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Abstract 22 

 23 

Brazil contains two-thirds of remaining Amazonian rainforests and is responsible for the 24 

majority of Amazon forest loss. Primary forest loss in the Brazilian Amazon has declined 25 

considerably since 2004, but secondary forest loss has never been quantified. We use a 26 

recently-developed high-resolution land use/land cover dataset to track secondary forests 27 

in the Brazilian Amazon over 14 years, providing the first estimates of secondary forest 28 

loss for the region. We find that secondary forest loss increased by (187   48) % from 29 

2008 to 2014. Moreover, the proportion of total forest loss accounted for by secondary 30 

forests rose from (37   3) % in 2000 to (72  5) % in 2014. The recent acceleration in 31 

secondary forests loss occurred across the entire region and was not driven simply by 32 

increasing secondary forest area but likely a conscious preferential shift towards 33 

clearance of a little-protected forest ecosystem (i.e. secondary forests). Our results suggest 34 

that secondary forests loss have eased deforestation pressure on primary forests. 35 

However, this has been at the expense of a lost carbon sequestration opportunity of 2.59-36 

2.66 Pg C over our study period.  37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 
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The Amazon rainforest provides significant ecosystem services locally, regionally and 46 

globally.  The biome’s forests are home to one-quarter of global biodiversity1,2, store in excess 47 

of 100 billion tonnes of carbon in their biomass3,4 and play a crucial role in the provision of 48 

rainfall in South America5. Deforestation control is essential for maintaining the functional 49 

integrity of Amazon rainforests. In the Brazilian Amazon, which accounts for over two-thirds 50 

of Amazonian forests6, deforestation of primary forests fell by 82% from peak rates in 2004 to 51 

20147. This substantial decline reflects the efficacy of Brazil’s PPCDAm Program8 (The Action 52 

Plan for the Prevention and Control of Deforestation in the Legal Amazon), which was 53 

launched in 2004 to reduce deforestation rates and support sustainable development in 54 

Amazonia. This program resulted in the implementation of new policies, enhanced detection 55 

frameworks9 and control measures to curtail deforestation in the Brazilian Amazon, and 56 

international mechanisms such as the soybean10,11 and beef moratoria12,13. However, these 57 

mechanisms do not protect secondary forests, defined here as re-growing forests on previously 58 

deforested land.   59 

Currently, secondary forests comprise approximately 21% of previously deforested areas 60 

in the Brazilian Amazon14. They can accumulate carbon very rapidly15, thereby providing a 61 

key pathway for Brazil to reduce net carbon emissions and mitigate climate change16. At the 62 

same time, secondary forests are an important component of land management systems in the 63 

Brazilian Amazon, as their regrowth restores soil functioning, ensuring productivity of pastures 64 

and small-scale agriculture17. Despite the importance of secondary forests for conservation 65 

planning, environmental policy and land management in Amazonia, a historical lack of spatio-66 

temporal data on secondary forest area has precluded evaluation of their large-scale dynamics. 67 

Although a recent localised study18 for the state of Pará illustrates the dynamic nature of 68 

secondary forests, a comprehensive analysis of secondary forest loss in Amazonia does not 69 

exist.    70 
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Here we use a recently-developed 30 m land cover dataset for the Brazilian Amazon 71 

(TERRACLASS)14,19, which provides unprecedented information on secondary forest 72 

occurrence over a 14-year period (2000-2014), to undertake the first large-scale assessment of 73 

the spatio-temporal dynamics of secondary forests in Amazonia. TERRACLASS takes the 74 

deforested areas from PRODES7 as an input layer and classifies each deforested patch into one 75 

of twelve different land covers (Supplementary Table 1), including secondary forest. From 76 

TERRACLASS, we computed the areas of secondary and primary forest cleared annually, 77 

generated secondary forest loss by age structure and evaluated the fate (land cover type) of 78 

cleared secondary forests. To account for classification error in the TERRACLASS base map, 79 

we use a sampling-based approach combined with expert validation, following best practice in 80 

the field20,21. The summary forest loss estimates presented in the main text of this manuscript 81 

refer to sampling-based estimates.  A comparison of sampling-based estimates and map-based 82 

calculations is provided in the supplementary information (Supplementary Table 8).  83 

Results         84 

Our results reveal two distinct phases of secondary forest loss in Amazonia. Between 85 

2000-2008, we find a marked decline in secondary forest loss, mirroring the declines in primary 86 

forest loss seen over this period. During this period of declining deforestation, the pressure on 87 

both primary and secondary forests dropped markedly. However, we find that secondary forest 88 

loss between 2008-2014 increased sharply from approximately 6,040 ± 1,417 km2 yr-1 to 89 

10,757 ± 1,486 km2 yr-1, despite an apparent levelling off of primary forest loss over this period 90 

(Fig. 1). This second period, therefore, was marked by an increased pressure on forest 91 

ecosystems, which was largely absorbed by intensified secondary forest loss. These large 92 

increases in secondary forest loss translate into considerable overall increases (123 ± 21 %) in 93 

total (primary and secondary) forest loss between 2008-2010 and 2012-2014, reversing the 94 

downward trend in total forest loss up to 2008 (Fig. 1). Over our study period, the proportion 95 
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of total forest loss due to secondary forest clearance increased from 37 ± 3 % in 2000-2004 to 96 

72 ± 5 % in 2012-2014 (Fig. 1). Map-based areas of forest loss were very consistent with those 97 

derived from our sampling-based analysis and exhibited the same temporal pattern 98 

(Supplementary Figure 2). 99 

 100 

Fig. 1 | Sample-based estimates of annual primary and secondary forest loss in the Brazilian 101 

Amazon from 2000-2014. Total forest loss is the sum of primary and secondary forest loss. The 102 

uncertainties (grey shaded areas) denote Standard Errors (SE) from our sample-based validation (all 103 

intervals) as well as time-interval corrections which account for missed secondary forest loss in 4-year 104 

intervals (2000-2004 and 2004-2008 only). See Supplementary Table 8 for numerical values and 105 

comparison to map-based calculations.  106 

 107 

The preferential cutting of secondary forests was found to be geographically widespread. 108 

In 2000-2004, secondary forest loss mainly outstripped primary forest loss in the far northeast 109 

of the Brazilian Amazon (Fig. 2) which has historically been subject to high primary forest 110 

deforestation, with little remaining primary forest (Supplementary Figure 4). By 2012-2014, 111 

however, secondary forest loss exceeded primary forest loss across almost all of the Brazilian 112 

Amazon (Fig. 2).  113 
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 114 

Fig. 2 | Spatio-temporal variation of secondary forest loss as fraction of total forest loss in the 115 

Brazilian Amazon. Darker blue (warmer orange) colours indicate areas where majority of forest loss 116 

occurred in primary (secondary) forests. The lighter grey colours represent areas with no recorded forest 117 

loss. Darker grey colours represent non-forest areas (e.g. savannas). Time interval corrections were 118 

applied in the first two intervals (i.e. 2000-2004, 2004-2008). See Supplementary Figure 3 for the spatial 119 

distribution of the absolute area of secondary forest loss. Analysis of spatial patterns was undertaken 120 

directly on the TERRACLASS wall-to-wall maps.  121 

 122 

We further examined the age structure of secondary forest loss. Within any given 123 

interval, we find that the percentage loss rate of secondary forests declines progressively with 124 

increasing secondary forest age (Supplementary Table 9). In the 2012-2014 interval, for 125 

example, the percentage loss rate of the youngest secondary forest age category (0-2 years) was 126 

over five times greater than that of the oldest age category (>12 years old).  Between 2008-127 

2014, increases in secondary forest loss were observed across all age categories (Fig. 3) but 128 

were particularly marked for young (0-4 years) secondary forests (Fig. 3a). Over this time 129 

period, the annual percentage loss rates of young secondary forests increased by 250% from 130 
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6% in 2008-2010 to 21% in 2012-2014 (Fig. 3a, mean), compared to increases of 192% and  131 

106% for intermediate (4-8 years) and old (>8 years) secondary forests respectively (Fig. 3b-132 

c).  133 

 134 
Fig. 3 | Distribution of percentage loss rate of secondary forests by age group (0-4 years, 4-8 years 135 

and over 8 years). Annual percentage loss rates of secondary forests were computed for individual 0.1 136 

grid cells, based on TERRACLASS maps. Grid cells without secondary forest loss were excluded. Panel 137 

a, 10539 valid grid cells, 87% of which showed an increase in secondary forest loss rates; Panel b, 138 

10915 valid grid cells, 81% of which showed an increase in secondary forest loss rates; Panel c, 11248 139 

valid grid cells, 76% of which showed an increase in secondary forest loss rates. Solid lines depict 140 

density distributions of secondary forest loss rates across all valid grids. Dashed vertical lines denote 141 

mean values.  142 

 143 

Fate of secondary forest loss 144 

        The vast majority (91%) of cleared secondary forests (almost identical for young, 145 

intermediate and old secondary forests) in the Brazilian Amazon over our study period became 146 

pastureland (Supplementary Table 10 and Table 11), mirroring the fate of deforested primary 147 

forests21. Pasture expansion from primary forest deforestation in Amazonia slowed 148 

considerably following the establishment of the 2008 beef moratorium13, in which retailers 149 

pledged to stop purchasing meat produced on illegally deforested land. Since these measures 150 

were introduced, secondary forests have absorbed much more of the pasture expansion in the 151 

Brazilian Amazon, with conversion of secondary forest to pastureland increasing by 282% 152 
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between 2008-2010 and 2012-2014 (Supplementary Table 10). Conversely, about 90% of new 153 

secondary forests observed in TERRACLASS between 2008 and 2014 were previously 154 

identified as pasture (Supplementary Table 10). Although conversion of secondary forest to 155 

agricultural land increased by 106% between 2008-2010 and 2012-2014, the absolute area of 156 

secondary forest converted to agricultural land in 2012-2014 was >40 times lower than that 157 

converted to pastureland and only accounted for approximately 2% of the total cleared 158 

secondary forest area (Supplementary Table 10).  159 

Overall, our results point to an acceleration of the pasture-forest-pasture management 160 

system since the introduction of the beef moratorium. Post-deforestation landscapes in the 161 

Brazilian Amazon are highly dynamic in nature.  In these landscapes, secondary forests are 162 

often cut and usually burned, as part of the pasture cycle.  Their regrowth on pasturelands 163 

improves soil integrity by replenishing nutrients, enhancing organic matter storage and 164 

improving the physical structure of soils, which can become heavily degraded following 165 

sustained pasture activity22. Our results suggest that the permanence time of secondary forests 166 

in these cycles has decreased substantially over time, as cutting rates have accelerated greatly 167 

but with no underlying trend over time in the fate of secondary forests. Whereas only 2.86 ± 168 

0.67 % of total secondary forest area was cut annually between 2008 and 2010, this increased 169 

to 7.43 ± 0.81 % in 2012-2014 (Supplementary Table 5 and Table 7).   170 

Area of secondary forests 171 

The upturn in overall forest loss, including both primary and secondary forests, since 172 

2008 indicates an enhanced demand for new pasture and agricultural lands. This enhanced 173 

demand has increasingly been met by secondary forests, thus providing a buffer that has stalled 174 

deforestation of primary forests. Ultimately, however, the strength of this buffer depends on 175 

the area of secondary forest available. Between 2000-2010, the sampling-derived area of 176 

secondary forest increased by 34,183 ± 12,392 km2 (an overall change of 0.87 ± 0.29% in 177 
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agreement with Aguiar et al. (2016)23), but did not change significantly over the last two 178 

intervals (Supplementary Table 12). Moreover, the area of stable secondary forest (secondary 179 

forests which persisted over an entire TERRACLASS interval) increased progressively over 180 

time up to the last interval, when it declined for the first time (Supplementary Tables 3-7). 181 

Future depletions in secondary forest area would likely lead to increasing pressure on primary 182 

forests as the available pool of easily accessible secondary forests for cutting is diminished. 183 

Discussion and Conclusion 184 

While primary forests have benefited from strong legal protection in the Brazilian 185 

Amazon, secondary forests have little protection status in Brazilian law. This partially stems 186 

from the lack of clear definitions for secondary forests themselves - e.g. the point in the 187 

recovery process where they effectively become ‘forests’. Pará is currently the only Brazilian 188 

state to adopt an explicit definition of secondary forests, where secondary forests are defined 189 

as those that have regenerated from previously cleared land and that can no longer be 190 

considered as fallow24.  The right to cut secondary forests in Pará is directly related to forest 191 

age, as state law25 dictates that areas younger than five years can be cleared irrespective of their 192 

physical structure, whilst areas older than 20 years must be conserved.  Clearance of forests in 193 

intermediate stages of succession (5-20 years) follows basal area thresholds which vary 194 

according to background forest cover status. While such legislation is beneficial for ensuring 195 

the recovery of older forests, it may encourage the cutting of secondary forests before they 196 

reach the age or basal area thresholds that would render their cutting illegal. In other Brazilian 197 

Amazon states, legislation governing the cutting of secondary forests has yet to be developed. 198 

This limited legal protection means that secondary forest loss is largely unregulated.   199 

To formally test whether the increase in secondary forest loss over time can be explained 200 

purely by increasing availability of secondary forests relative to primary forests, we compared 201 

the observed secondary forest cutting to a null model which assumes a time-invariant 202 
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preference for secondary forest clearance relative to primary forest clearance. We find that 203 

across the Brazilian Amazon, this null model predicted secondary forests losses well up to 204 

2008-2010. In the last two intervals, however, the null model greatly underestimated secondary 205 

forest loss and its relative contribution to total forest loss (Fig. 4). This recent rise in secondary 206 

forest clearance may reflect a conscious behavioural shift towards preferential cutting of 207 

secondary forests over primary forests - i.e. the increase in secondary forest loss in our 208 

statistical model would only be captured if the bias for cutting secondary forest relative to 209 

primary forest was allowed to increase over time.   210 

 211 

Fig. 4 | Comparison of secondary forest loss between actual estimates from TERRACLASS and 212 

null model predictions. The null model predicts secondary forest loss by sampling without replacement 213 

based on Fisher’s non-central hypergeometric distribution, given known available areas of primary and 214 

secondary forests in each interval and assuming a bias (odds ratio, estimated to be 13.69) for cutting 215 

secondary forests relative to primary forest computed for the first interval (2000-2004) and 216 

subsequently maintained across all intervals. Points on the null model curves are based on mean values 217 

from Fisher’s non-central hypergeometric distribution. See Supplementary Table 12 for numerical 218 

values.   219 

 220 

The large losses of secondary forests observed in this study have significant implications. 221 

On the one hand, their accelerated cutting has been important for curbing losses of primary 222 
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forests whose biodiversity value is irreplaceable26. The enhanced preference for cutting 223 

secondary forests instead of primary forests also reinforces the effectiveness of measures in 224 

place to inhibit primary forest loss.  On the other hand, secondary forests are themselves an 225 

important biodiversity reservoir in an increasingly fragmented landscape27,28, and if left to 226 

regrow, can act as substantial carbon sinks29. Brazil has committed to restore 120,000 km2 of 227 

forest land by 2030 as part of its Nationally Determined Contribution (NDC) for the Paris 228 

Agreement30.  A cost-effective way to do this would be to allow part of its existing Amazonian 229 

secondary forest area to recover naturally. Over the 14-year period of our study, over 180,329 230 

 11,760 km2 of secondary forests were cut, exceeding its total NDC commitment by over 231 

60,329  11,760 km2. Applying a simple biomass accumulation model (see Methods), we 232 

estimate that this loss of secondary forests prevented the potential accumulation of 2.59-2.66 233 

billion tonnes of carbon. This represents approximately 18 years of Brazil’s fossil fuel 234 

emissions, based on 2014 emissions31.   235 

Despite the recent acceleration of secondary forest loss, the Brazilian Amazon still has 236 

in excess of 235,718 ± 7,773 km2 of secondary forests. Managing this ecosystem sustainably 237 

so as to maximise the conservation value of these forests, while not intensifying pressure on 238 

primary forests, requires an integrated strategy that includes active monitoring of secondary 239 

forests in Amazonia and strengthening of their governance. 240 

 241 

 242 

 243 

 244 

 245 

 246 
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Methods 247 

We used the land use/land cover classification maps produced by the TERRACLASS Project19 248 

(https://www.terraclass.gov.br) as the basis for all the analysis of secondary forest dynamics 249 

conducted in this study.  250 

TERRACLASS.  TERRACLASS, developed by INPE (National Institute for Space Research 251 

in Brazil), maps post-deforestation land cover at 2 to 4 year intervals across the Brazilian Legal 252 

Amazon. We used all TERRACLASS maps available at the time of the study (2000, 2004, 253 

2008, 2010, 2012 and 2014).  TERRACLASS assigns areas designated as deforested by 254 

PRODES (primary forest deforestation monitoring program for the Brazilian Amazon) into one 255 

of twelve different land cover types (Supplementary Table 1). In this study, we combined 256 

shrubby pasture and herbaceous pasture categories into a single pasture category and further 257 

combined perennial agriculture, semi-perennial agriculture and temporal agriculture into a 258 

single agriculture category. For areas not observed in a specific TERRACLASS year due to 259 

persistent cloud cover, we assume the same land use categories as for the preceding 260 

TERRACLASS map. Non-forest and hydrology categories were excluded from the study. 261 

TERRACLASS 2004-2014 products inherited historical PRODES misalignment issues32 262 

which were subsequently corrected for TERRACLASS-2000. To ensure consistency across all 263 

TERRACLASS products, we aligned the TERRACLASS-2000 to other TERRACLASS 264 

products using an image displacement algorithm in Google Earth Engine (See supplementary 265 

Figure 1 for the example image for diaplacement correction).  266 

 267 

 268 

 269 

 270 

https://www.terraclass.gov.br/
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Estimates of forest loss. We computed forest loss estimates from TERRACLASS in two ways:  271 

1) simple wall-to-wall calculations based directly on the TERRACLASS map, and 2) a 272 

sampling-based approach in which classification accuracy and the map areas of different land 273 

cover categories are used to construct forest loss estimates with appropriate error 274 

quantification19,31.  275 

We calculated annual primary and secondary forest loss as well as secondary forest gain 276 

for five individual time intervals: 2000-2004, 2004-2008, 2008-2010, 2010-2012, 2012-2014.  277 

Primary forest loss was considered as the land use change from primary forest to any non-278 

primary forest categories (i.e. pasture, agriculture, secondary forest, urban, mining, others, and 279 

reforestation). Secondary forest loss was regarded as the land use change from secondary forest 280 

to other non-forest categories. Secondary forest was defined as being represented only by the 281 

‘secondary forest’ class from TERRACLASS. No post-hoc re-classification of any other land 282 

classes (e.g. shrubby pasture) as secondary forest was applied. Thus, all estimates of secondary 283 

forest area and loss reported in this study refer specifically to the ‘secondary forest’ category 284 

from TERRACLASS. Total forest loss was computed as the sum of primary forest loss and 285 

secondary forest loss. Secondary forest gain was defined as the regrowth of secondary forests 286 

following abandonment from other non-forest categories. Wall-to-wall primary/secondary 287 

forest loss rates were constructed by summing the pixel areas of all pixels that were defined as 288 

primary/secondary forest at the beginning of a TERRACLASS interval but not these classes at 289 

the end of the interval.   290 

We used the map-based calculations to evaluate spatial patterns of secondary/primary 291 

forest loss. To do this, we applied a 0.1 degree grid over the Brazilian Amazon and computed 292 

the fraction of total forest loss accounted for by secondary forests within each grid cell.  293 

Sampling-based estimates. Our wall-to-wall calculations may be subject to biases related to 294 

TERRACLASS classification errors14. To account for this, we estimated forest loss by applying 295 
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an unbiased estimator to a stratified sample of reference observations following best practice 296 

recommendations20,33. For each TERRACLASS time interval (i.e. 2000-2004, 2004-2008, 297 

2008-2010, 2010-2012, 2012-2014), we used stratified random sampling to generate an 298 

independent set of samples, for subsequent visual assessment by three experts. Sampling was 299 

stratified according to six land cover change categories: 1) stable primary forest, 2) primary 300 

forest loss, 3) stable secondary forest, 4) secondary forest loss, 5) secondary forest gain, and 6) 301 

stable others (e.g. pasture, agriculture, mining). The stable primary forest stratum occupied 302 

>70% of the study area (Supplementary Table 1). Given the very large area of this stratum, 303 

stable forest samples interpreted as change categories in the reference classification will carry 304 

a disproportional area weight and may considerably reduce the accuracy of estimates of change 305 

categories34. To account for this, we introduced a buffer stratum (1 km) for stable primary 306 

forest areas surrounding areas of primary forest loss and partitioned our stable forest sample to 307 

account for stable forests inside and outside of this buffer34. We calculated the total sample size 308 

n following Olofsson et al. (2014)20, as follows:  309 

𝑛 = (∑(𝑤𝑖𝑆𝑖)𝑆(�̂�) )2                (1) 310 

where 𝑤𝑖 is the mapped proportion of area of stratum i, 𝑆(�̂�) is the standard error of the 311 

estimated overall accuracy that we would like to achieve (0.015), 𝑆𝑖 is the standard deviation 312 

of stratum i,  𝑆𝑖 =  √𝑈𝑖(1 − 𝑈𝑖)  where 𝑈𝑖 is the anticipated user’s accuracy of stratum i (0.70 313 

for all strata in this study). This yielded a total of 933 sampled pixels for each time interval 314 

with 50-100 pixels allocated to the smaller strata and the remaining pixels proportionally 315 

allocated to other strata based on their area weights (𝑤𝑖)20,34 (Supplementary Table 1). All 316 

pixels were sampled so that they were at least 200 m away from the edge of an individual 317 

stratum to avoid potential misalignments between TERRACLASS and the reference images32.     318 
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Reference classification for each sampled pixel was conducted through Collect Earth 319 

Online35 by three experts through visual interpretation of annual Landsat composite images 320 

acquired during 1st July – 31st August and, when available, very high resolution imagery from 321 

Digital Globe and Google Earth. Information from time-series trajectories of Landsat spectral 322 

bands (red and short-wave infrared bands) and vegetation indices (NDVI-normalized 323 

difference vegetation index, NDWI- normalized difference water index) were also utilized by 324 

the experts for the reference classification. Each sampled pixel was classified by the experts as 325 

stable forest, forest loss, forest gain or stable others, and flagged if no clear Landsat image was 326 

available.  Experts did not distinguish between stable primary forest and stable secondary forest 327 

or between primary forest loss or secondary forest loss as TERRACLASS only classifies land 328 

use/cover on historically deforested areas, so that misclassifications between primary and 329 

secondary forests are not technically possible in TERRACLASS. Initially, each expert assessed 330 

each reference pixel independently. Pixels with disagreement between experts were 331 

subsequently revisited until agreement was reached. Flagged pixels (with no clear Landsat 332 

imagery between 1st July and 31st August) were re-interpreted using Landsat composite 333 

imagery for the entire year or excluded if no clear reference image was available for that year.        334 

Area estimates of each individual reference class were based on the above reference data 335 

and sample classification protocol. Following Olofsson et al. (2014)20, the estimated area of 336 

reference class k was computed as:  337 

�̂�𝑘 =  𝐴 ×  �̂� ∙𝑘                  (2) 338 

where A is the total area of the entire domain considered (3,924,375.63 km2), and �̂� ∙𝑘 is 339 

the proportion of area of class k as determined from the reference classification, which was 340 

computed as: 341 

�̂� ∙𝑘 = ∑ 𝑤𝑖 𝑛𝑖𝑘𝑛𝑖𝑞𝑖=1                 (3) 342 
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where q represents the number of mapped strata (i), 𝑤𝑖 is the proportion of area of each 343 

mapped stratum i, 𝑛𝑖𝑘 is the number of samples from mapped stratum i interpreted as reference 344 

class k, and 𝑛𝑖 is the total number of samples for mapped stratum i. 345 

The standard error for the proportion of area of reference class k was computed as20:   346 

𝑆(�̂�∙𝑘) = √∑ 𝑤𝑖𝑝𝑖𝑘−𝑝𝑖𝑘2𝑛𝑖−1𝑖            (4) 347 

where �̂�𝑖𝑘 is the proportion of area from mapped stratum i interpreted as reference class 348 

k, �̂�𝑖𝑘 = 𝑤𝑖 𝑛𝑖𝑘𝑛𝑖  (refer to the above eq. (3)). 349 

The standard error of the estimated areas was then computed as: 350 

𝑆(�̂�𝑘) = 𝐴 ×  𝑆(�̂�∙𝑘)                (5) 351 

The summary forest loss estimates reported in the main text of this manuscript denote the 352 

sampling-based estimates �̂�𝑘 ± 𝑆(�̂�𝑘).  353 

Correcting for varying interval lengths. The time structure of TERRACLASS products 354 

(2000/2004/2008/2010/2012/2014), is such that the first two intervals used to compute forest 355 

loss span four years while the remaining intervals span two years. These differences in interval 356 

length do not affect calculation of primary forest loss but do have implications for secondary 357 

forest loss and gain due to the much more transient nature of secondary forests, which are often 358 

cleared within 2 years of regrowth. Thus, 4-year intervals can miss the clearance of secondary 359 

forests that have established and been cut again within the interval. To account for this, we 360 

derived a correction factor α, where secondary forest loss/gain estimates for 4-year intervals 361 

were rescaled as: 362 

𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝐴𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  × 𝛼             (6)  363 
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where 𝐴𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  is the original, uncorrected loss/gain over 4-year TERRACLASS 364 

intervals (2000-2004, 2004-2008). We calculated 𝛼  as follows, based on available 2-year 365 

TERRACLASS intervals (2008-2014), which we then regrouped into 4-year intervals (e.g. 366 

2008-2012, 2010-2014): 367 

𝛼 = (𝐵2𝑦𝑟(𝑖) + 𝐵2𝑦𝑟(𝑖𝑖))/𝐵4𝑦𝑟              (7) 368 

where 𝐵4𝑦𝑟  is the secondary forest loss/gain over the regrouped 4-year interval and 369 𝐵2𝑦𝑟(𝑖) and 𝐵2𝑦𝑟(𝑖𝑖)are secondary forest loss/gain for 1st and 2nd 2-year intervals respectively. 370 

We found that on average, 4-year intervals underestimated secondary forest loss by 16.84-371 

26.52% and underestimated secondary forest gain by 10.31-24.61% relative to 2-year intervals.  372 

We applied the above underestimates of secondary forest loss/gain to provide revised 373 

best estimates (based on mean underestimates) of secondary forest loss/gain for 4-year intervals 374 

and used the full range of underestimates (minimum and maximum values) to provide 375 

uncertainty bounds on our re-scaled values.  376 

The interval length corrections were applied to both our map-based and sampling-based 377 

estimates for the 4-year intervals (i.e. 2000-2004, 2004-2008). For sample-based estimates, the 378 

total errors for the loss rates were computed by adding the sampling-derived errors in 379 

quadrature with the interval correction errors (only relevant for 4-year intervals).  380 

Determining secondary forest loss from different forest ages.   To calculate secondary forest 381 

loss for different forest age groups, we generated four age category maps for 2004, 2008, 2010 382 

and 2012 by tracking individual secondary pixels in time back to their year of first emergence 383 

in the dataset (Supplementary Table 8). To account for the differences in forest area among 384 

different age groups, we report secondary forest losses as proportional loss rates whereby the 385 

annual secondary forest loss for individual age categories were divided by the corresponding 386 

total secondary forest area for that age category (Supplementary Table 8). The number of age 387 
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categories that we considered increased over time for each map. For example, the secondary 388 

forest age map for 2004 only has two age categories (0-4, >4 years), while the secondary forest 389 

age map for 2012 contains five age categories (0-2, 2-4, 4-8, 8-12, >12 years). As it was not 390 

possible to compare the same age category across all intervals, we restricted our analysis of 391 

changes in forest loss by age category to two intervals (2008-2010 and 2012-2014) for which 392 

it was possible to compare identical age categories (0-4, 4-8, >8 years). For these two intervals, 393 

we computed the percentage of secondary forest loss annually for each age categories (i.e. 0-394 

4, 4-8 and >8 years) within individual 0.1  0.1 grid cells and compared the pixel-level forest 395 

loss distributions between both intervals.  396 

Null model analysis. To test whether the accelerated loss of secondary forest was driven 397 

simply by increases in secondary forest area relative to primary forest area over time, we 398 

compared TERRACLASS secondary forest loss estimates to predictions from a statistical null 399 

model based on Fisher’s non-central hypergeometric distribution, a modification of the 400 

hypergeometric distribution which allows the sampling probabilities of two binomially 401 

distributed variables to be adjusted according to an odds ratio. The odds ratio for cutting of 402 

secondary forests relative to primary forests was computed for the first TERRACLASS interval 403 

(2000-2004), based on the known total areas of both secondary and primary forest at the 404 

beginning of the interval from sample-based estimates (stable secondary forest + secondary 405 

forest loss within the interval) and the known secondary and total forest loss during the interval.  406 

For the first interval (2000-2004), this odds ratio was found to be 13.69 (i.e. secondary forests 407 

were >13 times more likely to be cut than primary forests). We applied the null model to each 408 

TERRACLASS interval, considering interval-specific total forest loss and available primary 409 

and secondary forest areas but maintaining the same odds ratio for preferential cutting of 410 

secondary forests as in the first interval. The null model analysis was conducted in R using the 411 

‘BiasedUrn’ package. 412 
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Calculating carbon sequestration forgone due to the clearance of secondary forest.  To 413 

estimate the lost carbon sequestration potential arising from secondary forest cutting, we 414 

applied a Michaelis-Menten model commonly used in assessments of secondary biomass 415 

recovery15,36,37. In this model, the amount of carbon sequestered in secondary forests at age 𝑡 416 

is given by: 𝐶(𝑡) =  (𝐶𝑚𝑎𝑥 ∗ 𝑡) (𝛼50 + 𝑡)⁄ , where 𝐶𝑚𝑎𝑥  is average old-growth carbon storage 417 

for Amazon forests (170.60 Mg C ha-1)30,  𝛼50 is the half-saturation content denoting the time 418 

taken to reach half of the maximum carbon sequestration (35 years)37, and age 𝑡 is the average 419 

age of secondary forest when cleared. We estimated t as the area-weighted mean age of 420 

secondary forest loss in the last time interval (Supplementary Table 9, 2012-2014 time 421 

interval), taking the midpoint of each age category to represent the actual age of the secondary 422 

forest when cut. For the oldest age category, we conducted a sensitivity analysis where the 423 

mean age varied from 12-20 years. The final value of t used in the calculation above ranged 424 

from 5.50-6.57 years, once the uncertainty associated with the midpoint of the oldest age 425 

category was accounted for. The lost carbon sequestration opportunity due to secondary forest 426 

cutting was calculated by subtracting the secondary forest carbon sequestration at average 427 

cutting age 𝑡 (𝐶(𝑡)) from its potential maximum carbon sequestration (𝐶𝑚𝑎𝑥) and scaling this 428 

by the total area of lost secondary forest over our study period (180,329  11,760 km2 from 429 

sample-based estimates). 430 

 431 

Data availability 432 

The data that support the findings of this study are available from the paper or from the 433 

supplementary materials. The TERRACLASS dataset used in current study is freely available 434 

from https://www.terraclass.gov.br/ .   435 

 436 
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Code   availability  437 

The Google Earth Engine (GEE) codes analysed during current study are available in the 438 

Y.W.’s GEE repository:  439 

https://code.earthengine.google.com/?accept_repo=users/wangyxtina/public 440 
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