanoparticles (CNPs) was also studied on the morphology
and physiology of Vigna radiate from the Fabaceae family. The results revealed the CNPs
(100 to 150 µM) had a positive influence on the growth of the V. radiate and the plant
biomass (fresh weight) increased 1.12-fold, total concentration and protein content also
increased 1.9- and 1.14-fold, respectively [33].

3.2. Spectroscopic Results

It is documented that the NPs can be transported to the above-ground portion of the
plants and to the shoots and leaves through the plant vascular systems [34]. The Au NPs
and CNTs possible transportation and translocation from the roots to stem and ultimately
to the leaves by vascular system was evaluated by analyzing the spectral data in our study
(Figures 2 and 3). These data are presented in tables (Tables 1–3) and graphs (Figures 2
and 4–6). For this purpose, the ATR-FTIR results from the root, stem, and leaves in all of
our tested groups were collected, and consequently the PCA-SVM technique was used to
classify samples based on the spectral differences due to the presence of AuNPs or CNTs.

Figure 2. ATR-FTIR spectra of gold nanoparticles (AuNPs, right Y-axis) and carbon nanotube samples
(CNTs, left Y-axis). Marked spectral ranges: (A) 450–503 cm−1, (B) 750–870 cm−1, (C) 1022–1218 cm−1.

Previously, we reported an efficient statistical framework for automatic classification
of the ATR-FTIR spectra of various proteins which potentially can be used as biomarkers
of ovarian cancer: monoclonal antibodies and antigens of ovarian cancer marker CA125,
Osteopontin, Leptin, and insulin-like growth factor II [24]. We also applied this efficient es-
tablished method in our lab for the classification of different plant extract samples (Figure 3).
Through this framework, we follow several steps as follows: (1) dimensionality reduc-
tion (the number of wavenumbers in ATR-FTIR spectra is reduced using PCA method),
(2) the obtained principal components values are used as an input for the classification of
ATR-FTIR spectra.

PCA is a commonly used dimensionality reduction method [26]. By this method, the
PCA analysis reduces the dimensionality of a dataset consisting of multiple interrelated
variables and retaining of the variation present in the dataset. PCA creates the new variables
by transforming the original variables in a dataset to a new set of variables, called the
principal components (PC). The first PC typically accounts for the maximal variation of
data.
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Figure 3. Statistical framework for automatic ATR-FTIR spectra classification (adapted from [24]).

Figure 4. ATR-FTIR spectra of C. arietinum plant samples grown under the influence of Au NPs and
CNTs. Note: Control—red line, Au NPs-treated plant—blue line, and CNTs-treated plants—green
line. The ATR-FTIR clearly identified three tested groups.

We propose the identification of specific ATR-FTIR wavenumbers that could classify
samples based on inclusion of AuNPs or CNTs from the aqueous extracts of C. arietinum
grown under the influence of AuNPs or CNTs, based on the collection of ATR-FTIR spectra
within three specific spectral ranges as follow, (A) 450–503 cm−1, (B) 750–870 cm−1, and
(C) 1022–1218 cm−1 (Figure 2). These spectral ranges were selected based on distinct
spectral differences between the ATR-FTIR spectra of Au NPs and CNTs samples, which
are important for the classification of the plant samples treated by NPs (Figure 2).

Figure 5 demonstrates the PCA loading plot in order to identify the variables (wavenum-
bers) with the largest effect on the studied NPs. In this regard, larger PCA loadings indicate
that the variable strongly influences the component, and the PCA loadings close to 0 indi-
cate the variable has a weak influence on the component. Table 1 shows the comparison of
spectral ranges for PCA loading with stronger effect on the PC for the following classes
of samples: (1) root samples of C. arietinum plant grown at three conditions (column 1
in Table 1) and (2) the specific ATR-FTIR spectral peaks/valleys of AuNPs- (column 2 in
Table 1) and CNTs-standards (column 3 in Table 1).
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Figure 5. PCA loading ATR-FTIR spectral ranges (A, B, C) for C. arietinum root samples grown at
three conditions (Class). See text and Table 1 for more details.

The variable PCA loadings for PC-1 and PC-2 presented in Figure 5 show peaks A,
B, and C related to the following spectral ranges in Table 1 and in Figure 2: (1) range A
at 450–503 cm−1; (2) range B at 750–870 cm−1; and (3) range C at 1022–1218 cm−1. We
used these identified spectral ranges A, B, and C for the dimensionality reduction by PCA
analysis and for the classification of the NPs-treated plant samples using the SVM method.

Table 1. Comparison of spectral ranges for PCA loading with stronger effect on the PC of the
C. arietinum root samples grown under influence of NPs with the ATR-FTIR spectral peaks/valleys of
AuNPs and CNTs standard samples. (A): Range A at 450–503 cm−1; (B): range B at 750–870 cm−1;
and (C): range C at 1022–1218 cm−1.

Spectral Ranges for PCA Loading with
Stronger Effect on the PC for C. arietinum

Root Samples Grown under Influence of NPs,
(cm−1)

ATR-FTIR Peaks,
AuNPs-Standard,

(cm−1)

ATR-FTIR
Peaks/Valleys

CNTs-Standard, (cm−1)

450–503 (A) 450–503 490–560

750–870 (B) 750–870 790–850

1022–1218 (C) 1022–1218 1130–1260

Since the main purpose of the PCA is the dimensionality reduction of the spectral
dataset, the purpose of using the SVM classification is to compute a separation hyper-
plane for optimal separation of the spectral data assigned to different classes, to maximize
the minimal distance between points and the separation hyperplane [24,25]. Such con-
structed hyperplane provides the best generalization of unknown examples. SVM utilizes
the structural risk minimization principle with the goal to achieve zero training error
while minimizing the complexity of the model [24,25].

PC analysis has also been applied for the feature extraction of ATR-FTIR spectral data
to visually demonstrate class separability (Figure 5). Note that dimensionality reduction is
essential in classification [31]. The number of attributes can be large (e.g., 1868 variables
representing ATR-FTIR spectral wavenumbers for the 400–4000 cm−1 spectral range and
572 wavenumbers for the specific range from 400 to 1500 cm−1). It is also known that not
all the attributes available to a learning algorithm are useful [35].

In our study, we used the first two or three PCs for classification of experimental data,
mostly because of our daily experience in inhabiting a space of three dimensions. Therefore,
when researchers visually analyze the three-dimensional data (Figure 3), they implicitly



Plants 2022, 11, 1569 8 of 13

perform relevant discrimination leading to really good classification results with the visual
inspection.

Figure 6 represents the PCA score graph of the first three PC for the ATR-FTIR spectral
data of C. arietinum. Our results clearly demonstrated that even the first three PCs are
sufficient to achieve separation of 2 NPs-based and 1 control group classes (blue squares for
Au NPs, red circles for CNTs, and green triangles for control group) for ATR-FTIR spectral
data of C. arietinum root (A), stem (B), and leaf (C) samples.

The first principal component in Figure 6A explains 79% of the variability, the second
PC explains 11%, and the third only 6% of variability. Together, the first three PCs explain
96% of the variability. PC-1 in Figure 6B explains 92% of the variability, PC-2 explains 5%,
and PC-3—only 2%. Together, the first three PCs explain 99% of the variability. At the same
time, PC-1 in Figure 6C explains 86% of the variability, PC-2 explains 8%, and PC-3—only
3%. Together, the first three PCs explain 97% of the variability. As the explained variability
values are close to 100% (e.g., 96%, 99%, and 97%), and in order to minimize the possible
overfitting, the cross-validation for the SVM classification was performed.

Figure 6. The PCA score graph of the first three PC for ATR-FTIR spectral data of C. arietinum root
(A), stem (B), and leaf (C) samples grown in the presence of: (1) Au NPs (blue), (2) CNTs (red), and
(3) control group (green).

Table 2 includes SVM classification for ATR-FTIR spectral data of C. arietinum samples
(all plant parts combined for the analysis) grown at three conditions (Class): (1) Au NPs (CP
Au NPs), (2) CNTs (CP CNTs), and (3) control ground (CP control). Correct SVM prediction
is marked by the bold green fonts (green is correct prediction and red is wrong prediction).
The SVM prediction matrix presented in Table 2 indicates the classification determined
for each plant sample. From a total of 26 samples analyzed, 22 samples had correct SVM
prediction of the class and 4 had incorrect SVM prediction of the class with total SVM
prediction accuracy of about 85%. Therefore, the application of SVM is able to provide
about 85% prediction accuracy on the C. arietinum samples grown at three conditions with
all the plant parts combined for the analysis.

Table 3 presents the training and cross-validation accuracy of the SVM classification
for ATR-FTIR spectral data of various plant parts of the C. arietinum samples grown at three
conditions: (1) Au NPs, (2) CNTs, and (3) control ground. In this regard, Table 3 shows: 1st
table row-data related to all plant parts analyzed; 2nd table row-data related to the plant
root samples; and 3rd table row-data related to the plant stem samples.

The comparison of the cross-validation accuracy values for the root samples (~78%),
the stem (~44%), and for the leaves (~33%) shows that the accuracy of the proposed model
for the unknown samples was in good agreement with the possible translocation and
accumulation pathway of nano-inclusions inside the plant structure (from root-to stem-to
leaves). Larger cross-validation accuracy value for root samples is likely associated with
larger concentration of Au NPs and CNTs in the root-extracts of C. arietinum plant grown at
different conditions, as compared with the stem- or leaf-extracts.
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Table 2. SVM classification for ATR-FTIR spectral data of C. arietinum samples (all plant parts
combined for the analysis) grown at 3 conditions (Class): (1) Au NPs (Au NPs), (2) carbon nanotubes
(CNTs) and (3) control ground (control). Correct SVM prediction is marked by the bold green font
(green is correct prediction and red is wrong prediction).

Samples Class SVM Prediction

CP leaf1 Au NPs Au NPs

CP root1 Au NPs Au NPs

CP stem1 Au NPs Au NPs

CP leaf1 CNTs CNTs

CP root1 CNTs CNTs

CP stem1 CNTs CNTs

CP root1 control control

CP stem1 control Au NPs

CP leaf2 Au NPs Au NPs

CP root2 Au NPs Au NPs

CP stem2 Au NPs control

CP leaf2 CNTs control

CP root2 CNTs CNTs

CP stem2 CNTs CNTs

CP leaf2 control control

CP root2 control control

CP stem2 control control

CP leaf3 Au NPs Au NPs

CP root3 Au NPs Au NPs

CP stem3 Au NPs Au NPs

CP leaf3 CNTs Au NPs

CP root3 CNTs CNTs

CP stem3 CNTs CNTs

CP leaf3 control control

CP root3 control control

CP stem3 control control
Note: In the current study for the ATR-FTIR measurements, we used 9 plants grown in 3 different conditions
(3 plants per each condition). From each plant, we collected 3 types of samples: leaf, steam, and root. The total is
27 samples. One control leaf sample was lost.

Table 3. Training and cross-validation accuracy of the SVM classification for ATR-FTIR spectral data.

Plant Parts Training Accuracy Cross-Validation Accuracy

All parts 84.62 61.54

Root 100 77.78

Stem 88.84 44.44

Leaf 100 33.33
Note: Data are presented as the mean value of various plant parts of the C. arietinum samples grown in 3 conditions:
(1) Au NPs, (2) CNTs, and (3) control group. The results demonstrate the possibility of automatic classification of
plants based on nanoparticle-inclusion in plant samples using PCA and linear SVM with accuracy of nearly 85%.
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4. Discussion

In our study, the obtained spectral data were in agreement with heterogeneous distri-
bution of AuNPs and CNTs in C. arietinum seedlings’ root, stem, and leaf (Figure 6, Table 3).
Moreover, as it is clearly demonstrated in Figure 6, in the analysis of the PCA scores of the first
three PCs for the ATR-FTIR spectral data of C. arietinum, even the first three PCs are sufficient
to achieve the visual separation (clustering) of 2 NPs-based and 1 control group classes for
ATR-FTIR spectral data of C. arietinum root, stem, and leaf samples (Figures 5 and 6).

By comparing the spectra of the Au NPs and CNTs samples (Figure 2), we identified
three specific spectral ranges, 450–503 cm−1, 750–870 cm−1, and 1022–1218 cm−1, to be
used for the dimensionality reduction by PCA and for the classification by SVM of the
aqueous extracts of C. arietinum used as a model plant grown under influence of Au NPs
and CNTs. Those spectral ranges were chosen based on larger PCA loadings of C. arietinum
ATR-FTIR spectral ranges (Figure 5, Table 1), which also overlap with spectral ranges with
distinct visual differences between spectra of Au NPs and CNTs samples (Figure 2). We
hypothesize that the C. arietinum root samples demonstrate stronger PCA class separability
than either the leaf or the stem samples, due to the most probable route of nanoparticular
transportation in plants. We also observed that the Au NPs and CNTs appeared in the
spectral study differently (Figure 6B,C and Table 3). These differences might be related to
possible variance of the chemical bonds created between NPs and the plant components or
to photocatalytic effects or due to possible promotion of higher photosynthetic activity in
the C. arietinum by CNTs [36].

Previously, it was shown in the AuNPs-exposed barley plants that the AuNPs were
accumulated in the plants root up to a certain extent and it permanently inhibited the root
growth [16]. Based on our findings, the Au NPs- and CNTs-exposure of C. arietinum seeds
at our used concentration leads to an increase in the length of roots, stems, and leaves in
C. arietinum Plant (Figure 1). The spectral results are in agreement with the hypothesis of
more significant translocal distribution of AuNPs and CNTs in the root system of the plant
than the leaf or the stem parts (Figure 6, Table 3). The difference of our results from the
previous reported work (16] could be explained by the difference of the Au NPs size used in
our study (10 nm of diameter), by the specific type of the plant family (Poaceae-Fabaceae),
or based on the specific interactions of the monocotyl-dicotyl plants with our tested NPs.

Previously, in the work [37], different sizes of Au NPs (6–100 nm of diameter) were
synthesized from Lantana camara (Verbenaceae family) leaf extracts by various methods
and ATR-FTIR studies were done as well. Therefore, this plant was recommended for
various medicinal and biomedical applications [37]. The ATR-FTIR results in our study
also showed permissible results for our tested NPs (Figures 2, 5 and 6). At the same time,
the Fabaceae (Leguminosae) family taxa is more common, it is easier to grow, and it has
greater economic value when compared with the Verbenaceae family. Therefore, this type
of plant can be recommended for nanotechnological applications.

It is known that cucumber seedlings treated with 7 nm of diameter ceria particles
showed significantly higher ceria contents in both roots and shoots than those exposed
to 25 nm of diameter ceria particles at all test concentrations. Only very limited amounts
of ceria nanoparticles could be transferred from the roots to shoots because the entry of
nanoparticles into the roots was difficult [11]. As is seen, diameters of NPs and nano-
materials transport differentiation change from plant to plant. Because of that, our study
provides valuable information about C. arietinum-Au NPs (10 nm of diameter) harmony and
C. arietinum-CNTs harmony, which are both remarkable for other fields of study, especially
for biomedical-based ones (Figures 5 and 6, Tables 1–3).

Effects of Au NPs (from 10 to 14 nm of diameter) on leaves and chloroplasts have been
also studied with the conclusion that photosynthetic capacity is greater in the presence of
Au NPs [38]. On the other hand, it was also demonstrated that CNTs are capable of devel-
oping the chloroplast carbon capture and photosynthesis by improving the chloroplasts
activities [39]. According to our study, even with a naked eye, leaves of seedlings treated
with Au NPs and CNTs being dark green is the result of an increase in chloroplast caused
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by physiologic activities in the plant (Figure 1) [5,40]. In addition to that, the detailed
stereo microscopic analyses of the leaves also showed the same result. However, detailed
comparative physiological studies are needed on this subject.

Cano et al. [41] studied CNTs and the effects on corn (Zea mays L.) relative to uptake,
accumulation, and stress features. As a result, they reported that CNTs were taken up into
corn roots, stems, and leaves, and that CNTs accumulated mostly in roots, with minimal
accumulation in stems and leaves. All these results are in very good agreement with our
study (Figure 6, Table 3), despite the different methods employed in both studies.

On the other hand, root nodules appeared as a result of root trichomes and soil
bacterium synergy in Fabaceae family and then the nitrogen fixation could be provided to
soil [42,43]. The increase of the lateral roots and correlatedly with the Rhizobium bacteria
means that the particle concentration was shown to enhance all yields on the soil and
under the soil development in a more effective way than lower concentrations of the CNTs
or of the multiwalled CNTs. According to our study, increasing in lateral roots can be
clearly seen in Figure 1. This information highlights the possible structural adaptation and
correlations between C. arietinum and the microbial biota increasing by adding CNTs. On
the other hand, our study shows the possibility of the CNTs application directly to seeds
water solution, not to soil, which is cheaper and easier to implement in practice.

The limits of uptake of the metallic silver by two common metallophytes, Brassica
juncea and Medicago sativa, and assessing of the form and distribution of the SNPs by the
plants was also studied in [10]. According to this study, M. sativa belonging to Fabaceae
family translocated more SNPs than B. juncea which belongs to Brassicaceae family [10].
Medicago sativa and C. arietinum plants showed a preference trend to SNPs and Au NPs
and they both belong to the Fabaceae family. Thus, we recommend the C. arietinum as a
potential metallophyte model in future studies (Tables 1–3, Figures 1, 2, 5 and 6).

The role of the Au NPs and CNTs in C. arietinum plant signal transduction between cells
of the roots, stems, and leaves and developmental differences, especially in their physiology
metabolism, can be studied further in light of the current investigation. However, this work
showed that C. arietinum seeds are potentially capable of absorbing Au NPs and CNTs, with
possible transfer and translocation pathways as it can be seen from the plant morphology
and spectral graphs (Figures 1, 2, 5 and 6).

5. Conclusions

The present study relates to the applicability evaluation of infrared spectroscopy
combined with machine learning techniques for monitoring the uptake and distribution
of Au NPs and CNTs in C. arietinum samples. The results indicate that the principal
component analysis of the infrared spectroscopic data leads to good classification results
with the visual inspection. The obtained results further demonstrate the possibility of
automatic classification of plant parts based on NPs-inclusion in plant samples using PCA
and linear SVM with an accuracy of nearly 85%. It was also shown that application of the
ATR-FTIR for NPs-inclusion in plant samples can potentially lead to the development of
future analytical techniques and applications.

Additionally, the obtained results might be helpful in evaluating plants, especially
economically valuable plants as an important component of the ecological systems and need
to be considered when developing possible transportation and accumulation pathways of
nanomaterials from the environment to the human body.

The results of the current study showed that rapid-growing plants such as Fabaceae
family members such as C. arietinum might be useful in environmental remediation, phy-
toremediation, and phyto-mining, since our study showed the transfer and translocation of
NPs from the root system to the upper part (stem and leaves) of C. arietinum. Because of
that, we recommend more studies on NPs combined with C. arietinum in other fields such
as biomedical studies.

Moreover, the plant morphogenesis and differentiation are formations that are com-
plementary to each other but essentially do not control each other, as their formations are
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controlled by different genes or gene complexes. Therefore, it is thought that because of
NPs accumulation observed in seedlings treated with Au NPs and CNTs, there might be
remarkable change in the genes which control plant growth and differentiation. Conse-
quently, we plan to carry out a complementary study to evaluate the C. arietinum samples
of plants treated with Au NPs and CNTs by comparing them with the control group in
terms of genetics.
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19. Çekiç, F.Ö.; Ekinci, S.; İnal, M.S.; Ünal, D. Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turk. J.
Biol. 2017, 41, 700–707. [CrossRef]

20. Helbaek, H. Excavations at Hacılar; Mellart, J., Ed.; University Press: Edinburgh, UK, 1970; pp. 189–244.
21. Van der Maesen, L.J.G. Cicer L. A Monograph of the Genus with Spezial Reference to Chickpea (Cicer arietinum L.), Its Ecology and

Cultivation; Communications Agricultural University: Wageningen, The Netherlands, 1972; pp. 72–100.
22. Van der Maesen, L.J.G. Cicer L. Origin, History and Taxonomy of Chickpea. In The Chickpea; Saxena, M.C., Singh, K.B., Eds.;

CABI International Publ.: Wallingford, UK, 1987; pp. 11–34.
23. Auckland, L.J.G.; Maesen, V.D. Chickpea. In Hybridization of Crop Plants; Walter, R.F., Hedley, H.H., Eds.; American Society of

Agronomy and Crop Science Society of America: Madison, WI, USA, 1980; pp. 249–259.
24. Marcano, A.; Pokrajac, D.; Lazarevic, A.; Smith, M.; Markushin, Y.; Melikechi, N. Statistical Analysis for Automatic Identification of

Ovarian Cancer Protein-Biomarkers Based on Fast Fourier Transform Infrared Spectroscopy: Fourier Transforms-New Analytical Approaches
and FTIR Strategies; IntechOpen Press: London, UK, 2011; Chapter 8; pp. 147–166.

25. Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 2000.
26. Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2002.
27. Carbonsolution. Available online: https://carbonsolution.com (accessed on 5 April 2022).
28. Zhao, B.; Hu, H.; Yu, A.; Perea, D.; Robert, C.; Haddon, R.C. Synthesis and characterization of water soluble single-walled carbon

nanotube graft copolymers. J. Am. Chem. Soc. 2005, 127, 8197–8203. [CrossRef]
29. Cytodiagnostics. Available online: www.cytodiagnostics.com/collections/reactant-free-gold-nanoparticles/products/10nm-

reactant-free-gold-nanoparticles?variant=31523912810570 (accessed on 5 April 2022).
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Lizǎrraga, J.C.G., Eds.; IntechOpen Press: Rijeka, Croatia, 2018; pp. 95–112.

40. Candan, F.; Lu, Q. Comparative Effects of Gold (Au) and Carbon (C70) Nanomaterials Translocation on Chick pea (Cicer
arietinum L.) Plant Morphology. In Proceedings of VIII International Symposium on Ecology and Environmental Problems, ISEEP,
Çanakkale, Turkey, 4–7 October 2017.

41. Cano, A.M.; Kohl, K.; Deleon, S.; Payton, P.; Irin, F.; Saed, M.; Shah, S.A.; Green, M.J.; Cañas-Carrell, J.E. Determination of uptake,
accumulation, and stress effects in corn (Zea mays L.) grown in single-wall carbon nanotube contaminated soil. Chemosphere 2016,
152, 117–122. [CrossRef]

42. Duke, J.A. Handbook of Legumes of World Economic Importance; Plenum Press: New York, NY, USA, 1981; pp. 52–57.
43. Singh, K.B. Chickpea (Cicer arietinum L.). Field Crops Res. 1997, 53, 161–170. [CrossRef]

http://doi.org/10.1007/s11356-014-4015-0
http://doi.org/10.3906/biy-1608-36
https://carbonsolution.com
http://doi.org/10.1021/ja042924i
www.cytodiagnostics.com/collections/reactant-free-gold-nanoparticles/products/10nm-reactant-free-gold-nanoparticles?variant=31523912810570
www.cytodiagnostics.com/collections/reactant-free-gold-nanoparticles/products/10nm-reactant-free-gold-nanoparticles?variant=31523912810570
http://doi.org/10.1366/14-07488
http://doi.org/10.1071/PH820623
http://doi.org/10.3390/plants10071317
http://doi.org/10.1038/nmat3890
http://doi.org/10.1007/s13204-014-0323-4
http://doi.org/10.1039/C8PP00067K
http://doi.org/10.1016/j.chemosphere.2016.02.093
http://doi.org/10.1016/S0378-4290(97)00029-4

	Introduction 
	Materials and Methods 
	Seedling Growth and Extract Preparation 
	Data Collection and Analysis 

	Results 
	Morphological Results 
	Spectroscopic Results 

	Discussion 
	Conclusions 
	References

